Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-14T19:40:10.415Z Has data issue: false hasContentIssue false

1 - Inflammatory Conditions

Published online by Cambridge University Press:  06 October 2022

Anita Arsovska
Affiliation:
University of Ss Cyril and Methodius
Derya Uluduz
Affiliation:
Istanbul Üniversitesi
Get access
Type
Chapter
Information
Rare Causes of Stroke
A Handbook
, pp. 1 - 106
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abdel Razek, AA, Alvarez, H, Bagg, S, Refaat, S, Castillo, M. Imaging spectrum of CNS vasculitis. Radiographics. 2014;34(4): 873894.CrossRefGoogle ScholarPubMed
Salvarani, C, Brown, RD Jr, Calamia, KT, et al. Primary central nervous system vasculitis: Analysis of 101 patients. Ann Neurol. 2007;62(5): 442451.CrossRefGoogle ScholarPubMed
Moore, P. Neurology of vasculitides and connective tissue diseases. J Neurol Neurosurg Psychiatry. 1998;65: 1022.CrossRefGoogle ScholarPubMed
Salvarani, C, Brown, RD Jr, Hunder, GG. Adult primary central nervous system vasculitis. Lancet. 2012;380(9843): 767777.CrossRefGoogle ScholarPubMed
Calabrese, LH, Duna, GF, Lie, JT. Vasculitis in the central nervous system. Arthritis Rheum. 1997;40(7): 11891201.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Duna, GF, Calabrese, LH. Limitations of invasive modalities in the diagnosis of primary angiitis of the central nervous system. J Rheumatol. 1995;22(4): 662667.Google ScholarPubMed
Garg, A. Vascular brain pathologies. Neuroimaging Clin N Am. 2011;21(4): 897–ix.CrossRefGoogle ScholarPubMed
Poels, MM, Ikram, MA, Vernooij, MW. Improved MR imaging detection of cerebral microbleeds more accurately identifies persons with vasculopathy. Am J Neuroradiol. 2012;33(8): 15531556.CrossRefGoogle ScholarPubMed
Berger, JR, Wei, T, Wilson, D. Idiopathic granulomatous angiitis of the CNS manifesting as diffuse white matter disease. Neurology. 1998;51: 17741775.CrossRefGoogle ScholarPubMed
Finelli, PF, Onykie, HC, Uphoff, DF. Idiopathic granulomatous angiitis of the CNS manifesting as diffuse white matter disease. Neurology. 1998;49: 16961699.CrossRefGoogle Scholar
Pomper, MG, Miller, TJ, Stone, JH, Tidmore, WC, Hellmann, DB. CNS vasculitis in autoimmune disease: MR imaging findings and correlation with angiography. Am J Neuroradiol. 1999;20: 7585.Google ScholarPubMed
Cloft, HJ, Phillips, CD, Dix, JE. Correlation of angiography and MR imaging in cerebral vasculitis. Acta Radiol. 1999;40: 8387.CrossRefGoogle Scholar
Obusez, EC, Hui, F, Hajj-Ali, RA, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. Am J Neuroradiol. 2014;35(8): 15271532.CrossRefGoogle ScholarPubMed
Zeiler, SR, Qiao, Y, Pardo, CA, Lim, M, Wasserman, BA. Vessel wall MRI for targeting biopsies of intracranial vasculitis. Am J Neuroradiol. 2018;39(11): 20342036.CrossRefGoogle ScholarPubMed
Eleftheriou, D, Cox, T, Saunders, D, et al. Investigation of childhood central nervous system vasculitis: Magnetic resonance angiography versus catheter cerebral angiography. Dev Med Child Neurol. 2010;52: 863867.CrossRefGoogle ScholarPubMed
Calabrese, LH. Therapy of systemic vasculitis. Neurologic Clinics. 1997;15: 973991.CrossRefGoogle ScholarPubMed
O’Brien, WT Sr, Vagal, AS, Cornelius, RS. Applications of computed tomography angiography (CTA) in neuroimaging. Semin Roentgenol. 2010;45(2): 107115.CrossRefGoogle ScholarPubMed
Alhalabi, M, Moore, P. Serial angiography in isolated angiitis of the central nervous system. Neurology. 1994;44: 12211226.CrossRefGoogle ScholarPubMed
Rossi, CM, Di Comite, G. The clinical spectrum of the neurological involvement in vasculitides. J Neurol Sci. 2009;285(1–2): 1321.CrossRefGoogle ScholarPubMed
Drier, A, Bonneville, F, Haroche, J, et al. Central nervous system involvement in systemic diseases: spectrum of MRI findings. J Neuroradiol. 2010;37(5): 255267.CrossRefGoogle ScholarPubMed
Alis, D, Civcik, C, Erol, BC, et al. Flat-detector CT angiography in the evaluation of neuro-Behçet disease. Diagn Interv Imaging. 2017;98(11): 813815.CrossRefGoogle ScholarPubMed
Parisi, JE, Moore, PM. The role of biopsy in vasculitis of the central nervous system. Semin Neurol. 1994; 4:341348.CrossRefGoogle Scholar
Miller, DV, Salvarani, C, Hunder, GG, et al. Biopsy findings in primary angiitis of the central nervous system. Am J Surg Pathol. 2009;33(1): 3543.CrossRefGoogle ScholarPubMed
Siva, A. Vasculitis of the nervous system. J Neurol. 2001;248(6): 451468.CrossRefGoogle ScholarPubMed
Lie, JT. Primary (granulomatous) angiitis of the central nervous system: A clinicopathologic analysis of 15 new cases and a review of the literature. Hum Pathol. 1992;23(2): 164171.CrossRefGoogle Scholar
Calabrese, LH, Mallek, JA. Primary angiitis of the central nervous system: Report of 8 new cases, review of the literature, and proposal for diagnostic criteria. Medicine. 1988;67: 2039.CrossRefGoogle ScholarPubMed
Hajj-Ali, RA, Calabrese, LH. Primary angiitis of the central nervous system. Autoimmun Rev. 2013;12(4): 463466.CrossRefGoogle ScholarPubMed
Salvarani, C, Brown, RD Jr, Calamia, KT, et al. Rapidly progressive primary central nervous system vasculitis. Rheumatology. 2011;50(2): 349358.CrossRefGoogle ScholarPubMed
Salvarani, C, Brown, RD Jr, Calamia, KT, et al. Primary central nervous system vasculitis with prominent leptomeningeal enhancement: a subset with a benign outcome. Arthritis Rheum. 2008;58(2): 595603.CrossRefGoogle ScholarPubMed
Salvarani, C, Brown, RD Jr, Calamia, KT, et al. Angiography-negative primary central nervous system vasculitis: a syndrome involving small cerebral vessels. Medicine. 2008; 87(5): 264271.CrossRefGoogle ScholarPubMed

