Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T15:23:58.189Z Has data issue: false hasContentIssue false

Chapter 7 - Isotope Geochemistry of Continental Rocks

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, L., Jelínek, E., Medaris, G. et al. (2009). Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: insights into subduction-related melt–rock reactions. Chem. Geol. 259, 152–67.Google Scholar
Bell, K. and Blenkinsop, J. (1987). Archean depleted mantle: evidence from Nd and Sr initial isotopic ratios of carbonatites. Geochim. Cosmochim. Acta 51, 291–8.Google Scholar
Bell, K. and Simonetti, A. (1996). Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J. Petrol. 37, 1321–39.CrossRefGoogle Scholar
Bell, K. and Tilton, G. R. (2001). Nd, Pn and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume heterogeneity. J. Petrol. 42, 1927–45.CrossRefGoogle Scholar
Brandon, A. D. and Goles, G. G. (1988). A Miocene subcontinental plume in the Pacific Northwest: geochemical evidence. Earth Planet. Sci. Lett. 88, 273–83.Google Scholar
Brandon, A. D. and Goles, G. G. (1995). Assessing subcontinental lithospheric mantle sources for basalts: Neogene volcanism in the Pacific Northwest, USA as a test case. Contrib. Mineral. Petrol. 121, 364–79.Google Scholar
Brett, R. C., Russell, J. K. and Moss, S. (2009). Origin of olivine in kimberlite: Phenocryst or impostor? Lithos 112, 201–12.Google Scholar
Brett, R. C., Russell, J. K., Andrews, G. D. M. and Jones, T. J. (2015). The ascent of kimberlite: Insights from olivine. Earth Planet. Sci. Lett. 424, 119–31.CrossRefGoogle Scholar
Briquet, L. and Lancelot, J. R. (1979). Rb–Sr systematics and crustal contamination models for calc-alkaline igneous rocks. Earth Planet. Sci. Lett. 43, 385–96.Google Scholar
Burnham, A. D., Thomson, A. R., Bulanova, G. P. et al. (2015). Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth Planet. Sci. Lett. 432, 374–80.Google Scholar
Carlson, R. W. and Hart, W. K. (1988). Flood basalt volcanism in the northwestern United States. In: MacDougall, J. D. (Ed.) Continental Flood Basalts. Kluwer, pp. 3562.Google Scholar
Carlson, R. W., Lugmair, G. W. and MacDougall, J. D. (1981). Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. Geochim. Cosmochim. Acta 45, 2483–99.CrossRefGoogle Scholar
Cartigny, P., Harris, J. W. and Javoy, M. (1998). Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science 280, 1421–4.Google Scholar
Chamberlain, V. E. and Lambert, R. St. J. (1994). Lead isotopes and the sources of the Columbia River Basalt Group. J. Geophys. Res. 99, 11 805–17.Google Scholar
Chappell, B. W. and White, A. J. R. (1974). Two contrasting granite types. Pacific Geol. 8, 173–4.Google Scholar
Chappell, B. W. and White, A. J. R. (1992). I- and S-type granites in the Lachlan Fold Belt. Trans. Roy. Soc. Edin.: Earth Sci. 83, 126.Google Scholar
Chaussidon, M., Albarede, F. and Sheppard, M. F. (1987). Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds. Nature 330, 242–4.CrossRefGoogle Scholar
Chesley, J. T. and Ruiz, J. (1998). Crust–mantle interaction in large igneous provinces: implications from Re–Os isotope systematics of the Columbia River flood basalts. Earth Planet. Sci. Lett. 154, 111.CrossRefGoogle Scholar
Christiansen, R. L., Foulger, G. R. and Evans, J. R. (2002). Upper-mantle origin of the Yellowstone hotspot. Geol. Soc. Amer. Bull. 114, 1245–56.Google Scholar
Cohen, R. S., O'Nions, R. K. and Dawson, J. B. (1984). Isotope geochemistry of xenoliths from East Africa: implications for development of mantle reservoirs and their interaction. Earth Planet. Sci. Lett. 68, 209–20.Google Scholar
