Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T13:08:09.695Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2012

George F. R. Ellis
Affiliation:
University of Cape Town
Roy Maartens
Affiliation:
University of Portsmouth and The University of the Western Cape
Malcolm A. H. MacCallum
Affiliation:
University of Bristol
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, R.U., Abu-Zayyad, T., Amman, J.F., Archbold, G., Belov, K.et al. (2008). First observation of the Greisen-Zatsepin-Kuzmin suppression, Phys. Rev. Lett. 100, 101101. arXiv:astro-ph/0703099.CrossRefGoogle ScholarPubMed
Abbott, L.F. and Schaefer, R.K. (1986). Ageneral, gauge-invariant analysis of the cosmic microwave anisotropy, Astrophys. J. 308, 546.CrossRefGoogle Scholar
Abraham, J., Abreu, P., Aglietta, M., Aguirre, C., Allard, D.et al. (2008). Observation of the suppression of the flux of cosmic rays above 4 × 1019 eV, Phys. Rev. Lett. 101, 061101. arXiv:0806.4302.Google Scholar
Afshordi, N., Slosar, A. and Wang, Y. (2011). Atheory of a spot, J. Cosmol. Astropart. Phys. 01, 019. arXiv:1006.5021.CrossRefGoogle Scholar
Agacy, R.L. (1997). Generalized Kronecker, permanent delta and Young tableaux applications to tensors and spinors: Lanczos-Zund spinor classification and general spinor factorizations, University of London PhD thesis.
Aguirre, A. and Gratton, S. (2003). Inflation without a beginning: A null boundary proposal, Phys. Rev. D 67, 083515.CrossRefGoogle Scholar
Aguirregabiria, J. M., Feinstein, A., and Ibañez, J. (1993). Exponential-potential scalar field universes II: the inhomogeneous models, Phys. Rev. D 48, 4669. arXiv:gr-qc/9309014.CrossRefGoogle ScholarPubMed
Aguirregabiria, J.M., Labraga, P., and Lazkoz, R. (2002). Assisted inflation in Bianchi VI0 cosmologies, Gen. Rel. Grav. 34, 341. arXiv:gr-qc/0107009.CrossRefGoogle Scholar
Alexander, S., Biswas, T., Notari, A., and Vaid, D. (2009). Local void vs dark energy: Confrontation with WMAP and type Ia supernovae, J. Cosmol. Astropart. Phys. 0909, 025. arXiv:0712.0370.CrossRefGoogle Scholar
Aliev, B.N. and Leznov, A.N. (1992). Einstein's vacuum fields with non-Abelian group of motions G2II, Class. Quant. Grav. 9, 1261.CrossRefGoogle Scholar
Allnutt, J.A. (1981). A Petrov type-III perfect fluid solution of Einstein's equations, Gen. Rel. Grav. 13, 1017.CrossRefGoogle Scholar
Alnes, H., Amarzguioui, M., and Grøn, Ø. (2006). An inhomogeneous alternative to dark energy?, Phys. Rev. D 73, 083519. arXiv:astro-ph/0512006.CrossRefGoogle Scholar
Amarzguioui, M. and Grøn, Ø. (2005). Entropy of gravitationally collapsing matter in FRW universe models, Phys. Rev. D 71, 083011.CrossRefGoogle Scholar
Amendola, L., Kainulainen, K., Marra, V., and Quartin, M. (2010). Large-scale inhomogeneities may improve the cosmic concordance of supernovae, Phys. Rev. Lett. 105, 121302. arXiv:1002.1232.CrossRefGoogle ScholarPubMed
Amendola, L. and Tsujikawa, S. (2010). Dark Energy: Theory and Observations (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Anderson, E., Barbour, J., Foster, B.Z., Kelleher, B., and Ó Murchadha, N. (2005). The physical gravitational degrees of freedom, Class. Quant. Grav. 22, 1795.CrossRefGoogle Scholar
Andersson, L., van Elst, H., Lim, W.C., and Uggla, C. (2005). Asymptotic silence of generic cosmological singularities, Phys. Rev. Lett. 94, 051101. arXiv:gr-qc/0402051.CrossRefGoogle ScholarPubMed
Andersson, L., van Elst, H., and Uggla, C. (2004). Gowdy phenomenology in scale-invariant variables, Class. Quant. Grav. 21, S29. Special number ‘A spacetime safari: papers in honour of Vincent Moncrief’.CrossRefGoogle Scholar
Anninos, P., Matzner, R.A., Rothman, T., and Ryan, M.P. Jr. (1991). How does inflation isotropize the universe?, Phys. Rev. D 43, 3821.CrossRefGoogle ScholarPubMed
Antoniou, I. and Perivolaropoulos, L. (2010). Searching for a cosmological preferred axis: Union2 data analysis and comparison with other probes, J. Cosmol. Astropart. Phys. 12, 012. arXiv:1007.4347.CrossRefGoogle Scholar
Apostolopoulos, P.S. (2003). Self-similar Bianchi models I: Class A models, Class. Quant. Grav. 20, 3371.CrossRefGoogle Scholar
Apostolopoulos, P.S. (2005). Self-similar Bianchi models II: Class B models, Class. Quant. Grav. 22, 323.CrossRefGoogle Scholar
Apostolopoulos, P.S. and Carot, J. (2007). Uniqueness of Petrov type D spatially inhomogeneous irrotational silent models, Int. J. Mod. Phys. A 22, 1983. arXiv:gr-qc/0605130.CrossRefGoogle Scholar
Araujo, M.E. (1999). Exact spherically symmetric dust solution of the field equations in observational coordinates with cosmological data functions, Phys. Rev. D 60, 104020. Erratum: Phys. Rev. D 64, 049002 (2001).CrossRefGoogle Scholar
Araujo, M.E., Stoeger, W.R., Arcuri, R.C., and Bedran, M.L. (2008). Solving Einstein field equations in observational coordinates with cosmological data functions: Spherically symmetric universes with cosmological constant, Phys. Rev. D 78, 063513. arXiv:0807.4193.CrossRefGoogle Scholar
Arnau, J.V., Fullana, M., and Sáez, D. (1994). GreatAttractor-like structures and large scale anisotropy, Mon. Not. Roy. Astr. Soc. 268, L17.CrossRefGoogle Scholar
Arnowitt, R., Deser, S., and Misner, C.W. (1962). The dynamics of general relativity, in Gravitation: An Introduction to Current Research, ed. Witten, L. (Wiley, New York and London), p. 227. Reprinted in Gen. Rel. Grav. 40, 1997 (2008).Google Scholar
Arp, H. and Carosati, D. (2007). M31 and local group QSO's. arXiv:0706.3154.
Ashtekar, A. (2009a). Loop quantum cosmology: an overview, Gen. Rel. Grav. 41, 707. arXiv:0812.0177.CrossRefGoogle Scholar
Ashtekar, A. (2009b). Singularity resolution in loop quantum cosmology: Abrief overview, J. Phys.: Conf. Ser. 189, 012003. arXiv:0812.4703.Google Scholar
Ashtekar, A. and Lewandowski, J. (2004). Background independent quantum gravity: a status report, Class. Quant. Grav. 21, R53.CrossRefGoogle Scholar
Aurich, R., Lustig, S., and Steiner, F. (2005). CMB anisotropy of the Poincaré dodecahedron, Class. Quant. Grav. 22, 2061. arXiv:astro-ph/0412569.CrossRefGoogle Scholar
Auslander, L. and MacKenzie, R.E. (1963). Introduction to Differentiable Manifolds (McGraw Hill, New York).Google Scholar
Bahcall, N.A., Ostriker, J.P., Perlmutter, S., and Steinhardt, P.J. (1999). The cosmic triangle: revealing the state of the universe, Science 284, 1481. arXiv:astro-ph/9906463.CrossRefGoogle Scholar
Bajtlik, S., Juszkiewicz, R., Prozszynski, M., and Amsterdamski, P. (1986). 2.7 K radiation and the isotropy of the universe, Astrophys. J. 300, 463.CrossRefGoogle Scholar
Balakin, A.B. and Ni, W.-T. (2010). Non-minimal coupling of photons and axions, Class. Quant. Grav. 27, 055003. arXiv:0911.2946.CrossRefGoogle Scholar
Balashov, Y.V. (1991). Resource letter AP-1: The anthropic principle, Amer. J. Phys. 54, 1069.CrossRefGoogle Scholar
Balbi, A. (2010). The limits of cosmology. arXiv:1001.4016.