References

Nesher, G, Breuer, GS. Giant Cell Arteritis and Polymyalgia Rheumatica: 2016 Update. Rambam Maimonides Med J. 2016; 7.CrossRefGoogle ScholarPubMed
Gonzalez-Gay, MA, Vazquez-Rodriguez, TR, Lopez-Diaz, MJ, et al. Epidemiology of giant cell arteritis and polymyalgia rheumatica. Arthritis Rheum. 2009; 61:14541461.CrossRefGoogle ScholarPubMed
Ness, T, Bley, TA, Schmidt, WA, Lamprecht, P. The diagnosis and treatment of giant cell arteritis. Deutsches Arzteblatt Int. 2013; 110:376385.Google ScholarPubMed
Ness, T, Auw-Hadrich, C, Schmidt, D. [Temporal arteritis (giant cell arteritis). Clinical picture, histology, and treatment]. Ophthalmologe. 2006; 103:296301.Google ScholarPubMed
Gonzalez-Gay, MA, Lopez-Diaz, MJ, Barros, S. Giant cell arteritis: laboratory tests at the time of diagnosis in a series of 240 patients. Medicine. 2005; 84:277290.CrossRefGoogle Scholar
Schmidt, WA, Kraft, HE, Vorpahl, K, et al. Color duplex ultrasonography in the diagnosis of temporal arteritis. New Engl J Med. 1997; 337:13361342.CrossRefGoogle ScholarPubMed
Bley, TA, Reinhard, M, Hauenstein, C. Comparison of duplex sonography and high-resolution magnetic resonance imaging in the diagnosis of giant cell (temporal) arteritis. Arthritis Rheum. 2008; 58:25742578.CrossRefGoogle ScholarPubMed
Blockmans, D. PET in vasculitis. Ann New York Acad Sci. 2011; 1228:6470.CrossRefGoogle ScholarPubMed
Poller, DN, van Wyk, Q, Jeffrey, MJ. The importance of skip lesions in temporal arteritis. J Clin Pathol. 2000; 53:137139.CrossRefGoogle ScholarPubMed
Serling-Boyd, N, Stone, JH. Recent advances in the diagnosis and management of giant cell arteritis. Curr Opin Rheumatol. 2020; 32:201207.CrossRefGoogle ScholarPubMed
Proven, A, Gabriel, SE, Orces, C, O’Fallon, WM, Hunder, GG. Glucocorticoid therapy in giant cell arteritis: duration and adverse outcomes. Arthritis Rheum. 2003; 49:703708.CrossRefGoogle ScholarPubMed
Hellmich, B, Agueda, A, Monti, S, et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2020; 79:1930.CrossRefGoogle ScholarPubMed
Mahr, AD, Jover, JA, Spiera, RF, et al. Adjunctive methotrexate for treatment of giant cell arteritis: An individual patient data meta-analysis. Arthritis Rheum. 2007; 56:27892797.CrossRefGoogle ScholarPubMed
Hocevar, A, Jese, R, Rotar, Z, Tomsic, M. Does leflunomide have a role in giant cell arteritis? An open-label study. Clin Rheum. 2019; 38:291296.CrossRefGoogle ScholarPubMed
Kermani, TA, Warrington, KJ. Prognosis and monitoring of giant cell arteritis and associated complications. Exp Rev Clin Immunol. 2018; 14:379388.CrossRefGoogle ScholarPubMed
Sailler, L, Paricaud, K. [Giant cell arteritis: Ischemic complications]. Presse Med. 2019; 48:948955.CrossRefGoogle ScholarPubMed
Pariente, A, Guedon, A, Alamowitch, S, et al. Ischemic stroke in giant-cell arteritis: French retrospective study. J Autoimmun. 2019; 99:4851.CrossRefGoogle ScholarPubMed
Wilkinson, IM, Russell, RW. Arteries of the head and neck in giant cell arteritis: A pathological study to show the pattern of arterial involvement. Arch Neurol. 1972; 27:378391.CrossRefGoogle ScholarPubMed
Gonzalez-Gay, MA, Blanco, R, Rodriguez-Valverde, V, et al. Permanent visual loss and cerebrovascular accidents in giant cell arteritis: Predictors and response to treatment. Arthritis Rheum. 1998; 41:14971504.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Reich, KA, Giansiracusa, DF, Strongwater, SL. Neurologic manifestations of giant cell arteritis. Am J Med. 1990; 89:6772.CrossRefGoogle ScholarPubMed
Salvarani, C, Della Bella, C, Cimino, L, et al. Risk factors for severe cranial ischaemic events in an Italian population-based cohort of patients with giant cell arteritis. Rheumatology (Oxford). 2009; 48:250253.CrossRefGoogle Scholar
Nesher, G, Berkun, Y, Mates, M, et al. Risk factors for cranial ischemic complications in giant cell arteritis. Medicine. 2004; 83:114122.CrossRefGoogle ScholarPubMed
de Boysson, H, Liozon, E, Lariviere, D, et al. Giant cell arteritis-related stroke: A retrospective multicenter case-control study. J Rheumatol. 2017; 44:297303.CrossRefGoogle ScholarPubMed
Samson, M, Jacquin, A, Audia, S, et al. Stroke associated with giant cell arteritis: A population-based study. J Neurol Neurosurg Psychiatry. 2015; 86:216221.CrossRefGoogle ScholarPubMed
Powers, WJ, Rabinstein, AA, Ackerson, T, et al. Guidelines for the early management of patients with acute ischemic stroke. 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019; 50:e344e418.CrossRefGoogle Scholar
O’Donnell, MJ, Chin, SL, Rangarajan, S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet. 2016; 388:761775.CrossRefGoogle ScholarPubMed
Demarin, V, Rundek, T, Budincevic, H. Kaj je novega v smernicahobravnaveishemičnemožganskekapi/ What is new in the guidelines for ischemic stroke management? In: Žvan, BMZ (Ed.) Akutnamožganskakap. Ljubljana: Društvozapreprečevanjemožganskih in žilnihbolezni. 2015:167183.Google Scholar