Collins, W. J. (1998). Evaluation of petrogenetic models for Lachlan Fold belt granitoids: implications for crustal architecture and tectonic models. Australian J. Earth Sci. 45, 483500.CrossRefGoogle Scholar
Davidson, J. P. and Tepley, F. J. (1997). Recharge in volcanic systems; evidence from isotopic profiles of phenocrysts. Science 275, 826–9.Google Scholar
Davidson, J., Tepley, F., Palacz, Z. and Meffan-Main, S. (2001). Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks. Earth Planet. Sci. Lett. 184, 427–42.Google Scholar
Davis, W. J., Gariepy, C. and van Breemen, O. (1996). Pb isotopic composition of late Archean granites and the extent of recycling early Archean crust in the Slave Province, northwest Canada. Chem. Geol. 130, 255–69.Google Scholar
Dawson, J. B. (1971). Advances in kimberlite geology. Earth Sci. Rev. 7, 187214.Google Scholar
Dawson, J. B. and Smith, J. V. (1977). The MARID (mica–amphibole–rutile–ilmenite–diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 41, 309–23.Google Scholar
Dawson, J. B. (1967). A review of the geology of kimberlite. In: Wyllie, P. J. (Ed.) Ultramafic and Related Rocks. Wiley, pp. 241–51.Google Scholar
DePaolo, D. J. (1981a). Trace elements and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth Planet. Sci. Lett. 53, 189202.Google Scholar
DePaolo, D. J. (1981b). A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J. Geophys. Res. 86, 10470–88.Google Scholar
DePaolo, D. J. (1983). Comment on ‘Columbia River volcanism: the question of mantle heterogeneity or crustal contamination’ by R. W. Carlson, G. W. Lugmair and J. D. Macdougall. Geochim. Cosmochim. Acta 47, 841–4.Google Scholar
DePaolo, D. J. (1988). Neodymium Isotopes in Geology. Springer-Verlag, 187 pp.Google Scholar
DePaolo, D. J. and Wasserburg, G. J. (1976). Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249–52.Google Scholar
DePaolo, D. J. and Wasserburg, G. J. (1979a). Petrogenetic mixing models and Nd–Sr isotopic patterns. Geochim. Cosmochim. Acta 43, 615–27.CrossRefGoogle Scholar
DePaolo, D. J. and Wasserburg, G. J. (1979b). Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources. Proc. Nat. Acad. Sci. USA 76, 3056–60.Google Scholar
Dhuime, B., Wuestefeld, A. and Hawkesworth, C. J. (2015). Emergence of modern continental crust about 3 billion years ago. Nature Geosci. 8, 552–5.Google Scholar
Dickin, A. P. (1981). Isotope geochemistry of Tertiary igneous rocks from the Isle of Skye, N. W. Scotland. J. Petrol. 22, 155–89.Google Scholar
Dickin, A. P., Brown, J. L., Thompson, R. N., Halliday, A. N. and Morrison, M. A. (1984). Crustal contamination and the granite problem in the British Tertiary Volcanic Province. Phil. Trans. Roy. Soc. Lond. A 310, 755–80.Google Scholar
Dodson, A., Kennedy, B. M. and DePaolo, D. J. (1997). Helium and neon isotopes in the Imnaha Basalt, Columbia River Basalt Group: evidence for a Yellowstone plume source. Earth Planet. Sci. Lett. 150, 443–51.CrossRefGoogle Scholar
Eldridge, C. S., Compston, W., Williams, I. S., Harris, J. W. and Bristow, J. W. (1991). Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 353, 649–53.Google Scholar
Erlank, A. J., Waters, F. G., Hawkesworth, C. J. et al. (1987). Evidence for mantle metasomatism in peridotite nodules from the Kimberly pipes, South Africa. In: Menzies, M. A. and Hawkesworth, C. J. (Eds) Mantle Metasomatism. Academic Press, pp. 221311.Google Scholar
Fitton, J. G. and Dunlop, H. M. (1985). The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt. Earth Planet. Sci. Lett. 72, 2338.Google Scholar