Barbour, J. (1999). The End of Time: The Next Revolution in our Understanding of the Universe (Weidenfeld and Nicholson, London).Google Scholar
Barbour, J. and Pfister, H. (1995). Mach's Principle: from Newton's Bucket to Quantum Gravity (Birkhauser, Basel and Boston).Google Scholar
Bardeen, J.M. (1980). Gauge-invariant cosmological perturbations, Phys. Rev. D 22, 1882.CrossRefGoogle Scholar
Barkana, R. and Loeb, A. (2007). The physics and early history of the intergalactic medium, Rep. Prog. Phys. 70, 627. arXiv:astro-ph/0611541.CrossRefGoogle Scholar
Barnes, A. (1973). On shearfree normal flows of a perfect fluid, Gen. Rel. Grav. 4, 105.CrossRefGoogle Scholar
Barnes, A. and Rowlingson, R.R. (1989). Irrotational perfect fluids with a purely electricWeyl tensor, Class. Quant. Grav. 6, 949.CrossRefGoogle Scholar
Barrabes, C. (1989). Singular hypersurfaces in general relativity: a unified description, Class. Quant. Grav. 6, 581.CrossRefGoogle Scholar
Barrabes, C. and Israel, W. (1991). Thin shells in general relativity and cosmology: the lightlike limit, Phys. Rev. D 43, 1129.CrossRefGoogle ScholarPubMed
Barrow, J.D. (1976). Light elements and the isotropy of the universe, Mon. Not. Roy. Astr. Soc. 175, 359.CrossRefGoogle Scholar
Barrow, J.D. (1993). New types of inflationary universe, Phys. Rev. D 48, 1585.CrossRefGoogle ScholarPubMed
Barrow, J.D. (1997). Cosmological limits on slightly skew stresses, Phys. Rev. D 55, 7451. arXiv: gr-qc/9701038.CrossRefGoogle Scholar
Barrow, J.D. (2002). The Constants of Nature (Jonathan Cape, London).Google Scholar
Barrow, J.D. and Hervik, S. (2002). TheWeyl tensor in spatially homogeneous cosmological models, Class. Quant. Grav. 19, 5173. arXiv:gr-qc/0206061.CrossRefGoogle Scholar
Barrow, J.D., Juszkiewicz, R., and Sonoda, D. (1983). The structure of the cosmic microwave background, Nature 305, 397.CrossRefGoogle Scholar
Barrow, J.D., Juszkiewicz, R., and Sonoda, D.H. (1985). Universal rotation - How large can it be?, Mon. Not. Roy. Astr. Soc. 213, 917.CrossRefGoogle Scholar
Barrow, J.D. and Lip, S.Z.W. (2009). Classical stability of sudden and big rip singularities, Phys. Rev. D 80, 043518.CrossRefGoogle Scholar
Barrow, J.D., Maartens, R., and Tsagas, C.G. (2007). Cosmology with inhomogeneous magnetic fields, Phys. Reports 449, 131. arXiv:astro-ph/0611537.CrossRefGoogle Scholar
Barrow, J.D. and Stein-Schabes, J. (1984). Inhomogeneous cosmologies with cosmological constant, Phys. Lett. A 103, 315.CrossRefGoogle Scholar
Barrow, J.D.andTipler, F.J. (1979). An analysis of the generic singularity studies by Belinskii, Lifshitz and Khalatnikov, Phys. Reports 56, 371.CrossRefGoogle Scholar
Barrow, J.D. and Tipler, F.J. (1984). The Cosmological Anthropic Principle (Oxford University Press, Oxford).Google Scholar
Barrow, J.D. and Tsagas, C.G. (2005). New isotropic and anisotropic sudden singularities, Class. Quantum Grav. 22, 1563.CrossRefGoogle Scholar
Barrow, J.D. and Tsagas, C.G. (2007). Averaging anisotropic cosmologies, Class. Quant. Grav. 24, 1023. arXiv:gr-qc/0609078.CrossRefGoogle Scholar
Bartolo, N., Komatsu, E., Matarrese, S., and Riotto, A. (2004). Non-Gaussianity from inflation: theory and observations, Phys. Reports 402, 103. arXiv:astro-ph/0406398.CrossRefGoogle Scholar
Bassett, B.A.C.C. and Hlozek, R. (2010). Baryon acoustic oscillations, in Ruiz-Lapuente (2010). arXiv:0910.5224.
Bassett, B.A.C.C. and Kunz, M. (2004). Cosmic distance-duality as a probe of exotic physics and acceleration, Phys. Rev. D 69, 101305. arXiv:astro-ph/0312443.CrossRefGoogle Scholar
Bassett, B.A.C.C., Liberati, S., Molina-Paris, C., and Visser, M. (2000). Geometrodynamics of variable-speed-of-light cosmologies, Phys. Rev. D 62, 10351. arXiv:astro-ph/0001441.CrossRefGoogle Scholar
Bassett, B.A.C.C., Tsujikawa, S., and Wands, D. (2006). Inflation dynamics and reheating, Rev. Mod. Phys. 78, 537. arXiv:astro-ph/0507632.CrossRefGoogle Scholar
Batchelor, G.K. (1967). An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge).Google Scholar
Baum, L. and Frampton, P.H. (2007). Turnaround in cyclic cosmology, Phys. Rev. Lett. 98, 071301. arXiv:hep-th/0610213.CrossRefGoogle ScholarPubMed
Baumann, D. (2009). TASI lectures on inflation. arXiv:0907.5424.
Baumann, D. and McAllister, L. (2009). Advances in inflation in string theory, Ann. Rev. Nucl. Part. Sci. 59, 67. arXiv:0901.0265.CrossRefGoogle Scholar
Baumann, D., Nicolis, A., Senatore, L., and Zaldarriaga, M. (2010). Cosmological non-linearities as an effective fluid. arXiv:1004.2488.
Bean, R. (2010). TASI lectures on cosmic acceleration. arXiv:1003.4468.
Bean, R. and Tangmatitham, M. (2010). Current constraints on the cosmic growth history, Phys. Rev. D 81, 083534. arXiv:1002.4197.CrossRefGoogle Scholar
Béguin, F. (2010). Aperiodic oscillatory asymptotic behavior for some Bianchi spacetimes, Class. Quant. Grav. 27, 185005. arXiv:1004.2984.CrossRefGoogle Scholar
Behrend, J., Brown, I.A., and Robbers, G. (2008). Cosmological backreaction from perturbations, J. Cosmol. Astropart. Phys. 0801, 013. arXiv:0710.4964.CrossRefGoogle Scholar
Bekenstein, J.D. (2010). Alternatives to dark matter: Modified gravity as an alternative to dark matter, in Particle Dark Matter: Observations, Models and Searches, ed. G., Bertone (Cambridge University Press, Cambridge), chapter 6, p. 95. arXiv:1001.3876.Google Scholar
Belinski, V.A. (2009). Cosmological singularity, in The Sun, the Stars, the Universe and General Relativity: International Conference in Honor of Ya.B. Zel'dovich's 95th Anniversary, ed. Ruffini, R. and Vereshchagin, G., volume 1205 of AIP Conference Proceedings (American Institute of Physics, Melville, NY), p. 17. arXiv:0910.0374.Google Scholar
Belinski, V.A., Khalatnikov, I.M., and Lifshitz, E.M. (1982). A general solution of the Einstein equations with a time singularity, Adv. Phys. 31, 639.CrossRefGoogle Scholar
Belinski, V.A., Lifshitz, E.M., and Khalatnikov, I.M. (1971). The oscillatory regime of approach to an initial singularity in relativistic cosmology, Sov. Phys. Uspekhi 13, 475. See also Adv. Phys.19, 525 (1970).CrossRefGoogle Scholar
Belinski, V.A., Lifshitz, E.M., and Khalatnikov, I.M. (1972). Construction of a general cosmological solution of the Einstein equations with a time singularity, Sov. Phys. JETP 35, 838.Google Scholar
Belinski, V.A. and Verdaguer, E. (2001). Gravitational Solitons (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Belinski, V.A. and Zakharov, V.E. (1978). Integration of the Einstein equations by the inverse scattering method and calculation of exact soliton solutions, Sov. Phys. JETP 48, 985.Google Scholar
Bennett, C.L., Banday, A.J., Górski, K.M., Hinshaw, G., Jackson, P.et al. (1996). Four-year COBE DMR cosmic microwave background observations: Maps and basic results, Astrophys. J. 464, L1.CrossRefGoogle Scholar
Berestetskii, V.B., Lifshitz, E.M., and Pitaevskii, L.P. (1982). Quantum electrodynamics, 2nd English Edition, Course of theoretical physics - Pergamon International Library of Science, Technology, Engineering and Social Studies (Pergamon Press, Oxford).Google Scholar
Berger, B. and Moncrief, V. (1993). Numerical investigation of cosmological singularities, Phys. Rev. D 48, 4676.CrossRefGoogle ScholarPubMed
Bernstein, J. (1988). Kinetic Theory in the Expanding Universe (Cambridge University Press, Cambridge and New York).CrossRefGoogle Scholar
Bertotti, B. (1966). The luminosity of distant galaxies, Proc. Roy. Soc. London A 294, 195.CrossRefGoogle Scholar
Bertschinger, E. (1992). Large scale structure and motions: Linear theory and statistics, in Current topics in Astrofundamental Physics, ed. Sanchez, N. and Zichichi, A. (World Scientific, Singapore).Google Scholar
Bertschinger, E. (2006). On the growth of perturbations as a test of dark energy and gravity, Astrophys. J. 648, 797. arXiv:astro-ph/0604485.CrossRefGoogle Scholar
Bertschinger, E., Dekel, A., Faber, S.M., Dressler, A., and Burstein, D. (1990). Potential, velocity and density fields from redshift-distance samples. Application: cosmography within 6000 kilometers per second, Astrophys. J. 364, 370.CrossRefGoogle Scholar
Betschart, G., Dunsby, P.K.S., and Marklund, M. (2004). Cosmic magnetic fields from velocity perturbations in the early universe, Class. Quant. Grav. 21, 2115. arXiv:gr-qc/0310085.CrossRefGoogle Scholar
Birkinshaw, M. (1999). The Sunyaev-Zel'dovich effect, Phys. Reports 310, 97. arXiv:astroph/9808050.CrossRefGoogle Scholar
Biswas, T., Mansouri, R., and Notari, A. (2007). Nonlinear structure formation and ‘apparent’ acceleration: an investigation, J. Cosmol. Astropart. Phys. 0712, 017. arXiv:astro-ph/0606703.CrossRefGoogle Scholar
Biswas, T. and Notari, A. (2008). “Swiss-cheese” inhomogeneous cosmology and the dark energy problem, J. Cosmol. Astropart. Phys. 0806, 021. arXiv:astro-ph/0702555.CrossRefGoogle Scholar
Biswas, T., Notari, A. and Valkenburg, W. (2010). Testing the void against cosmological data: Fitting CMB, BAO, SN and H0, J. Cosmol. Astropart. Phys. 11, 030. arXiv:1007.3065.CrossRefGoogle Scholar
Blake, C. and Wall, J. (2002). A velocity dipole in the distribution of radio galaxies, Nature 416, 150. arXiv:astro-ph/0203385.CrossRefGoogle ScholarPubMed
Bogoyavlenskii, O.I. (1985). Methods of the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics (Springer-Verlag, Berlin and Heidelberg). Russian original published by Nauka, Moscow, 1980.CrossRefGoogle Scholar
Bogoyavlenskii, O.I. and Novikov, S.P. (1973). Singularities of the cosmological model of the Bianchi type IX according to the qualitative theory of differential equations, Sov. Phys. JETP 37, 747.Google Scholar
Bojowald, M. (2005). Loop quantum cosmology, Living Rev. Relativityhttp://relativity.livingreviews.org/Articles/lrr-2008-4/, arXiv:gr-qc/0601085.CrossRefGoogle ScholarPubMed
Bojowald, M., Kiefer, C., and Vargas Moniz, P. (2010). Quantum cosmology for the 21st century: A debate. arXiv:1005.2471.