References

Jennette, JC, Falk, RJ, Bacon, PA, et al. 2012 Revised international Chapel Hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 2013; 65(1):111.CrossRefGoogle Scholar
Arend, WP, Michel, BA, Bloch, DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990; 33:1129.CrossRefGoogle ScholarPubMed
Seyahi, E. Takayasu arteritis: An update. Curr Opin Rheumatol. 2017; 29(1):5156.CrossRefGoogle ScholarPubMed
Ishikawa, K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu’s arteriopathy. J Am Coll Cardiol. 1988; 12:964e72.CrossRefGoogle ScholarPubMed
Sharma, BK, Jain, S, Suri, S, Numano, F. Diagnostic criteria for Takayasu arteritis. Int J Cardiol. 1996; 54:S141e7.CrossRefGoogle ScholarPubMed
Serra, R, Butrico, L, Fugetto, F, et al. Updates in pathophysiology, diagnosis and management of Takayasu arteritis. Ann Vasc Surg. 2016; 35:210.CrossRefGoogle ScholarPubMed
Dejaco, C, Ramiro, S, Duftner, C et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018; 77:636643.CrossRefGoogle ScholarPubMed
Brkic, A, Terslev, L, Møller Døhn, U. Clinical applicability of ultrasound in systemic large vessel vasculitides. Arthritis Rheum. 2019; 71(11):17801787.CrossRefGoogle ScholarPubMed
Germanò, G, Monti, S, Ponte, C. The role of ultrasound in the diagnosis and follow-up of large-vessel vasculitis: An update. Clin Exp Rheumatol. 2017; 35 Suppl 103(1):194198.Google ScholarPubMed
Grayson, PC, Alehashemi, S, Bagheri, AA, et al. 18 F-fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheum. 2018; 70:439.CrossRefGoogle Scholar
Hellmich, B, Agueda, A, Monti, S. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2020; 79(1):1930.CrossRefGoogle ScholarPubMed

References

Barut, K, Sahin, S, Kasapcopur, O. Pediatric vasculitis. Curr Opin Rheumatol. 2016;28: 2938.CrossRefGoogle ScholarPubMed
Sönmez, HE, Armağan, B, Ayan, G, et al. Polyarteritis nodosa: lessons from 25 years of experience. Clin Exp Rheumatol. 2019;37 Suppl 117(2): 5256.Google ScholarPubMed
Navon Elkan, P, Pierce, SB, Segel, R, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med. 2014;370(10): 921931.CrossRefGoogle Scholar
Sahin, S, Adrovic, A, Barut, K, et al. Clinical, imaging and genotypical features of three deceased and five surviving cases with ADA2 deficiency. Rheumatol Int 2018;38(1): 129136.CrossRefGoogle ScholarPubMed
Sahin, S, Adrovic, A, Kasapcopur, O. A monogenic autoinflammatory disease with fatal vasculitis: deficiency of adenosine deaminase 2. Curr Opin Rheumatol. 2020;32(1): 314.CrossRefGoogle ScholarPubMed

References

Thomson, CC, Tager, AM, Weller, PF. More than your average wheeze. N Engl J Med. 2002;346: 438442.CrossRefGoogle ScholarPubMed
Masi, AT, Hunder, GG, Lie, JT, et al. The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum. 1990;33: 10941100.CrossRefGoogle ScholarPubMed
Sinico, RA, DiToma, L, Maggiore, U, et al. Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg–Strauss syndrome. Arthritis Rheum. 2005;52: 29262935.CrossRefGoogle ScholarPubMed
European Vasculitis Genetics Consortium, Lyons, PA, Peters, JE, Alberici, F, et al. Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status. Nat Commun. 2019;10(1): 5120.CrossRefGoogle ScholarPubMed
French Vasculitis Study Group (FVSG), André, R, Cottin, V, Saraux, JL, et al. Central nervous system involvement in eosinophilic granulomatosis with polyangiitis (Churg-Strauss): Report of 26 patients and review of the literature. Autoimmun Rev. 2017;16(9): 963969.CrossRefGoogle ScholarPubMed
Sarazin, M, Caumes, E, Cohen, A, Amarenco, P. Multiple microembolic border zone brain infarctions and endomyocardial fibrosis in idiopathic hypereosinophilic syndrome and in Schistosoma mansoni infestation. J Neurol Neurosurg Psychiatry. 2004;75(2): 305307.Google Scholar
Bhagirath, KM, Paulson, K, Ahmadie, R, et al. Clinical utility of cardiac magnetic resonance imaging in Churg-Strauss syndrome: case report and review of the literature. Rheumatol Int. 2009;29(4): 445449.CrossRefGoogle ScholarPubMed
Ames, PR, Roes, L, Lupoli, S, et al. Thrombosis in Churg-Strauss syndrome: Beyond vasculitis? Br J Rheumatol. 1996;35: 11811183.CrossRefGoogle ScholarPubMed
Hira, K, Shimura, H, Kamata, R, et al. Multiple cerebral infarction diagnosed as Eosinophilic Granulomatosis with Polyangiitis by autopsy. BMC Neurol. 2019;19(1): 288.CrossRefGoogle ScholarPubMed
French Vasculitis Study Group (FVSG), Guillevin, L, Pagnoux, C, Seror, R, et al. The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vas- culitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore). 2011;90(01): 1927.CrossRefGoogle Scholar