Francalanci, L., Avanzinelli, R., Nardini, I. et al. (2012). Crystal recycling in the steady-state system of the active Stromboli volcano: a 2.5-ka story inferred from in situ Sr-isotope and trace element data. Contrib. Mineral. Petrol. 163, 109–31.Google Scholar
Francalanci, L., Davies, G. R., Lustenhouwer, W. et al. (2005). Intra-grain Sr isotope evidence for crystal recycling and multiple magma reservoirs in the recent activity of Stromboli volcano, southern Italy. J. Petrol. 46, 19972021.Google Scholar
Fraser, K. J., Hawkesworth, C. J., Erlank, A. J., Mitchell, R. H. and Scott-Smith, B. H. (1985). Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet. Sci. Lett. 76, 5770.Google Scholar
Gibson, S. A., Thompson, R. N., Dickin, A. P. and Leonardos, O. H. (1996). High-Ti and low-Ti mafic potassic magmas: key to plume–lithosphere interactions and continental flood-basalt genesis. Earth Planet. Sci. Lett. 141, 325–41.Google Scholar
Graham, D. W., Reid, M. R., Jordan, B. T. et al. (2009). Mantle source provinces beneath the northwestern USA delimited by helium isotopes in young basalts. J. Volcanol. Geotherm. Res. 188, 128–40.Google Scholar
Gray, C. M. (1984). An isotopic mixing model for the origin of granitic rocks in southeastern Australia. Earth Planet. Sci. Lett. 70, 4760.Google Scholar
Gray, C. M. (1990). A strontium isotopic traverse across the granitic rocks of southeastern Australia: petrogenetic and tectonic implications. Aust. J. Earth Sci. 37, 331–49.Google Scholar
Gregoire, M., Bell, D. R. and Le Roex, A. P. (2002). Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Mineral. Petrol. 142, 603–25.Google Scholar
Gurenko, A. A. and Chaussidon, M. (1997). Boron concentrations and isotopic composition of the Icelandic mantle: evidence from glass inclusions in olivine. Chem. Geol. 135, 2134.Google Scholar
Halliday, A. N., Dickin, A. P., Fallick, A. E. and Fitton, J. G. (1988). Mantle dynamics: a Nd, Sr, Pb and O isotopic study of the Cameroon line volcanic chain. J. Petrol. 29, 181211.Google Scholar
Halliday, A. N., Davidson, J. P., Holden, P. et al. (1990). Trace-element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon line. Nature 347, 523–8.Google Scholar
Hammouda, T., Pichavant, M. and Chaussidon, M. (1996). Isotopic equilibration during partial melting: an experimental test of the behaviour of Sr. Earth Planet. Sci. Lett. 144, 109–21.Google Scholar
Harte, B. (1983). Mantle peridotites and processes – the kimberlite sample. In: Hawkesworth, C. J. and Norry, M. J. (Eds) Continental Basalts and Mantle Xenoliths. Shiva, pp. 4691.Google Scholar
Hawkesworth, C. J., Erlank, A. J., Marsh, J. S., Menzies, M. A. and van Calsteren, P. W. C. (1983). Evolution of the continental lithosphere: evidence from volcanics and xenoliths in Southern Africa. In: Hawkesworth, C. J. and Norry, M. J. (Eds) Continental Basalts and Mantle Xenoliths. Shiva, pp. 111–38.Google Scholar
Hawkesworth, C. J., Gallagher, K., Kelley, S. et al. (1992). Parana magmatism and the opening of the South Atlantic. Geol. Soc. Lond. Spec. Pub. 68, 221–40.Google Scholar
Hawkesworth, C. J., Kempton, P. D., Rogers, N. W., Ellam, R. M. and van Calsteren, P. W. C. (1990). Continental mantle lithosphere, and shallow level enrichment processes in the Earth's mantle. Earth Planet. Sci. Lett. 96, 256–68.Google Scholar
Hawkesworth, C. J., Rogers, N. W., van Calsteren, P. W. C. and Menzies, M. A. (1984). Mantle enrichment processes. Nature 311, 331–3.Google Scholar
Hemming, N. G. and Hanson, G. N. (1992). Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56, 537–43.Google Scholar