Bolejko, K. (2006a). Radiation in the process of the formation of voids, Mon. Not. Roy. Astr. Soc. 370, 924. arXiv:astro-ph/0503356.CrossRefGoogle Scholar
Bolejko, K. (2006b). Structure formation in the quasispherical Szekeres model, Phys. Rev. D 73, 123508. arXiv:astro-ph/0604490.CrossRefGoogle Scholar
Bolejko, K. (2007). Evolution of cosmic structures in different environments in the quasispherical Szekeres model, Phys. Rev. D 75, 043508. arXiv:astro-ph/0610292.CrossRefGoogle Scholar
Bolejko, K. (2009). The Szekeres Swiss cheese model and the CMB observations, Gen. Rel. Grav. 41, 1737. arXiv:0804.1846.CrossRefGoogle Scholar
Bolejko, K. and Célérier, M.-N. (2010). Szekeres Swiss-cheese model and supernova observations, Phys. Rev. D 82, 103510. arXiv:1005.2584.CrossRefGoogle Scholar
Bolejko, K. and Hellaby, C. (2008). The Great Attractor and the Shapley Concentration, Gen. Rel. Grav. 40, 1771. arXiv:astro-ph/0604402.CrossRefGoogle Scholar
Bolejko, K., Hellaby, C., and Krasiński, A. (2005). Formation of voids in the universe within the Lemaître-Tolman model, Mon. Not. Roy. Astr. Soc. 362, 213. arXiv:gr-qc/ 0411126.CrossRefGoogle Scholar
Bolejko, K., Krasiński, A., Hellaby, C., and Célérier, M.-N. (2010). Structures in the Universe by Exact Methods: Formation, Evolution, Interactions (Cambridge University Press, Cambridge).Google Scholar
Bolejko, K. and Stoeger, W.R. (2010). Conditions for spontaneous homogenization of the universe, Gen. Rel. Grav. 42, 2349. Fifth award in the 2010 Gravity Research Foundation essay competition, arXiv:1005.3009.CrossRefGoogle Scholar
Bond, J.R. and Efstathiou, G. (1984). Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter, Astrophys. J. Lett. 285, L45.CrossRefGoogle Scholar
Bondi, H. (1947). Spherically symmetrical models in general relativity, Mon. Not. Roy. Astr. Soc. 107, 410. Reprinted as Gen. Rel. Grav.31, 1777–1781 (1999).CrossRefGoogle Scholar
Bondi, H. (1960). Cosmology (Cambridge University Press, Cambridge).Google Scholar
Bonnor, W.B. (1956). The formation of the nebulae, Z. Astrophys. 39, 143. Reprinted as Gen. Rel. Grav.30 1113–1132 (1998).Google Scholar
Bonnor, W.B. (1972). A non-uniform relativistic cosmological model, Mon. Not. Roy. Astr. Soc. 159, 261.CrossRefGoogle Scholar
Bonnor, W.B. (1974). Evolution of inhomogeneous cosmological models, Mon. Not. Roy. Astr. Soc. 167, 55.CrossRefGoogle Scholar
Bonnor, W.B. (1976). Non-radiative solutions of Einstein's equations for dust, Commun. Math. Phys. 51, 191.CrossRefGoogle Scholar
Bonnor, W.B. (2000). A generalization of the Einstein-Straus vacuole, Class. Quant. Grav. 17, 2739.CrossRefGoogle Scholar
Bonnor, W.B. and Chamorro, A. (1990). Models of voids in the expanding universe, Astrophys. J. 361, 21.CrossRefGoogle Scholar
Bonnor, W.B. and Chamorro, A. (1991). Models of voids in the expanding universe II, Astrophys. J. 378, 461.CrossRefGoogle Scholar
Bonnor, W.B. and Ellis, G.F.R. (1986). Observational homogeneity of the universe, Mon. Not. Roy. Astr. Soc. 218, 605.CrossRefGoogle Scholar
Bonnor, W.B. and Vickers, P.A. (1981). Junction conditions in general relativity, Gen. Rel. Grav. 13, 29.CrossRefGoogle Scholar
Bonvin, C. and Durrer, R. (2011). What galaxy surveys really measure, Phys. Rev. D 84, 063505. arXiv:1105.5280.CrossRefGoogle Scholar
Bothun, G. (1998). Modern Cosmological Observations (Taylor and Francis, London).Google Scholar
Boughn, S. and Crittenden, R. (2004). A correlation between the cosmic microwave background and large-scale structure in the Universe, Nature 427, 45.CrossRefGoogle ScholarPubMed
Boylan-Kolchin, M., Springel, V., White, S.D.M., Jenkins, A., and Lemson, G. (2009). Resolving cosmic structure formation with the Millennium-II simulation, Mon. Not. Roy. Astr. Soc. 398, 1150. arXiv:0903.3041.CrossRefGoogle Scholar
Bozza, V. (2010). Gravitational lensing by black holes. p. 2269 in Jetzer, Mellier and Perlick (2010), arXiv:0911.2187.
Brandenberger, R. (1985). Quantum field theory methods and inflationary universe models, Rev. Mod. Phys. 57, 1.CrossRefGoogle Scholar
Brandenberger, R., Laflamme, R., and Mijic, M. (1991). Classical perturbations from decoherence of quantum fluctuations in the inflationary universe, Physica Scripta T36, 265.CrossRefGoogle Scholar
Brauer, U. (1991). Existence of finitely-perturbed Friedmann models via the Cauchy problem, Class. Quant. Grav. 8, 1283.CrossRefGoogle Scholar
Brax, P. and van de Bruck, C. (2003). Cosmology and brane worlds: a review, Class. Quant. Grav. 20, R201. arXiv:hep-th/0303095.CrossRefGoogle Scholar
Brickell, F. and Clark, R.S. (1970). Differentiable Manifolds: An Introduction (Van Nostrand Reinhold, London).Google Scholar
Bridle, S., Balan, S.T., Bethge, M., Gentile, M., Harmeling, S. et al. (2010). Results of the GREAT08 challenge: An image analysis competition for cosmological lensing, Mon. Not. Roy. Astr. Soc. 405, 1044. arXiv:0908.0945.Google Scholar
Brightwell, G., Dowker, H.F., Garcia, R.S., Henson, J., and Sorkin, R.D. (2003). “Observables” in causal set cosmology, Phys. Rev. D 67, 084031. arXiv:gr-qc/0210061.CrossRefGoogle Scholar
Brill, D., Reula, O., and Schmidt, B. (1987). Local linearization stability, J. Math. Phys. 28, 1844.CrossRefGoogle Scholar
Brill, D.R. and Vishveshwara, C.V. (1986). Joint linearization instabilities in general relativity, J. Math. Phys. 27, 1813.CrossRefGoogle Scholar
Brown, I.A., Behrend, J., and Malik, K.A. (2009). Gauges and cosmological backreaction, J. Cosmol. Astropart. Phys. 0911, 027. arXiv:0903.3264.CrossRefGoogle Scholar
Brown, I.A., Robbers, G., and Behrend, J. (2009). Averaging Robertson-Walker cosmologies, J. Cosmol. Astropart. Phys. 0904, 016. arXiv:0811.4495.CrossRefGoogle Scholar
Bruni, M., Crittenden, R., Koyama, K., Maartens, R., Pitrou, C.et al. (2011). Disentangling non- Gaussianity, bias and GR effects in the galaxy distribution. arXiv:1106.3999.