References

Barut, K, Sahin, S, Kasapcopur, O. Pediatric vasculitis. Curr Opin Rheumatol. 2016;28: 2938.CrossRefGoogle ScholarPubMed
De Graeff, N, Groot, N, Brogan, P, et al. European consensus-based recommendations for the diagnosis and treatment of rare paediatric vasculitides – The SHARE initiative. Rheumatology (Oxford). 2019;58: 656671.CrossRefGoogle ScholarPubMed
Bohm, M, Gonzalez Fernandez, MI, Ozen, S, et al. Clinical features of childhood granulomatosis with polyangiitis (Wegener’s granulomatosis). Pediatr Rheumatol Online J. 2014;12: 18.CrossRefGoogle ScholarPubMed
De Luna, G, Terrier, B, Kaminsky, P, et al. Central nervous system involvement of granulomatosis with polyangiitis: clinical–radiological presentation distinguishes different outcomes. Rheumatology. 2015;54: 424432.CrossRefGoogle ScholarPubMed
Morishita, K, Li, SC, Muscal, E, et al. Assessing the performance of the Birmingham Vasculitis Activity Score at diagnosis for children with antineutrophilcytoplasmic antibody-associated vasculitis in A Registry for Childhood Vasculitis (ARChiVe). J Rheumatol. 2012;39: 10881094.Google Scholar

References

Liebow, AA, Carrington, CR, Friedman, PJ. Lymphomatoid granulomatosis. Hum Pathol. 1972;3(4): 457558.CrossRefGoogle ScholarPubMed
Dunleavy, K, Roschewski, M, Wilson, WH. Lymphomatoid granulomatosis and other Epstein-Barr virus associated lymphoproliferative processes. Curr Hematol Malig Rep. 2012;7(3): 208215.CrossRefGoogle ScholarPubMed
Song, JY, Pittaluga, S, Dunleavy, K, et al. Lymphomatoid granulomatosis – a single institute experience: pathologic findings and clinical correlations. Am J Surg Pathol. 2015;39(2): 141156.CrossRefGoogle ScholarPubMed
Sukswai, N, Lyapichev, K, Khoury, JD, Medeiros, LJ. Diffuse large B-cell lymphoma variants: an update. Pathology. 2020;52(1): 5367.CrossRefGoogle ScholarPubMed
Dojcinov, SD, Fend, F, Quintanilla-Martinez, L. EBV-positive lymphoproliferations of B-T-and NK-cell derivation in non-immunocompromised hosts. Pathogens. 2018;7(1): 28.CrossRefGoogle Scholar
Melani, C, Jaffe, ES, Wilson, WH. Pathobiology and treatment of lymphomatoid granulomatosis, a rare EBV-driven disorder. Blood. 2020;135(16): 13441352.CrossRefGoogle ScholarPubMed
Roschewski, M, Wilson, WH. EBV-associated lymphomas in adults. Best Pract Res Clin Haematol. 2012;25(1): 7589.CrossRefGoogle ScholarPubMed
Patsalides, AD, Atac, G, Hedge, U, et al. Lymphomatoid granulomatosis: abnormalities of the brain at MR imaging. Radiology. 2005;237(1): 265273.CrossRefGoogle Scholar
Katzenstein, AL, Doxtader, E, Narendra, S. Lymphomatoid granulomatosis: insights gained over 4 decades. Am J Surgical Pathol. 2010;34(12): e35e48.CrossRefGoogle ScholarPubMed
Rezk, SA, Weiss, LM. EBV–associated lymphoproliferative disorders: update in classification. Surg Pathol Clin. 2019;12(3): 745770.CrossRefGoogle ScholarPubMed
Kim, JY, Jung, KC, Park, SH, Choe, JY, Kim, JE. Primary lymphomatoid granulomatosis in the central nervous system: A report of three cases. Neuropathology. 2018;38(4): 331336.CrossRefGoogle Scholar
Koeller, KK, Shih, RY. Extranodal lymphoma of the central nervous system and spine. Radiol Clin North Am. 2016;54(4): 649671.CrossRefGoogle ScholarPubMed
Oliveras, C, D’Olhaberriague, L, Garcia, J, Matias-Guiu, X. Parkinsonism as first manifestation of lymphomatoid granulomatosis. J Neurol Neurosurg Psychiatry. 1988;51(7): 999.CrossRefGoogle ScholarPubMed
Borie, R, Wislez, M, Antoine, M, Cadranel, J. Lymphoproliferative disorders of the lung. Respiration. 2017;94(2): 157175.CrossRefGoogle ScholarPubMed
Tateishi, U, Terae, S, Ogata, A, et al. MR imaging of the brain in lymphomatoid granulomatosis. Am J Neuroradiol. 2001;22(7): 12831290.Google ScholarPubMed
Yang, M, Rosenthal, AC, Ashman, JB, Craig, FE. The role and pitfall of F18-FDG PET/CT in surveillance of high grade pulmonary lymphomatoid granulomatosis. Curr Probl Diagn Radiol. 2021;50(3): 443449.CrossRefGoogle ScholarPubMed
Zhang, YX, Ding, MP, Zhang, T, et al. Lymphomatoid granulomatosis with CNS involvement can lead to spontaneous remission: case study. CNS Neurosci Ther. 2013;19(7): 536.CrossRefGoogle ScholarPubMed
Aiko, N, Sekine, A, Umeda, S, et al. The spontaneous regression of grade 3 methotrexate-related lymphomatoid granulomatosis: a case report and literature review. Intern Med. 2018;57(21): 31633167.CrossRefGoogle ScholarPubMed
Tang, VK, Vijhani, P, Cherian, SV, et al. Primary pulmonary lymphoproliferative neoplasms. Lung India. 2018;35(3): 220230.Google ScholarPubMed
Katzenstein, AL, Carrington, CB, Liebow, AA: Lymphomatoid granulomatosis: a clinicopathologic study of 152 cases. Cancer. 1979;43: 360373.3.0.CO;2-8>CrossRefGoogle ScholarPubMed