Hoefs, J. (2008). Stable Isotope Geology. 6th Edn, Springer-Verlag. 286 pp.Google Scholar
Hooper, P. R. and Hawkesworth, C. J. (1993). Isotopic and geochemical constraints on the origin and evolution of the Columbia River basalt. J. Petrol. 34, 1203–46.Google Scholar
Hulett, S. R., Simonetti, A., Rasbury, E. T. and Hemming, N. G. (2016). Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nature Geosci. 9, 904–8Google Scholar
Huppert, H. E. and Sparks, R. S. J. (1985). Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth Planet. Sci. Lett. 74, 371–86.Google Scholar
Hurley, P. M., Bateman, P. C., Fairbairn, H. W. and Pinson, W. H. (1965). Investigation of initial Sr87/Sr86 ratios in the Sierra Nevada plutonic province. Bull. Geol. Soc. Amer. 76, 165–74.CrossRefGoogle Scholar
Ickert, R. B., Stachel, T., Stern, R. A. and Harris, J. W. (2013). Diamond from recycled crustal carbon documented by coupled δ 18O–δ 13C measurements of diamonds and their inclusions. Earth Planet. Sci. Lett. 364, 8597.Google Scholar
Jones, A. P., Smith, J. V. and Dawson, J. B. (1982). Mantle mestasomatism in 14 veined peridotites from Bultfontein Mine, South Africa. J. Geol. 90, 435–53.Google Scholar
Jordan, T. H. (1975). The continental tectosphere. Rev. Geophys. Space Phys. 13 (3), 112.Google Scholar
Jordan, T. H. (1978). Composition and development of the continental tectosphere. Nature 274, 544–8.Google Scholar
Kaczor, S. M., Hanson, G. N. and Peterman, Z. E. (1988). Disequilibrium melting of granite at the contact with a basic plug: a geochemical and petrographic study. J. Geol. 96, 6178.Google Scholar
Kamenetsky, V. S., Golovin, A. V., Maas, R. et al. (2014). Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 139, 145–67.Google Scholar
Kamenetsky, V. S., Kamenetsky, M. B., Sobolev, A. V. et al. (2008). Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J. Petrol. 49, 823–39.Google Scholar
Kamenetsky, V. S., Kamenetsky, M. B., Sobolev, A. V. et al. (2009a). Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 112, 213–22.Google Scholar
Kamenetsky, V. S., Maas, R., Kamenetsky, M. B. et al. (2009b). Chlorine from the mantle: magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth Planet. Sci. Lett. 285, 96104.Google Scholar
Keay, S., Collins, W. J. and McCulloch, M. T. (1997). A three-component Sr–Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology 25, 307–10.Google Scholar
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L. et al. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315, 980–3.CrossRefGoogle ScholarPubMed
Kerr, A. C., Kempton, P. D. and Thompson, R. N. (1995). Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary lava succession, N. W. Scotland. Contrib. Mineral. Petrol. 119, 142–54.Google Scholar
Kille, I. C., Thompson, R. N., Morrison, M. A. and Thompson, R. F. (1986). Field evidence for turbulence during flow of a basalt magma through conduits from southwest Mull. Geol. Mag. 123, 693–7.Google Scholar
Kirkley, M. B., Gurney, J. J., Otter, M. L., Hill, S. J. and Daniels, L. R. (1991). The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Applied Geochem. 6, 477–94.Google Scholar
Knesel, K. M. and Davidson, J. P. (1999). Sr isotope systematics during melt generation by intrusion of basalt into continental crust. Contrib. Mineral. Petrol. 136, 285–95.Google Scholar
Knesel, K. M. and Davidson, J. P. (2002). Insights into collisional magmatism from isotopic fingerprints of melting reactions. Science 296, 2206–8.Google Scholar