Bruni, M., Dunsby, P.K.S., and Ellis, G.F.R. (1992). Cosmological perturbations and the physical meaning of gauge-invariant variables, Astrophys. J. 395, 34.CrossRefGoogle Scholar
Bruni, M., Matarrese, S., and Pantano, O. (1995). Dynamics of silent universes, Astrophys. J. 445, 958. arXiv:astro-ph/9406068.CrossRefGoogle Scholar
Bruni, M. and Sopuerta, C. (2003). Covariant fluid dynamics: a long wave-length approximation, Class. Quant. Grav. 20, 5275. arXiv:gr-qc/0307059.CrossRefGoogle Scholar
Bucher, M., Goldhaber, A.S., and Turok, N. (1995). Open universe from inflation, Phys. Rev. D 52, 3314. arXiv:hep-ph/9411206.CrossRefGoogle ScholarPubMed
Buchert, T. (2000). On average properties of inhomogeneous fluids in general relativity: Dust cosmologies, Gen. Rel. Grav. 32, 105. arXiv:gr-qc/9906015.CrossRefGoogle Scholar
Buchert, T. (2001). On average properties of inhomogeneous fluids in general relativity: Perfect fluid cosmologies, Gen. Rel. Grav. 33, 1381. arXiv:gr-qc/0102049.CrossRefGoogle Scholar
Buchert, T. (2008). Dark Energy from structure: a status report, Gen. Rel. Grav. 40, 467. arXiv:0707.2153.CrossRefGoogle Scholar
Buchert, T. and Carfora, M. (2002). Regional averaging and scaling in relativistic cosmology, Class. Quant. Grav. 19, 6109.CrossRefGoogle Scholar
Buchert, T. and Carfora, M. (2003). Cosmological parameters are dressed, Phys. Rev. Lett. 90, 031101.CrossRefGoogle ScholarPubMed
Buchert, T. and Carfora, M. (2008). On the curvature of the present-day universe, Class. Quant. Grav. 25, 195001. arXiv:0803.1401.CrossRefGoogle Scholar
Buchert, T., Kerscher, M., and Sicka, C. (2000). Backreaction of inhomogeneities on the expansion: the evolution of cosmological parameters, Phys. Rev. D 62, 043525.CrossRefGoogle Scholar
Bugalho, M.H. (1987). Orthogonality transitivity and cosmologies with a non-Abelian two-parameter isometry group, Class. Quant. Grav. 4, 1043.CrossRefGoogle Scholar
Bull, P., Clifton, T. and Ferreira, P.G. (2011). The kSZ effect as a test of general radial inhomogeneity in LTB cosmology. arXiv:1108.2222.
Bunn, E.F., Ferreira, P.G., and Silk, J. (1996). How anisotropic is our Universe?, Phys. Rev. Lett. 77, 2883. arXiv:astro-ph/9605123.CrossRefGoogle ScholarPubMed
Burigana, C. and Salvaterra, R. (2003). What can we learn on the thermal history of the Universe from future cosmic microwave background spectrum measurements at long wavelengths?, Mon. Not. Roy. Astr. Soc. 342, 543. arXiv:astro-ph/0301133.CrossRefGoogle Scholar
Burstein, D., Faber, S.M., and Dressler, A. (1990). Evidence for the motions of galaxies for a large-scale large amplitude flow toward the Great Attractor, Astrophys. J. 354, 18.CrossRefGoogle Scholar
Byland, S. and Scialom, D. (1998). Evolution of the Bianchi type I, Bianchi type III, and the Kantowski-Sachs universe: isotropization and inflation, Phys. Rev. D 57, 6065. arXiv: gr-qc/9802043.CrossRefGoogle Scholar
Caillerie, S., Lachièze-Rey, M., Luminet, J.-P., Lehoucq, R., Riazuelo, A.et al. (2007). A new analysis of Poincaré dodecahedral space model, Astron. Astrophys. 476, 691. arXiv:0705.0217.CrossRefGoogle Scholar
Caldwell, R. and Stebbins, A. (2008). A test of the Copernican principle, Phys. Rev. Lett. 100, 191302. arXiv:0711.3459.CrossRefGoogle ScholarPubMed
Calogero, S. and Heinzle, J.M. (2009). Dynamics of Bianchi type I solutions of the Einstein equations with anisotropic matter, Ann. Inst. H. Poincaré 10, 225. arXiv:0809.1008.CrossRefGoogle Scholar
Calogero, S. and Heinzle, J.M. (2010). On closed cosmological models that satisfy the strong energy condition but do not recollapse, Phys. Rev. D 81, 023520. arXiv:1002.1913.CrossRefGoogle Scholar
Calzetta, E. and Sakellariadou, M. (1992). Inflation in inhomogeneous cosmology, Phys. Rev. D 45, 2802.CrossRefGoogle ScholarPubMed
Capozziello, S. and Francaviglia, M. (2008). Extended theories of gravity and their cosmological and astrophysical applications, Gen. Rel. Grav. 40, 357. arXiv:0706.1146.CrossRefGoogle Scholar
Cardoso, A., Hiramatsu, T., Koyama, K., and Seahra, S.S. (2007). Scalar perturbations in braneworld cosmology, J. Cosmol. Astropart. Phys. 0707, 008. arXiv:0705.1685.CrossRefGoogle Scholar
Cardoso, A., Koyama, K., Seahra, S.S., and Silva, F.P. (2008). Cosmological perturbations in the DGP braneworld: Numeric solution, Phys. Rev. D 77, 083512. arXiv:0711.2563.CrossRefGoogle Scholar
Carfora, M. and Piotrkowska, K. (1995). Renormalization group approach to relativistic cosmology, Phys. Rev. D 52, 4393.CrossRefGoogle ScholarPubMed
Carr, B.J. and Coley, A.A. (1999). Self-similarity in general relativity, Class. Quant. Grav. 16, R31.CrossRefGoogle Scholar
Carr, B.J. and Coley, A.A. (2005). The similarity hypothesis in general relativity, Gen. Rel. Grav. 37, 2165.CrossRefGoogle Scholar
Carr, B.J., Coley, A.A., Goliath, M., Nilsson, U.S., and Uggla, C. (2001). The state space and physical interpretation of self-similar spherically symmetric perfect fluid models, Class. Quant. Grav. 18, 303.CrossRefGoogle Scholar
Carr, B.J. and Ellis, G.F.R. (2008). Universe or multiverse?, Astronomy and Geophysics 49, 2.29.CrossRefGoogle Scholar
Carr, B.J. and Hawking, S.W. (1974). Black holes in the early universe, Mon. Not. Roy. Astr. Soc. 168, 399.CrossRefGoogle Scholar
Carr, B.J., Kohri, K., Sendouda, Y., and Yokoyama, J. (2010). New cosmological constraints on primordial black holes, Phys. Rev. D 81, 104019. arXiv:0912.5297.CrossRefGoogle Scholar
Carr, B.J. and Koutras, A. (1993). Self-similar perturbations of a Kantowski-Sachs model, Astrophys. J. 405, 34.CrossRefGoogle Scholar
Carr, B.J. and Rees, M.J. (1979). The anthropic principle and the structure of the physical world, Nature 278, 605.CrossRefGoogle Scholar
Carr, B.J. and Yahil, A. (1990). Self-similar perturbations of a Friedmann universe, Astrophys. J. 360, 330.CrossRefGoogle Scholar
Carroll, S.M. (2004). Spacetime and Geometry: an Introduction to General Relativity (Addison- Wesley, San Francisco).Google Scholar
Carroll, S.M. (2010). From Eternity to Here: The Quest for the Ultimate Theory of Time (Dutton, New York).Google Scholar
Carroll, S.M. and Chen, J. (2005). Does inflation provide natural initial conditions for the universe?, Gen. Rel. Grav. 37, 1671. arXiv:gr-qc/0505037.CrossRefGoogle Scholar
Carroll, S.M. and Tam, H. (2010). Unitary evolution and cosmological fine-tuning. arXiv:1007.1417.
Carter, B. and Henriksen, R.N. (1989). A covariant characterisation of kinematic self-similarity, Ann. de Physique 14(colloq. 1), 47.Google Scholar
Cattoën, C. and Visser, M. (2005). Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities and extremality events, Class. Quant. Grav. 22, 4913. arXiv:gr-qc/0508045.CrossRefGoogle Scholar
Cavaglià, M. (2003). Black hole and brane production in TeV gravity: A review, Int. J. Mod. Phys. A 18, 1843. arXiv:hep-ph/0210296.CrossRefGoogle Scholar
Centrella, J. and Matzner, R.A. (1982). Colliding gravitational waves in expanding cosmologies, Phys. Rev. D 25, 930.CrossRefGoogle Scholar
Challinor, A. (2000a). Microwave background polarization in cosmological models, Phys. Rev. D 62, 043004. arXiv:astro-ph/9911481.CrossRefGoogle Scholar
Challinor, A. (2000b). The covariant perturbative approach to cosmic microwave background anisotropies, Gen. Rel. Grav. 32, 1059. arXiv:astro-ph/9903283.CrossRefGoogle Scholar
Challinor, A. and Lasenby, A. (1998). Covariant and gauge-invariant analysis of cosmic microwave background anisotropies from scalar perturbations, Phys. Rev. D 58, 023001. arXiv:astroph/9804150.CrossRefGoogle Scholar
Challinor, A. and Lasenby, A. (1999). Cosmic microwave background anisotropies in the cold dark matter model, Astrophys. J. 513, 1. arXiv:astro-ph/9804301.CrossRefGoogle Scholar
Challinor, A. and Lewis, A. (2011). Linear power spectrum of observed source number counts, Phys. Rev. D 84, 043516. arXiv:1105.5292.CrossRefGoogle Scholar
Chamorro, A. (1991). Models of voids in elliptic universes, Astrophys. J. 383, 51.CrossRefGoogle Scholar
Chandrasekhar, S. (1960). Radiative transfer (Dover, New York).Google Scholar
Charmousis, C., Gregory, R., Kaloper, N., and Padilla, A. (2006). DGP spectroscopy, J. High Energy Phys. 10, 66. arXiv:hep-th/0604086.CrossRefGoogle Scholar
Chernoff, D.F. and Tye, S.-H.H. (2007). Cosmic string detection via microlensing of stars. arXiv:0709.1139.