References

Dörr, J, Krautwald, S, Wildemann, B, et al. Characteristics of Susac syndrome: a review of all reported cases. Nat Rev Neurol. 2013;9(6): 307316.CrossRefGoogle ScholarPubMed
Karahan, SZ, Boz, C, Saip, S, et al. Susac syndrome: clinical characteristics, diagnostic findings and treatment in 19 cases. Mult Scler Relat Disord. 2019;33: 9499.CrossRefGoogle Scholar
García-Carrasco, M, Jiménez-Hernández, C, Jiménez-Hernández, M, et al. Susac’s syndrome: an update. Autoimmun Rev. 2011;10(9): 548552.CrossRefGoogle ScholarPubMed
Mateen, FJ, Zubkoc, AY, Muralidharan, R, et al. Susac syndrome: clinical characteristics and treatment in 29 new cases. Eur J Neurol. 2012;19(6): 800811.CrossRefGoogle ScholarPubMed
Vodopivec, I, Venna, N, Rizzo, JF, Prasad, S. Clinical features, diagnostic findings, and treatment of Susac syndrome: a case series. J Neurol Sci. 2015;357(1–2): 5057.CrossRefGoogle ScholarPubMed
European Susac Consortium (EuSaC), Kleffner, I, Dörr, J, Ringelstein, M, et al. Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry. 2016;87(12): 12871295.CrossRefGoogle ScholarPubMed
Susac, JO1, Murtagh, FR, Egan, RA, et al. MRI findings in Susac’s syndrome. Neurology. 2003; 61(12): 17831787.CrossRefGoogle ScholarPubMed
Fox, RJ, Costello, F, Judkins, AR, et al. Treatment of Susac syndrome with gamma globulin and corticosteroids. J Neurol Sci. 2006;251: 1722.CrossRefGoogle ScholarPubMed
Vishnevskia-Dai, V, Chapman, J, Sheinfeld, R, et al. Susac syndrome: clinical characteristics, clinical classification, and long-term prognosis. Medicine. 2016;95(43): e5223.CrossRefGoogle ScholarPubMed

References

Shruthi, P, Sridhar, A, Sharath Kumar, G. Case of the week: Vogt-Koyanagi-Harada syndrome (VKH). Am J Neuroradiol. 2018. www.ajnr.org/content/cow/12062018 (accessed January 2022).Google Scholar
Yang, P, Ren, Y, Li, B, et al. Clinical characteristics of Vogt-Koyanagi-Harada syndrome in Chinese patients. Ophthalmology. 2007;114: 606614.CrossRefGoogle ScholarPubMed
Lavezzo, MM, Sakata, VM, Morita, C, et al. Vogt-Koyanagi-Harada disease: Review of a rare autoimmune disease targeting antigens of melanocytes. Orphanet J Rare Dis. 2016;11: 29.CrossRefGoogle ScholarPubMed
Patil, YB, Garg, R, Rajguru, JP, et al. Vogt-Koyanagi-Harada (VKH) syndrome: A new perspective for healthcare professionals. J Family Med Prim Care. 2020;9: 3135.Google ScholarPubMed
Yang, P, Zhong, Y, Du, L, et al. Development and evaluation of diagnostic criteria for Vogt-Koyanagi-Harada disease. JAMA Ophthalmol. 2018;136: 10251031.CrossRefGoogle ScholarPubMed

References

Azad, SV, Takkar, B, Venkatesh, P. Eye and Vasculitis. J Vasc. 2016;2: 108.CrossRefGoogle Scholar
Crawford, CM. Primary Retinal Vasculitis Vs Eales’ Disease. Int J Open Access Opthalmology. 2016;1(3): 18.Google Scholar
Rosenbaum, JT, Sibley, CH, Lin, P. Retinal Vasculitis. Curr Opin Rheumatol. 2016;28(3): 228235.CrossRefGoogle ScholarPubMed
Das, T, Pathengay, A, Hussain, N, Biswas, J. Eales’ disease: diagnosis and management. Eye (Lond). 2010;24(3): 472482.CrossRefGoogle ScholarPubMed
Biswas, J, Raghavendran, R, Pinakin, G, Arjundas, D. Presumed Eales’ disease with neurologic involvement: Report of three cases. Retina. 2001;21(2): 141145.CrossRefGoogle ScholarPubMed
Gordon, MF, Coyle, PK, Golub, B. Eales’ disease presenting as stroke in the young adult. Ann Neurol. 1988;24(2): 264266.Google Scholar
Biswas, J, Ravi, RK, Naryanasamy, A, Kulandai, LT, Madhavan, HN. Eales’ disease – current concepts in diagnosis and management. J Ophthalmic Inflamm Infect. 2013;3: 11.CrossRefGoogle ScholarPubMed

