Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-09T14:27:34.824Z Has data issue: false hasContentIssue false

3 - Quantum dynamics

Published online by Cambridge University Press:  05 June 2012

Gennaro Auletta
Affiliation:
Pontificia Universitas Gregoriana
Mauro Fortunato
Affiliation:
Cassa depositi e prestiti S.p.A., Italy
Giorgio Parisi
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

In the first two chapters we have examined the basic principles – superposition (p. 18), complementarity (p. 19), quantization (p. 44), statistical algorithm (p. 57), and correspondence (p. 72) (see also Subsec. 2.3.4) – and the basic entities, observables and states, of quantum mechanics, as well as the main differences with respect to classical mechanics. While what we have discussed so far is rather a static picture of observables and states, in this chapter we shall deal with quantum dynamics, i.e. with the time evolution of quantum-mechanical systems.

Historically, after Bohr had provided a quantized description of the atom (see Subsec. 1.5.4), Einstein showed the quantized nature of photons (see Subsec. 1.2.1), and de Broglie hypothized the wave-like nature of matter (see Subsec. 1.5.5), the first building block of quantum mechanics was provided by the commutation relations, proposed by Heisenberg in 1925, whose consequence is represented by the uncertainty relation (see Subsec. 2.2.7 and Sec. 2.3). This was the subject of the previous chapters. The dynamical part of the theory was proposed by Schrödinger in 1926, and is known as the Schrödinger equation. It is also known as wave mechanics (see Subsec. 1.5.7). In this chapter we shall show that Heisenberg's and Schrödinger's formulations are only two different aspects of the same theory. We shall also come back to this point in Sec. 8.1.1. Here, first we shall derive the fundamental equation which rules quantum dynamics (Sec. 3.1), and, in Sec. 3.2, we shall summarize the main properties of the Schrödinger equation.

Type
Chapter
Information
Quantum Mechanics , pp. 100 - 140
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×