Cheung, K. (2003). Collider phenomenology for models of extra dimensions. arXiv:hep-ph/0305003.
Chruściel, P.T. (1990). On space-times with U(1)×U(1) symmetric compact Cauchy surfaces, Ann. Phys. (NY) 202, 100.CrossRefGoogle Scholar
Chruściel, P.T., Isenberg, J., and Moncrief, V. (1990). Strong cosmic censorship in polarised Gowdy spacetimes, Class. Quant. Grav. 7, 1671.CrossRefGoogle Scholar
Chruściel, P.T., Jezierski, J., and MacCallum, M.A.H. (1998). Uniqueness of the Trautman-Bondi mass, Phys. Rev. D 58, 084001. arXiv:gr-qc/9803010.CrossRefGoogle Scholar
Clarke, C.J.S. and Dray, T. (1987). Junction conditions for null hypersurfaces, Class. Quant. Grav. 4, 265.CrossRefGoogle Scholar
Clarke, C.J.S., Ellis, G.F.R., and Vickers, J.A. (1990). The large-scale bending of cosmic strings, Class. Quant. Grav. 7, 1.CrossRefGoogle Scholar
Clarkson, C.A. (2000). On the observational characteristics of inhomogeneous cosmologies: undermining the cosmological principle, University of Glasgow PhD thesis arXiv:astro-ph/0008089.
Clarkson, C.A. (2007). A covariant approach for perturbations of rotationally symmetric spacetimes, Phys. Rev. D 76, 104034. arXiv:0708.1398.CrossRefGoogle Scholar
Clarkson, C.A., Ananda, K., and Larena, J. (2009). The influence of structure formation on the cosmic expansion, Phys. Rev. D 80, 083525. arXiv:0907.3377.CrossRefGoogle Scholar
Clarkson, C.A. and Barrett, R.K. (1999). Does the isotropy of the CMB imply a homogeneous universe? Some generalized EGS theorems, Class. Quant. Grav. 16, 3781.CrossRefGoogle Scholar
Clarkson, C.A. and Barrett, R.K. (2003). Covariant perturbations of Schwarzschild black holes, Class. Quant. Grav. 20, 3855. arXiv:gr-qc/0209051.CrossRefGoogle Scholar
Clarkson, C.A., Bassett, B.A.C.C., and Lu, T.H-C. (2008). A general test of the Copernican principle, Phys. Rev. Lett. 101, 011301. arXiv:0712.3457.CrossRefGoogle ScholarPubMed
Clarkson, C.A., Clifton, T., and February, S. (2009). Perturbation theory in Lemaître-Tolman-Bondi cosmology, J. Cosmol. Astropart. Phys. 0906, 025. arXiv:0903.5040.CrossRefGoogle Scholar
Clarkson, C.A., Coley, A.A., O'Neill, E.S.D., Sussman, R.A., and Barrett, R.K. (2003). Inhomogeneous cosmologies, the Copernican principle and the Cosmic Microwave Background: More on the EGS theorem, Gen. Rel. Grav. 35, 969. arXiv:gr-qc/0302068.CrossRefGoogle Scholar
Clarkson, C.A., Ellis, G.F.R., Faltenbacher, A., Maartens, R., Umeh, O.et al. (2011a). (Mis-)Interpreting supernovae observations in a lumpy universe, arXiv:1109.2484.
Clarkson, C.A., Ellis, G.F.R., Larena, J. and Umeh, O. (2011). Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction and fitting problems in cosmology. arXiv:1109.2314.
Clarkson, C.A. and Maartens, R. (2010). Inhomogeneity and the foundations of concordance cosmology, Class. Quant. Grav. 27, 124008. arXiv:1005.2165.CrossRefGoogle Scholar
Clarkson, C.A. and Regis, M. (2011). The cosmic microwave background in an inhomogeneous universe. J. Cosmol. Astropart. Phys. 02, 013. arXiv:1007.3443.CrossRefGoogle Scholar
Clifton, T. and Ferreira, P.G. (2009a). Archipelagian cosmology: Dynamics and observables in a universe with discretized matter content, Phys. Rev. D 80, 103503. arXiv:0907.4109.CrossRefGoogle Scholar
Clifton, T. and Ferreira, P.G. (2009b). Errors in estimating ΩΛ due to the fluid approximation, J. Cosmol. Astropart. Phys. 0910, 026. arXiv:0908.4488.CrossRefGoogle Scholar
Clifton, T., Ferreira, P.G., and Land, K. (2008). Living in a void: Testing the Copernican principle with distant supernovae, Phys. Rev. Lett. 101, 131302. arXiv:0807.1443.CrossRefGoogle Scholar
Clifton, T., Ferreira, P.G., and Zuntz, J. (2009). What the small angle CMB really tells us about the curvature of the universe, J. Cosmol. Astropart. Phys. 0907, 029. arXiv:0902.1313.CrossRefGoogle Scholar
Clifton, T. and Zuntz, J. (2009). Hubble diagram dispersion from large-scale structure, Mon. Not. Roy. Astr. Soc. 400, 2185. arXiv:0902.0726.CrossRefGoogle Scholar
Clowe, D., Gonzalez, A., and Markevitch, M. (2004). Weak-lensing mass reconstruction of the interacting cluster 1E 0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604, 596.CrossRefGoogle Scholar
Cole, S., Percival, W.J., Peacock, J.A., Norberg, P., Baugh, C.M.et al. (2005). The 2dF galaxy redshift survey: power-spectrum analysis of the final data set and cosmological implications, Mon. Not. Roy. Astr. Soc. 362, 505. arXiv:astro-ph/0501174.CrossRefGoogle Scholar
Coleman, S. and de Luccia, F. (1980). Gravitational effects on and of vacuum decay, Phys. Rev. D 21, 3305.CrossRefGoogle Scholar
Coles, P. and Lucchin, F. (2003). Cosmology: The Origin and Evolution of Cosmic Structure, Second Edition (Wiley, Chichester).Google Scholar
Coley, A.A. (2003). Dynamical Systems and Cosmology, volume 291 of Astrophysics and Space Science Library (Kluwer Academic Publishers, Dordrecht, Boston and London).CrossRefGoogle Scholar
Coley, A.A. (2010). Averaging in cosmological models using scalars, Class. Quant. Grav. 27, 245017. arXiv:0908.4281.CrossRefGoogle Scholar
Coley, A.A. and Goliath, M. (2000). Closed cosmologies with a perfect fluid and a scalar field, Phys. Rev. D 62, 043526. arXiv:gr-qc/0004060.CrossRefGoogle Scholar
Coley, A.A. and Hervik, S. (2005). A dynamical systems approach to the tilted Bianchi models of solvable type, Class. Quant. Grav. 22, 579. arXiv:gr-qc/0409100.CrossRefGoogle Scholar
Coley, A.A. and Hervik, S. (2008). Bianchi models with vorticity: The type III bifurcation, Class. Quant. Grav. 25, 198001. arXiv:0802.3629.CrossRefGoogle Scholar
Coley, A.A., Hervik, S., and Lim, W.C. (2006). Fluid observers and tilting cosmology, Class. Quant. Grav. 23, 3573. gr-qc/0605128.CrossRefGoogle Scholar
Coley, A.A., Hervik, S., Lim, W.C., and MacCallum, M.A.H. (2009). Properties of kinematic singularities, Class. Quant. Grav. 26, 215008. arXiv:0907.1620.CrossRefGoogle Scholar
Coley, A.A., Hervik, S., and Pelavas, N. (2009). Spacetimes characterized by their scalar curvature invariants, Class. Quant. Grav. 26, 025013.CrossRefGoogle Scholar
Coley, A.A. and Lim, W.C. (2005). Asymptotic analysis of spatially inhomogeneous stiff and ultra-stiff cosmologies, Class. Quant. Grav. 22, 3073. arXiv:gr-qc/0506097.CrossRefGoogle Scholar
Coley, A.A., Pelavas, N., and Zalaletdinov, R.M. (2005). Cosmological solutions in macroscopic gravity, Phys. Rev. Lett. 95, 151102. arXiv:gr-qc/0504115.CrossRefGoogle ScholarPubMed
Coley, A.A. and Tupper, B.O.J. (1983). A new look at FRWcosmologies, Gen. Rel. Grav. 15, 977.CrossRefGoogle Scholar
Collins, C.B. (1971). More qualitative cosmology, Commun. Math. Phys. 23, 137.CrossRefGoogle Scholar
Collins, C.B. (1972). Qualitative magnetic cosmology, Commun. Math. Phys. 27, 37.CrossRefGoogle Scholar
Collins, C.B. (1977). Global structure of the ‘Kantowki-Sachs’ cosmological models, J. Math. Phys. 18, 2116.CrossRefGoogle Scholar
Collins, C.B. and Ellis, G.F.R. (1979). Singularities in Bianchi cosmologies, Phys. Reports 56, 65.CrossRefGoogle Scholar