References

Cogan, DG. Syndrome of nonsyphilitic interstitial keratitis and vestibuloauditory symptoms. Arch Ophthalmol. 1945;33: 144149.CrossRefGoogle Scholar
Pagnini, I, Zannin, ME, Vittadello, F, et al. Clinical features and outcome of Cogan syndrome. J Pediatr. 2012;160: 303307.CrossRefGoogle ScholarPubMed
Haynes, BF, Kaiser-Kupfer, MI, Mason, P, Fauci, AS. Cogan syndrome: studies in thirteen patients, long-term follow-up, and a review of the literature. Medicine (Baltimore). 1980;59: 426441.Google Scholar
Bonaguri, C, Orsoni, J, Russo, A, et al. Mora P Cogan’s syndrome: Anti-Hsp70 antibodies are a serological marker in the typical form. Isr Med Assoc J. 2014;16: 285288.Google ScholarPubMed
Gluth, MB, Baratz, KH, Matteson, EL, Driscoll, CL. Cogan syndrome: a retrospective review of 60 patients throughout a half-century. Mayo Clin Proc. 2006;81: 483488.CrossRefGoogle ScholarPubMed
Antonios, N, Silliman, S. Cogan syndrome: an analysis of reported neurological manifestations. Neurologist. 2012;18: 5563.CrossRefGoogle ScholarPubMed
Casselman, JW, Majoor, MH, Albers, FW. MR of the inner ear in patients with Cogan syndrome. Am J Neuroradiol. 1994;15: 131138.Google ScholarPubMed
Study Group for Cogan’s Syndrome, Grasland, A, Pouchot, J, Hachulla, E, et al. Typical and atypical Cogan’s syndrome: 32 cases and review of the literature.Rheumatology (Oxford). 2004;438: 10071015.CrossRefGoogle Scholar

References

Daniel, JW, Dafna, DG. Clinical manifestations and diagnosis of systemic lupus erythematosus in adults. www.uptodate.com. Literature review current through: Mar 2020.Last updated: Dec.10,2019. (accessed January 2022).Google Scholar
Schur, PH. Neurologic manifestation of systemic lupus erythematosus in adults. www.uptodate.com. Literature review current through: Mar 2020.Last updated: Feb 21, 2019. (accessed January 2022).Google Scholar
Cooper, GS, Dooley, MA, Treadwell, EL, et al. Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus. Arthritis Rheum. 1998;41(10): 17141724.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999;42: 599.Google Scholar
Hanly, JG, Kozora, E, Beyea, SD, Birnbaum, J. Review: Nervous system disease in systemic lupus erythematosus. Current status and future directions. Arthritis Rheumatol. 2019;71: 33.CrossRefGoogle ScholarPubMed
Saadatnia, M, Sayed-Bonakdar, Z, Mohammad-Sharifi, G, Sarrami, AH. The necessity of stroke prevention in patients with systemic lupus erythematosus. J Res Med Sci. 2012;17: 894895.Google ScholarPubMed
Holmqvist, M, Simard, JF, Asplund, K, Arkema, EV. Stroke in systemic lupus erythematosus: A meta-analysis of population-based cohort studies. RMD Open 2015;1: e000168.CrossRefGoogle ScholarPubMed
Duman, T, Demirci, S, Uluduz, D et al. Cerebral venous sinus thrombosis as a rare complication of systemic lupus erythematosus: subgroup analysis of the VENOST study. J Stroke Cerebrovasc Dis. 2019;28(12): 104372.Google Scholar
Rowshani, AT, Remans, P, Rozemuller, A, Tak, PP. Cerebral vasculitis as a primary manifestation of systemic lupus erythematosus. Ann Rheum Dis. 2005;64: 784786.CrossRefGoogle ScholarPubMed
Pomper, MG, Miller, TJ, Stone, JH, et al. CNS vasculitis in autoimmune disease: MR imaging findings and correlation with angiography. Am J Neuroradiol. 1999;20: 7585.Google Scholar

References

Kantarci, O. Neuro-Behçet’s syndrome. In: Mayo Clinic Neurology Grand Rounds. Rochester: Mayo Clinic; 2018.Google Scholar
Kocer, N, Islak, C, Siva, A, et al. CNS involvement in Neuro-Behcet’s syndrome: an MR study. Am J Neuroradiol. 1999;20: 10151024.Google Scholar
Siva, A, Kantarci, OH, Saip, S, et al. Behçet’s disease: diagnostic and prognostic aspects of neurological involvement. J Neurol. 2001;248: 95103.Google Scholar
Siva, A, Saip, S. The spectrum of nervous system involvement in Behçet’s syndrome and its differential diagnosis. J Neurol. 2009;256(4): 513529.CrossRefGoogle ScholarPubMed
Uygunoglu, U, Zeydan, B, Ozguler, Y, et al. Myelopathy in Behçet’s disease: the Bagel Sign. Ann Neurol. 2017;82(2): 288298.CrossRefGoogle ScholarPubMed
Uygunoğlu, U, Siva, A. Behçet’s syndrome and nervous system involvement. Curr Neurol Neurosci Rep. 2018;18(7): 35.CrossRefGoogle ScholarPubMed
Uygunoglu, U, Siva, A. Behçet syndrome and the nervous system. In: Yazici, Y, Hatemi, G, Seyahi, E, Yazici, H (Eds), Behçet Syndrome. Springer: Cham; 2020, 7382.Google Scholar
Zeydan, B, Uygunoglu, U, Saip, S, et al. Infliximab is a plausible alternative for neurologic complications of Behçet disease. Neurol Neuroimmunol Neuroinflamm. 2016;3(5): e258.CrossRefGoogle ScholarPubMed