Kramers, J. D. (1979). Lead, uranium, strontium, potassium and rubidium in inclusion-bearing diamonds and mantle-derived xenoliths from southern Africa. Earth Planet. Sci. Lett. 42, 5870.Google Scholar
Maaloe, S. and Aoki, K. (1977). The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib. Mineral. Petrol. 63, 161–73.CrossRefGoogle Scholar
Maas, R., Kamenetsky, M. B., Sobolev, A. V., Kamenetsky, V. S. and Sobolev, N. V. (2005). Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology 33, 549–52.Google Scholar
Mantovani, M. S. M. and Hawkesworth, C. J. (1990). An inversion approach to assimilation and fractional crystallisation processes. Contrib. Mineral. Petrol. 105, 289302.Google Scholar
Maury, R. C. and Bizouard, H. (1974). Melting of acid xenoliths into a basanite: an approach to the possible mechanisms of crustal contamination. Contrib. Mineral. Petrol. 48, 275–86.CrossRefGoogle Scholar
McCulloch, M. T. and Chappell, B. W. (1982). Nd isotopic characteristics of S- and I-type granites. Earth Planet. Sci. Lett. 58, 5164.Google Scholar
McCulloch, M. T., Jaques, A. L., Nelson, D. R. and Lewis, J. D. (1983). Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature 302, 400–3.Google Scholar
McKenzie, D. and Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–79.Google Scholar
Menzies, M. A. (1989). Cratonic, circumcratonic and oceanic mantle domains beneath the Western United States. J. Geophys. Res. 94, 7899–915.Google Scholar
Menzies, M. A. and Murthy, V. R. (1980). Enriched mantle: Nd and Sr isotopes in diopsides from kimberlite nodules. Nature 283, 634–6.Google Scholar
Moorbath, S. and Pankhurst, R. J. (1976). Further rubidium–strontium age and isotope evidence for the nature of the late Archean plutonic event in West Greenland. Nature 262, 124–6.Google Scholar
Moorbath, S. and Taylor, P. N. (1981). Isotopic evidence for continental growth in the Precambrian. In: Kroner, A. (Ed.) Precambrian Plate Tectonics. Elsevier, pp. 491525.Google Scholar
Moorbath, S. and Thompson, R. N. (1980). Strontium isotope geochemistry and petrogenesis of the early Tertiary lava pile of the Isle of Skye, Scotland and other basic rocks of the British Tertiary Province: an example of magma crust interaction. J. Petrol. 21, 217–31.Google Scholar
Moorbath, S. and Welke, H. (1969). Lead isotope studies on igneous rocks from the Isle of Skye, Northwest Scotland. Earth Planet. Sci. Lett. 5, 217–30.Google Scholar
Morgan, D. J., Jerram, D. A., Chertkoff, D. G. et al. (2007). Combining CSD and isotopic microanalysis: magma supply and mixing processes at Stromboli Volcano, Aeolian Islands, Italy. Earth Planet. Sci. Lett. 260, 419–31.Google Scholar
Morrison, M. A., Thompson, R. N. and Dickin, A. P. (1985). Geochemical evidence for complex magmatic plumbing during development of a continental volcanic center. Geology 13, 581–4.Google Scholar
Nelson, D. R., Chivas, A. R., Chappell, B. W. and McCulloch, M. T. (1988). Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta 52, 117.Google Scholar
Nixon, P. H., Rogers, N. W., Gibson, I. L. and Grey, A. (1981). Depleted and fertile mantle xenoliths from southern African kimberlites. Ann. Rev. Earth Planet. Sci. 9, 285309.Google Scholar
Nutman, A. P., Bennett, V. C. and Friend, C. R. (2015). Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record. Amer. J. Sci. 315, 509–36.Google Scholar
Pavlov, D. I. and Ilupin, I. P. (1973). Halite in Yakutian kimberlite, its relations to serpentine and the source of its parent solutions. Transactions (Doklady) Russian Acad. Sci. 213, 178–80.Google Scholar
Read, H. H. (1948). Granites and granites. In: Gilluly, J. (Ed.) Origin of Granite. Geol. Soc. Amer. Mem. 28, 119.Google Scholar