Collins, C.B. and Hawking, S.W. (1973a). The rotation and distortion of the Universe, Mon. Not. Roy. Astr. Soc. 162, 307.CrossRefGoogle Scholar
Collins, C.B. and Hawking, S.W. (1973b). Why is the Universe isotropic?, Astrophys. J. 180, 317.CrossRefGoogle Scholar
Collins, C.B. and Wainwright, J. (1983). On the role of shear in general relativistic cosmological and stellar models, Phys. Rev. D 27, 1209.CrossRefGoogle Scholar
Comer, G.L. (1997). 3+1 approach to the long-wavelength iteration scheme, Class. Quant. Grav. 14, 407.CrossRefGoogle Scholar
Copeland, E.J., Lidsey, J.E., and Mizuno, S. (2006). Correspondence between loop-inspired and braneworld cosmology, Phys. Rev. D 73, 043503. arXiv:gr-qc/0510022.CrossRefGoogle Scholar
Cornish, N.J., Spergel, D.N., and Starkman, G.D. (1998). Circles in the sky: Finding topology with the microwave background radiation, Class. Quant. Grav. 15, 2657. arXiv:gr-qc/9602039.CrossRefGoogle Scholar
Cornish, N.J., Spergel, D.N., Starkman, G.D., and Komatsu, E. (2004). Constraining the topology of the universe, Phys. Rev. Lett. 92, 201302. arXiv:astro-ph/0310233.CrossRefGoogle ScholarPubMed
Courant, R. and Hilbert, D. (1962). Methods of Mathematical Physics, volume 2 (Interscience Publishers, New York).Google Scholar
Cox, D.G.P. (2007). How far is infinity?, Gen. Rel. Grav. 39, 87.CrossRefGoogle Scholar
Croudace, K.M., Parry, J., Salopek, D.S., and Stewart, J.M. (1994). Applying the Zel'dovich approximation to general relativity, Astrophys. J. 423, 22.CrossRefGoogle Scholar
Curtis, J. and Garfinkle, D. (2005). Numerical simulations of stiff fluid gravitational singularities, Phys. Rev. D 72, 064003. arXiv:gr-qc/0506107.CrossRefGoogle Scholar
Cutler, C. and Holz, D.E. (2009). Ultra-high precision cosmology from gravitational waves, Phys. Rev. D 80, 104009. arXiv:0906.3752.CrossRefGoogle Scholar
Cyburt, R.H., Fields, B.D. and Olive, K. (2008). A bitter pill: the primordial lithium problem worsens, J. Cosmol. Astropart. Phys. 0811, 012. arXiv:0808.2818.CrossRefGoogle Scholar
Damour, T. and de Buyl, S. (2008). Describing general cosmological singularities in Iwasawa variables, Phys. Rev. D 77, 043520. arXiv:0710.5692.CrossRefGoogle Scholar
Damour, T., Henneaux, M., and Nicolai, H. (2003). Cosmological billiards, Class. Quant. Grav. 20, R145.CrossRefGoogle Scholar
Daniel, S.F., Linder, E.V., Smith, T.L., Caldwell, R.R., Cooray, A.et al. (2010). Testing general relativity with current cosmological data, Phys. Rev. D 81, 123508. arXiv:1002.1962.CrossRefGoogle Scholar
Darmois, G. (1927). Les équations de la gravitation Einsteinienne, volume XXV of Mémorials des sciences mathématiques (Gauthier-Villars, Paris).Google Scholar
Dautcourt, G. (1969). Small-scale variations in the cosmic microwave background, Mon. Not. Roy. Astr. Soc. 144, 255.CrossRefGoogle Scholar
Dautcourt, G. (1983a). The cosmological problem as initial value problem on the observer's past light cone: geometry, J. Phys. A 16, 3507.CrossRefGoogle Scholar
Dautcourt, G. (1983b). The cosmological problem as initial value problem on the observer's past light cone: observations, Astron. Nachr. 304, 153.CrossRefGoogle Scholar
Dautcourt, G. and Rose, K. (1978). Polarized radiation in relativistic cosmology, Astron. Nachr. 299, 13.CrossRefGoogle Scholar
Davies, P.C.W. (1974). The Physics of Time Asymmetry (Surrey University Press, London).Google Scholar
Davies, P.C.W. (1982). The Accidental Universe (Cambridge University Press, Cambridge).Google Scholar
Davies, P.C.W. (1987). The Cosmic Blueprint (Heinemann, London).Google Scholar
Davis, T.M. and Lineweaver, C.H. (2004). Expanding confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe, Pub. Astr. Soc. Australia 21, 97. arXiv:astro-ph/0310808.CrossRefGoogle Scholar
de Groot, S.L., van Leeuwen, W.A., and vanWeert, C.G. (1980). Relativistic Kinetic Theory (North- Holland, Amsterdam).Google Scholar
de Lapparent, V., Geller, M.J., and Huchra, J.P. (1986). A slice of the universe, Astrophys. J. 302, L1.CrossRefGoogle Scholar
de Swardt, B., Dunsby, P.K.S., and Clarkson, C.A. (2010a). Covariant formulation of the lens equation in cosmology. Preprint, University of Cape Town. In draft.
de Swardt, B., Dunsby, P.K.S., and Clarkson, C.A. (2010b). Gravitational lensing in spherically symmetric spacetimes. arXiv:1002.2041.
Demianski, M., de Ritis, R., Marino, A.A., and Piedipalumbo, E. (2003). Approximate angular diameter distance in a locally inhomogeneous universe with a non-zero cosmological constant, Astron. Astrophys. 411, 33. arXiv:astro-ph/0310830.CrossRefGoogle Scholar
Deruelle, N. and Goldwirth, D.S. (1995). Conditions for inflation in an initially inhomogeneous universe, Phys. Rev. D 51, 1563. arXiv:gr-qc/9409056.CrossRefGoogle Scholar
Deruelle, N. and Langlois, D. (1995). Long wavelength iteration of Einstein's equations near a spacetime singularity, Phys. Rev. D 52, 2007. arXiv:gr-qc/9411040.CrossRefGoogle Scholar
DeWitt, B.S. and Graham, R.N. (Eds.) (1973). The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton). Includes the original papers of Everett from 1957.Google Scholar
Dicke, R.H. (1963). Experimental relativity, inRelativity, Groups and Topology, ed. DeWitt, B. and DeWitt, C. (Blackie and Son, London), p. 165.Google Scholar
Dicke, R.H. and Peebles, P.J.E. (1979). The big bang cosmology – enigmas and nostrums, inGeneral Relativity: An Einstein Centenary Survey, ed. Hawking, S.W. and Israel, W. (Cambridge University Press, Cambridge), p. 504.Google Scholar
Diemand, J. and Moore, B. (2011). The structure and evolution of cold dark matter halos, Adv. Sci. Lett. 4, 297.CrossRefGoogle Scholar
Dingle, H. (1933). On isotropic models of the universe, with special reference to the stability of the homogeneous and static states, Mon. Not. Roy. Astr. Soc. 94, 134.CrossRefGoogle Scholar
Dirac, P.A.M. (1938). New basis for cosmology, Proc. Roy. Soc. A 165, 199.CrossRefGoogle Scholar
Dirac, P.A.M. (1981). The Principles of Quantum Mechanics, volume 27 of International Series of Monographs on Physics (Clarendon Press, Oxford). Fourth edition.Google Scholar
Disney, M.J. (1976). Visibility of galaxies, Nature 263, 573.CrossRefGoogle Scholar
Dodelson, S. (2003). Modern Cosmology: Anisotropies and Inhomogeneities in the Universe (Academic Press, Amsterdam).Google Scholar
Dodelson, S., Gates, E., and Stebbins, A. (1996). Cold + hot dark matter and the cosmic microwave background, Astrophys. J. 467, 10. arXiv:astro-ph/9509147.CrossRefGoogle Scholar
Dolag, K., Borgani, S., Schindler, S., Diaferio, A., and Bykov, A.M. (2008). Simulation techniques for cosmological simulations, Space Science Reviews 134, 229. arXiv:0801.1023.CrossRefGoogle Scholar
Dominik, M. (2010). Studying planet populations by gravitational microlensing. p. 2075 in Jetzer, Mellier and Perlick (2010).CrossRef
Doroshkevich, A.G. (1965). Model of a universe with a uniform magnetic field (in Russian), Astrophysics 1, 138.CrossRefGoogle Scholar
Dulaney, T.R. and Gresham, M.I. (2008). Direction-dependent Jeans instability in an anisotropic Bianchi type I space-time. arXiv:0805.1078.