References

Bournia, VK, Vlachoyiannopoulos, PG. Subgroups of Sjögren syndrome patients according to serological profiles. J Autoimmun. 2012;39: 1526.CrossRefGoogle ScholarPubMed
Berkowitz, AL, Samuels, MA. The neurology of Sjögren’s syndrome and the rheumatology of peripheral neuropathy and myelitis. Pract Neurol. 2014;14(1): 1422.CrossRefGoogle ScholarPubMed
Yong, WC, Sanguankeo, A, Upala, S, et al. Association between primary Sjögren’s syndrome, arterial stiffness, and subclinical atherosclerosis: a systematic review and meta-analysis. Clin Rheumatol. 2019;38: 447455.CrossRefGoogle ScholarPubMed
Valim, V, Gerdts, E, Jonsson, R, et al. Atherosclerosis in Sjögren’s syndrome: evidence, possible mechanisms and knowledge gaps. Clin Exp Rheumatol. 2016;34(1): 133142.Google ScholarPubMed
Vitali, C, Bombardieri, S, Jonsson, R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis. 2002;61: 554558.Google Scholar
Ramos-Casals, M, Tzioufas, AG, Stone, JH, Sisó, A, Bosch, X. Treatment of primary Sjögren syndrome a systematic review. J Am Med Assoc. 2010;304: 452460.CrossRefGoogle ScholarPubMed
Seror, R, Sordet, C, Guillevin, L, et al.Tolerance and efficacy of rituximab and changes in serum B cell biomarkers in patients with systemic complications of primary Sjögren’s syndrome. Ann Rheum Dis. 2007;66(3): 351357.CrossRefGoogle ScholarPubMed
Pers, JO, Devauchelle, V, Daridon, C, et al. BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjögren’s syndrome. Arthritis Rheum. 2007;56(5): 14641477.CrossRefGoogle ScholarPubMed

References

Iannuzzi, MC, Fontana, JR. Sarcoidosis: Clinical presentation, immunopathogenesis, and therapeutics. J Am Med Assoc. 2011;305(4): 391399.CrossRefGoogle ScholarPubMed
Degardin, A, Devos, P, Vermersch, P, de Seze, J. Cerebrovascular symptomatic involvement in sarcoidosis. Acta Neurol Belg. 2010;110(4): 349352.Google ScholarPubMed
Ungprasert, P, Matteson, EL. Neurosarcoidosis. Rheum Dis Clin North Am. 2017;43(4): 593606.CrossRefGoogle ScholarPubMed
Bathla, G, Watal, P, Gupta, S, et al. Cerebrovascular manifestations of neurosarcoidosis: an underrecognized aspect of the imaging spectrum. Am J Neuroradiol. 2018;39(7): 11941200.CrossRefGoogle ScholarPubMed
Voortman, M, Drent, M, Baughman, RP. Management of neurosarcoidosis: a clinical challenge. Curr Opin Neurol. 2019;32(3): 475483.CrossRefGoogle ScholarPubMed

References

Sy, A, Khalidi, N, Dehghan, N, et al. Vasculitis in patients with inflammatory bowel diseases: A study of 32 patients and systematic review of the literature. Semin Arthritis Rheum. 2016;45(4): 475482.Google Scholar
Kilic, L, Kalyoncu, U, Karadag, O, et al. Inflammatory bowel diseases and Takayasu’s arteritis: coincidence or association? Int J Rheum Dis. 2016;19(8): 814818.Google Scholar
Akiyama, S, Fujii, T, Matsuoka, K, et al. Endoscopic features and genetic background of inflammatory bowel disease complicated with Takayasu arteritis. J Gastroenterol Hepatol. 2017;32(5): 10111017.CrossRefGoogle ScholarPubMed
Anderson, E, Gakhar, N, Stull, C, Caplan, L. Gastrointestinal and Hepatic Disease in Vasculitis. Rheum Dis Clin North Am. 2018;44(1): 114.Google Scholar
Hatemi, I, Hatemi, G, Çelik, AF. Systemic vasculitis and the gut. Curr Opin Rheumatol. 2017;29(1): 3338.CrossRefGoogle ScholarPubMed