Richardson, S. H., Gurney, J. J., Erlank, A. J. and Harris, J. (1984). Origin of diamonds in old enriched mantle. Nature 310, 198202.Google Scholar
Richter, F. M. (1988). A major change in the thermal state of the Earth at the Archean)Proterozoic boundary: consequences for the nature and preservation of continental lithosphere. J. Petrol. Spec. Vol., 3952.Google Scholar
Simon, N. S., Carlson, R. W., Pearson, D. G. and Davies, G. R. (2007). The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J. Petrol. 48, 589625.CrossRefGoogle Scholar
Smart, K. A., Tappe, S., Stern, R. A., Webb, S. J. and Ashwal, L. D. (2016). A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: implications for the onset of plate tectonic subduction. Nature Geosci. 9, 255–9.Google Scholar
Smith, C. B. (1983). Pb, Sr and Nd isotopic evidence for sources of southern African kimberlites. Nature 304, 51–4.Google Scholar
Taylor, H. P. (1980). The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet. Sci. Lett. 47, 243–54.Google Scholar
Taylor, H. P. and Silver, L. T. (1978). Oxygen isotope relationships in plutonic igneous rocks of the Peninsular Ranges Batholith, southern and Baja California. US Geol. Surv. Open File Rep. 79701, 423–6.Google Scholar
Taylor, P. N., Jones, N. W. and Moorbath, S. (1984). Isotopic assessment of relative contributions from crust and mantle sources to the magma genesis of Precambrian granitoid rocks. Phil. Trans. Roy. Soc. Lond. A 310, 605–25.Google Scholar
Taylor, P. N., Moorbath, S., Goodwin, R. and Petrykowski, A. C. (1980). Crustal contamination as an indicator of the extent of Early Archean continental crust: Pb isotopic evidence from the Late Archean gneisses of West Greenland. Geochim. Cosmochim. Acta 44, 1437–53.Google Scholar
Thirlwall, M. F. and Jones, N. W. (1983). Isotope geochemistry and contamination mechanisms of Tertiary lavas from Skye, northwest Scotland. In: Hawkesworth, C. J. and Norry, M. J. (Eds) Continental Basalts and Mantle Xenoliths. Shiva, pp. 186208.Google Scholar
Thompson, R. N. (1982). Magmatism of the British Tertiary Volcanic Province. Scott. J. Geol. 18, 49107.Google Scholar
Thompson, R. N., Dickin, A. P., Gibson, I. L. and Morrison, M. A. (1982). Elemental fingerprints of isotopic contamination of Hebridean Palaeocene mantle derived magmas by Archean sial. Contrib. Mineral. Petrol. 79, 159–68.Google Scholar
Tommasini, S. and Davies, G. R. (1997). Isotope disequilibrium during anatexis: a case study of contact melting, Sierra Nevada, California. Earth Planet. Sci. Lett. 148, 273–85.Google Scholar
Wendlandt, R. F. and Mysen, B. O. (1980). Melting phase relations of natural peridotite + CO2 as a function of degree of partial melting at 15 and 30 kbar. Amer. Mineral. 65, 3744.Google Scholar
White, A. J. R. and Chappell, B. W. (1988). Some supracrustal (S-type) granites of the Lachlan Fold Belt. Trans. Roy. Soc. Edin.: Earth Sci. 79, 169–81.Google Scholar
Wolff, J. A. and Ramos, F. C. (2013). Source materials for the main phase of the Columbia River Basalt Group: Geochemical evidence and implications for magma storage and transport. In: Reidel, S. P. et al. (Eds) The Columbia River Flood Basalt Province, Geol. Soc. Amer. Spec. Pap. 497, 273–91.Google Scholar
Yokoyama, T., Aka, F. T., Kusakabe, M. and Nakamura, E. (2007). Plume–lithosphere interaction beneath Mt. Cameroon volcano, West Africa: Constraints from 238U–230Th–226Ra and Sr–Nd–Pb isotope systematics. Geochim. Cosmochim. Acta 71, 1835–54.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×