Dunkley, J., Komatsu, E., Nolta, M.R., Spergel, D.N., Larson, D.et al. (2009). Five-year Wilkinson Microwave Anisotropy Probe observations: Likelihoods and parameters from the WMAP data, Astrophys. J. Supp. 180, 306. arXiv:0803.0586.CrossRefGoogle Scholar
Dunsby, P.K.S. (1993). Gauge-invariant perturbations of anisotropic cosmological models, Phys. Rev. D 48, 3562.CrossRefGoogle Scholar
Dunsby, P.K.S. (1997). A fully covariant description of cosmic microwave background anisotropies, Class. Quant. Grav. 14, 3391. arXiv:gr-qc/9707022.CrossRefGoogle Scholar
Dunsby, P.K.S., Bassett, B.A.C.C., and Ellis, G.F.R. (1997). Covariant analysis of gravitational waves in a cosmological context, Class. Quant. Grav. 14, 1215. arXiv:gr-qc/9811092.CrossRefGoogle Scholar
Dunsby, P.K.S., Goheer, N., Osano, B., and Uzan, J.-P. (2010). How close can an inhomogeneous universe mimic the concordance model?, J. Cosmol. Astropart. Phys. 1006, 017. arXiv:1002.2397.CrossRefGoogle Scholar
Durrer, R. (2007). Cosmic magnetic fields and the CMB, New Astronomy Review 51, 275. arXiv:astroph/0609216.CrossRefGoogle Scholar
Durrer, R. (2008). The Cosmic Microwave Background (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Durrer, R. and Maartens, R. (2008). Dark energy and dark gravity: theory overview, Gen. Rel. Grav. 40, 301. arXiv:0711.0077.CrossRefGoogle Scholar
Dyer, C.C. (1976). The gravitational perturbation of the cosmic background radiation by density concentrations, Mon. Not. Roy. Astr. Soc. 175, 429.CrossRefGoogle Scholar
Dyer, C.C., Landry, S., and Shaver, E.G. (1993). Matching of Friedmann-Lemaître-Robertson-Walker and Kasner cosmologies, Phys. Rev. D 47, 1404.CrossRefGoogle ScholarPubMed
Dyer, C.C. and Roeder, R. (1974). Observations in locally inhomogeneous cosmological models, Astrophys. J. 189, 167.CrossRefGoogle Scholar
Dyer, C.C. and Roeder, R. (1975). Apparent magnitudes, redshifts, and inhomogeneities in the universe, Astrophys. J. 196, 671.Google Scholar
Eardley, D.M. (1974). Self-similar spacetimes: geometry and dynamics, Commun. Math. Phys. 37, 287.CrossRefGoogle Scholar
Eardley, D.M., Liang, E., and Sachs, R.K. (1971). Velocity-dominated singularities in irrotational dust cosmologies, J. Math. Phys. 13, 99.CrossRefGoogle Scholar
Eardley, D.M. and Smarr, L. (1979). Time functions in numerical relativity: marginally bound dust collapse, Phys. Rev. D 19, 2239.CrossRefGoogle Scholar
Earman, J. (1987). The SAP also rises: A critical examination of the anthropic principle, Am. Phil. Qu. 24, 307.Google Scholar
Eddington, A.S. (1930). On the instability of Einstein's spherical world, Mon. Not. Roy. Astr. Soc. 90, 668.CrossRefGoogle Scholar
Edgar, S.B. (1980). The structure of tetrad formalisms in general relativity: the general case, Gen. Rel. Grav. 12, 347.CrossRefGoogle Scholar
Ehlers, J. (1961). Beiträge zur relativistischen Mechanik kontinuerlicher Medien, Akad. Wiss. Lit. Mainz, Abh. Math.-Nat. Kl. 11. English translation by Ellis, G.F.R. and Dunsby, P.K.S., in Gen. Rel. Grav.25, 1225–1266 (1993).Google Scholar
Ehlers, J. (1971). General relativity and kinetic theory, in General Relativity and Cosmology, ed. Sachs, R.K., volume XLVII of Proceedings of the International School of Physics “Enrico Fermi” (Academic Press, New York and London), p. 1.Google Scholar
Ehlers, J. (1973). Survey of general relativity theory, in Relativity, Astrophysics and Cosmology, ed. Israel, W. (Kluwer Academic Publishers, Dordrecht).Google Scholar
Ehlers, J., Geren, P., and Sachs, R. K. (1968). Isotropic solutions of the Einstein-Liouville equations, J. Math. Phys. 9, 1344.CrossRefGoogle Scholar
Ehlers, J. and Rindler, W. (1989). A phase-space representation of Friedmann-Lemaître universes containing both dust and radiation and the inevitability of a big bang, Mon. Not. Roy. Astr. Soc. 238, 503.CrossRefGoogle Scholar
Einstein, A. (1917). Kosmologische Betrachtungen zur allgemeinen relativitätstheorie, Sitzb. Preuss. Akad. Wiss. p. 142. English translation in The Principle of Relativity by Lorentz, H.A., Einstein, A., Minkowski, H. and Weyl, H. (Dover, New York), 1923.Google Scholar
Einstein, A. (1956). The Meaning of Relativity (6th ed.) (Methuen, London).Google Scholar
Einstein, A. and Straus, E.G. (1945). The influence of the expansion of space on the gravitation fields surrounding the individual stars, Rev. Mod. Phys. 17, 120.CrossRefGoogle Scholar
Einstein, A. and Straus, E.G. (1946). Corrections and additional remarks to our paper: The influence of the expansion of space on the gravitation fields surrounding the individual stars, Rev. Mod. Phys. 18, 148.CrossRefGoogle Scholar
Eisenhart, L.P. (1924). Space-time continua of perfect fluids in general relativity, Trans. Am. Math. Soc. 26, 205.CrossRefGoogle Scholar
Eisenstein, D.J., Seo, H.-J., and White, M. (2007). On the robustness of the acoustic scale in the low-redshift clustering of matter, Astrophys. J. 664, 660. arXiv:astro-ph/0604361.CrossRefGoogle Scholar
Eisenstein, D.J., Zehavi, I., Hogg, D.W., Scoccimarro, R., Blanton, M.R.et al. (2005). Detection of the Baryon Acoustic Peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J. 633, 560. arXiv:astro-ph/0501171.CrossRefGoogle Scholar
Ellis, G.F.R. (1967). Dynamics of pressure-free matter in general relativity, J. Math. Phys. 8, 1171.CrossRefGoogle Scholar
Ellis, G.F.R. (1971a). Relativistic cosmology, in General Relativity and Cosmology, ed. Sachs, R.K., volume XLVII of Proceedings of the International School of Physics ‘Enrico Fermi’ (Academic Press, New York and London), p. 104. Reprinted as Gen. Rel. Grav.41, 581–660 (2009).Google Scholar
Ellis, G.F.R. (1971b). Topology and cosmology, Gen. Rel. Grav. 2, 7.CrossRefGoogle Scholar
Ellis, G.F.R. (1973). Relativistic cosmology, in Cargese Lectures in Physics, vol. 6, ed. Schatzman, E. (Gordon and Breach, New York), p. 1.Google Scholar
Ellis, G.F.R. (1975). Cosmology and verifiability, Q. J. Roy. Astr. Soc. 16, 245.Google Scholar
Ellis, G.F.R. (1980). Limits to verification in cosmology, Ann. N.Y. Acad. Sci. 336, 130.CrossRefGoogle Scholar
Ellis, G.F.R. (1984). Alternatives to the big bang, Ann. Rev. Astron. Astrophys. 22, 157.CrossRefGoogle Scholar
Ellis, G.F.R. (1988). Does inflation necessarily imply Ω = 1?, Class. Quant. Grav. 5, 891.CrossRefGoogle Scholar
Ellis, G.F.R. (1989). A history of cosmology 1917-1955, in Einstein and the History of General Relativity, ed. Howard, D. and Stachel, J., volume 1 of Einstein Study Series (Birkhauser Verlag, Boston), p. 367.Google Scholar
Ellis, G.F.R. (1990). The evolution of inhomogeneities in expanding Newtonian cosmologies, Mon. Not. Roy. Astr. Soc. 243, 509.Google Scholar
Ellis, G.F.R. (1993). The physics and geometry of the early universe: changing viewpoints, Q. J. Roy. Astr. Soc. 34, 315. Appeared in first version in Italian in La cosmologia nella cultura del '900, Giornale di Astronomia, 17, 6–14 (1991).Google Scholar
Ellis, G.F.R. (1995). Comment on “Entropy and the second law: A pedagogical alternative” by Baierlein, Ralph, Am. J. Phys. 63, 472.CrossRefGoogle Scholar
Ellis, G.F.R. (1996). Contributions of K. Gödel to relativity and cosmology, in Gödel 96: logical foundations of mathematics, computer science and physics - Kurt Gödel's legacy, ed. Hajicek, P., volume 6 of Lecture Notes in Logic (Springer Verlag, Berlin and Heidelberg).Google Scholar
Ellis, G.F.R. (1997). Cosmological models from a covariant viewpoint, in Gravitation and Cosmology, ed. Dhurandhar, S. and Padmanabhan, T., volume 211 of Astrophysics and Space Science Library (Springer, Berlin and Heidelberg), p. 53.CrossRefGoogle Scholar
Ellis, G.F.R. (2002). Cosmology and local physics, New Astron. Rev. 46, 645. arXiv:gr-qc/0102017.CrossRefGoogle Scholar
Ellis, G.F.R. (2005). Dynamical properties of cosmological solutions, J. Hyper. Diff. Equations 2, 381.CrossRefGoogle Scholar
Ellis, G.F.R. (2006). Issues in the philosophy of cosmology, in Handbook in the Philosophy of Science: Philosophy of Physics, Part B, ed. Butterfield, J. and Earman, J. (Elsevier, Amsterdam), p. 1183. arXiv:astro-ph/0602280.Google Scholar
Ellis, G.F.R. (2007). Editorial note concerning ‘On the definition of distance in general relativity’ by I.M.H., Etherington, Gen. Rel. Grav. 39, 1047.CrossRefGoogle Scholar
Ellis, G.F.R. (2009). Dark matter and dark energy proposals: maintaining cosmology as a true science?, in CRAL-IPNL Dark Energy and Dark Matter: Observations, Experiments, and Theories, ed. Pécontal, E., Buchert, T., Stefano, P., and Copin, Y. (EAS/EDP Sciences, Les Ulis), p. 325. arXiv:0811.3529.