References

Auriel, E, Charidimou, A, Gurol, E. Validation of clinic-radiological criteria for the diagnosis of cerebral amyloid angiopathy-related inflammation. JAMA Neurol. 2016;73: 197.CrossRefGoogle Scholar
Greenberg, SM, Bacskai, BJ, Hernandez-Guillamon, M. Cerebral amyloid angiopathy and Alzheimer disease – one peptide, two pathways. Nat Rev Neurol. 2020;16: 3042.CrossRefGoogle ScholarPubMed
DiFrancesco, JC, Brioschi, M, Brighina, L, Ruffmann, C, Saracchi, E. Anti-A autoantibodies in the CSF of a patient with CAA-related inflammation: A case report. Neurology. 2011;76: 842844.CrossRefGoogle Scholar
DiFrancesco, C, Touat, M, Caulo, M, Gallucci, M. Recurrence of cerebral amyloid angiopathy-related inflammation: A report of two cases from the ICAβ International Network. J Alzheimers Dis. 2015;46: 10711077.Google Scholar
Kinnecom, C, Lev, MH, Wendell, L, Smith, EE. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2004;68: 14111416.Google Scholar
Berkowitz, AL, Baker, JM, Miller, JJ, Greenberg, SM. Mystery case: Cerebral amyloid angiopathy-related inflammation. Neurology. 2014;83: 16781679.CrossRefGoogle ScholarPubMed
Chung, KK, Anderson, NE, Hutchinson, D. Cerebral amyloid angiopathy related inflammation: Three case reports and a review. J Neurol Neurosurg Psychiatry. 2011;82: 2026.Google Scholar
Corovic, A, Kelly, S, Markus, S. Cerebral amyloid angiopathy associated with inflammation: A systematic review of clinical and imaging features and outcome. Int J Stroke 2018;13(3): 257267.CrossRefGoogle ScholarPubMed
Kang, P, Bucelli, RC, Ferguson, CJ. Teaching neuroimages: cerebral amyloid angiopathy-related inflammation presenting with isolated leptomeningitis. Neurology. 2017;9: e66e67.Google Scholar
Liang, JW, Zhang, W, Sarlin, J. Case of cerebral amyloid angiopathy-related inflammation – is the absence of cerebral microbleeds a good prognostic sign? J Stroke Cerebrovasc Dis. 2015;4: e319e322.Google Scholar
Renard, D, Wacongne, A, Thouvenot, E. Radiologically isolated cerebral amyloid angiopathy-related inflammation. J Stroke Cerebrovasc Dis. 2017;6: e218e220.CrossRefGoogle Scholar
Banerjee, G, Alvares, D, Bowen, J. Minimally symptomatic cerebral amyloid angiopathy-related inflammation: three descriptive case reports. J Neurol Neurosurg Psychiatr. 2019;90: 113115.CrossRefGoogle ScholarPubMed
Sperling, RA, Jack, CR Jr, Black, SE. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 2011;7: 367–85.CrossRefGoogle ScholarPubMed
Ketter, N, Brashear, HR, Bogert, J. Central review of amyloid-related imaging abnormalities in two phase iii clinical trials of bapineuzumab in mild-to-moderate Alzheimer’s disease patients. J Alzheimers Dis. 2017;57(2): 557573.CrossRefGoogle ScholarPubMed
Barakos, J, Sperling, R, Salloway, S, Imaging, MR Features of Amyloid-Related Imaging Abnormalities. Am J Neuroradiol. 2013;34: 19581965.CrossRefGoogle ScholarPubMed
Arrighi, HM, Barakos, J, Barkhof, F, Tampieri, D. Amyloid-related imaging abnormalities-haemosiderin (ARIA-H) in patients with Alzheimer’s disease treated with bapineuzumab: a historical, prospective secondary analysis. J Neurol Neurosurg Psychiatry. 2016;87: 106112.Google ScholarPubMed
Piazza, F, Greenberg, SM, Savoiardo, M. Anti-amyloid β autoantibodies in cerebral amyloid angiopathy-related inflammation: implications for amyloid-modifying therapies. Ann Neurol. 2013;73: 449458.CrossRefGoogle ScholarPubMed
Linn, J, Halpin, A, Demaerel, P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology. 2010;74(17): 13461350.CrossRefGoogle ScholarPubMed
Wollenweber, FA, Baykara, E, Zedde, M, Gesierich, B. Cortical superficial siderosis in different types of cerebral small vessel disease. Stroke. 2017;48(5): 14041407.Google Scholar
Wollenweber, FA, Opherk, C, Zedde, M, Catak, C. Prognostic relevance of cortical superficial siderosis in cerebral amyloid angiopathy. Neurology. 2019;92(8): e792e801.CrossRefGoogle ScholarPubMed
Salvarani, C, Hunder, GG, Morris, JM. Aβ-related angiitis comparison with CAA without inflammation and primary CNS vasculitis. Neurology. 2013;81(18): 15961603.CrossRefGoogle ScholarPubMed
DiFrancesco, JC, Longoni, M Piazza, F. Anti-Aβ autoantibodies in amyloid related imaging abnormalities (ARIA): Candidate biomarker for immunotherapy in Alzheimer’s disease and cerebral amyloid angiopathy. Front Neurol. 6: 207.Google Scholar
Regenhardt, RW, Thon, JM, Das, AS. Association between immunosuppressive treatment and outcomes of cerebral amyloid angiopathy-related inflammation. JAMA Neurol. 2020;22: e201782.Google Scholar
Catak, C, Zedde, M, Malik, R, Janowitz, D, Soric, V. Decreased CSF levels of β-amyloid in patients with cortical superficial siderosis. Front Neurol. 2019;10: 439.Google Scholar
Piazza, F, Winblad, B. Amyloid-Related Imaging Abnormalities (ARIA) in immunotherapy trials for Alzheimer’s disease: Need for prognostic biomarkers? J Alzheimers Dis. 2016;52(2): 417420.CrossRefGoogle ScholarPubMed
Carmona-Iragui, M, Fernández-Arcos, A, Alcolea, D. Cerebrospinal fluid anti-amyloid-β autoantibodies and amyloid PET in cerebral amyloid angiopathy-related inflammation. J Alzheimers Dis. 2016;50(1): 17.CrossRefGoogle ScholarPubMed
Xu, YY, Chen, S, Zhao, JH, Chen, XL. A case of cerebral amyloid angiopathy-related inflammation with the rare apolipoprotein +2/+2 genotype. Front Neurol. 10: 547.CrossRefGoogle Scholar
Nelson, PT, Pious, NM, Jicha, GA, Wilcock, DM. APOE-+2 and APOE-+4 correlate with increased amyloid accumulation in cerebral vasculature. J Neuropathol Exp Neurol. 2013;2: 708715.Google Scholar
Marini, S, Crawford, K, Morotti, A, Lee, MJ. Association of apolipoprotein e with intracerebral hemorrhage risk by race/ethnicity: A meta-analysis. JAMA Neurol. 2019;76(4): 480491.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×