Ellis, G.F.R. and Baldwin, J.E. (1984). On the expected anisotropy of radio source counts, Mon. Not. Roy. Astr. Soc. 206, 377.CrossRefGoogle Scholar
Ellis, G.F.R., Bassett, B.A.C.C., and Dunsby, P.K.S. (1998). Lensing and caustic effects on cosmological distances, Class. Quant. Grav. 15, 2345. arXiv:gr-qc/9801092.CrossRefGoogle Scholar
Ellis, G.F.R. and Brundrit, G.B. (1979). Life in the infinite universe, Q. J. Roy. Astr. Soc. 20, 37.Google Scholar
Ellis, G.F.R. and Bruni, M. (1989). Covariant and gauge-invariant approach to cosmological density fluctuations, Phys. Rev. D 40, 1804.CrossRefGoogle ScholarPubMed
Ellis, G.F.R. and Jaklitsch, M.J. (1989). Integral constraints on perturbations of Robertson-Walker cosmologies, Astrophys. J. 346, 601.CrossRefGoogle Scholar
Ellis, G.F.R. and King, A.R. (1974). Was the big-bang a whimper?, Commun. Math. Phys. 38, 119.CrossRefGoogle Scholar
Ellis, G.F.R., Kirchner, U., and Stoeger, W.R. (2004). Multiverses and physical cosmology, Mon. Not. Roy. Astr. Soc. 347, 921. arXiv:astro-ph/0305292.CrossRefGoogle Scholar
Ellis, G.F.R. and Maartens, R. (2004). The emergent universe: inflationary cosmology with no singularity and no quantum gravity era, Class. Quant. Grav. 21, 223.CrossRefGoogle Scholar
Ellis, G.F.R., Maartens, R., and Nel, S.D. (1978). The expansion of the universe, Mon. Not. Roy. Astr. Soc. 184, 439.CrossRefGoogle Scholar
Ellis, G.F.R. and MacCallum, M.A.H. (1969). A class of homogeneous cosmological models, Commun. Math. Phys. 12, 108.CrossRefGoogle Scholar
Ellis, G.F.R. and Matravers, D.R. (1985). Spatial homogeneity and the size of the universe, in A Random Walk in Relativity and Cosmology, ed. Dadhich, N., Rao, J.R., Narlikar, J.V., and Vishveshwara, C.V. (Wiley Eastern, Delhi).Google Scholar
Ellis, G.F.R. and Matravers, D.R. (1995). General covariance in general relativity, Gen. Rel. Grav. 27, 777.CrossRefGoogle Scholar
Ellis, G.F.R., Matravers, D.R., and Treciokas, R. (1983a). Anisotropic solutions of the Einstein-Boltzmann equations: I. General formalism, Ann. Phys. (N.Y.) 150, 455.CrossRefGoogle Scholar
Ellis, G.F.R., Matravers, D.R., and Treciokas, R. (1983b). Anexact anisotropic solution of the Einstein-Liouville equations, Gen. Rel. Grav. 15, 931.CrossRefGoogle Scholar
Ellis, G.F.R., McEwan, P., Stoeger, W.R., and Dunsby, P. (2002a). Causality in inflationary universes with positive spatial curvature, Gen. Rel. Grav. 34, 1461. arXiv:gr-qc/0109024.CrossRefGoogle Scholar
Ellis, G.F.R., Nel, S.D., Maartens, R., Stoeger, W.R., and Whitman, A.P. (1985). Ideal observational cosmology, Phys. Reports 124, 315.CrossRefGoogle Scholar
Ellis, G.F.R., Nicolai, H., Durrer, R., and Maartens, R. (Eds.) (2008). Special issue on dark energy, Gen. Rel. Grav. 40.CrossRefGoogle Scholar
Ellis, G.F.R., Perry, J.J., and Sievers, A. (1984). Cosmological observations of galaxies: the observational map, Astron. J. 89, 1124.CrossRefGoogle Scholar
Ellis, G.F.R. and Rothman, T. (1993). Lost horizons, Am. J. Phys. 61, 883.CrossRefGoogle Scholar
Ellis, G.F.R. and Schreiber, G. (1986). Observational and dynamic properties of small universes, Phys. Lett. A 115, 97.CrossRefGoogle Scholar
Ellis, G.F.R. and Sciama, D.W. (1972). Global and non-global problems in cosmology, in General Relativity (Synge Festschrift), ed. O'Raifeartaigh, L. (Oxford University Press, Oxford), p. 35.Google Scholar
Ellis, G.F.R. and Stoeger, W.R. (1987). The ‘fitting problem’ in cosmology, Class. Quant. Grav. 4, 1697.CrossRefGoogle Scholar
Ellis, G.F.R. and Stoeger, W.R. (1988). Horizons in inflationary universes, Class. Quant. Grav. 5, 207.CrossRefGoogle Scholar
Ellis, G.F.R. and Stoeger, W.R. (2009a). A note on infinities in eternal inflation, Gen. Rel. Grav. 41, 1475. arXiv:1001.4590.CrossRefGoogle Scholar
Ellis, G.F.R. and Stoeger, W.R. (2009b). The evolution of our local cosmic domain: Effective causal limits, Mon. Not. Roy. Astr. Soc. 398, 1527.CrossRefGoogle Scholar
Ellis, G.F.R., Stoeger, W.R., McEwan, P., and Dunsby, P. (2002b). Dynamics of inflationary universes with positive spatial curvature, Gen. Rel. Grav. 34, 1445. arXiv:gr-qc/0109023.CrossRefGoogle Scholar
Ellis, G.F.R., Treciokas, R., and Matravers, D.R. (1983). Anisotropic solutions of the Einstein-Boltzmann equations: II, Ann. Phys. (N.Y.) 150, 487.CrossRefGoogle Scholar
Ellis, G.F.R. and Tsagas, C.G. (2002). Relativistic approach to nonlinear peculiar velocities and the Zel'dovich approximation, Phys. Rev. D 66, 124015. arXiv:astro-ph/0209143.CrossRefGoogle Scholar
Ellis, G.F.R. and Uzan, J.-P. (2005). ‘c’ is the speed of light, isn't it?, Amer. J. Phys. 73, 240. arXiv:grqc/0305099.CrossRefGoogle Scholar
Ellis, G.F.R. and van Elst, H. (1999a). Cosmological models, in Theoretical and Observational Cosmology (Cargese Lectures 1998), ed. Lachièze-Ray, M., volume 541 of Nato Series C: Mathematical and Physical Sciences (Kluwer, Dordrecht), p. 1. arXiv:gr-qc/9812046.Google Scholar
Ellis, G.F.R. and van Elst, H. (1999b). <Deviation of geodesics in FLRW spacetime geometries, in On Einstein's Path: essays in honor of Engelbert Schucking, ed. Harvey, A.L. (Springer-Verlag, New York), p. 203.CrossRefGoogle Scholar
Ellis, G.F.R., van Elst, H., and Maartens, R. (2001). General relativistic analysis of peculiar velocities, Class. Quant. Grav. 18, 5115. arXiv:gr-qc/0105083.CrossRefGoogle Scholar
Ellis, G.F.R., van Elst, H., Murugan, J. and Uzan, J.-P. (2010). On the trace-free Einstein equations as a viable alternative to general relativity. arXiv:1008.1196.
Etherington, I.M.H. (1933). On the definition of distance in general relativity, Phil. Mag. 15, 761. Reprinted as Gen. Rel. Grav.39 (2007).CrossRefGoogle Scholar
Fabian, A.C. (Ed.) (1989). Origins (Cambridge University Press, Cambridge).Google Scholar
Fagundes, H.V. (1985). Relativistic cosmologies with closed, locally homogeneous spatial sections, Phys. Rev. Lett. 54, 1200. See also Gen. Rel. Grav.30, 1437 (1998).CrossRefGoogle ScholarPubMed
Faraoni, V. (2009). An analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations, Phys. Rev. D 80, 044013. arXiv:0907.4473.CrossRefGoogle Scholar
Farnsworth, D.L. (1967). Some new general relativistic dust metrics possessing isometries, J. Math. Phys. 8, 2315.CrossRefGoogle Scholar
Fay, S. (2004). Isotropisation of Bianchi class A models with a minimally coupled scalar field and a perfect fluid, Class. Quant. Grav. 21, 1609. arXiv:gr-qc/0402104.CrossRefGoogle Scholar
Fayos, F., Jaen, X., Llanta, E., and Senovilla, J.M.M. (1991). Matching of the Vaidya and Robertson-Walker metric, Class. Quant. Grav. 8, 2057.CrossRefGoogle Scholar
Fayos, F., Senovilla, J.M.M., and Torres, R. (1996). General matching of 2 spherically symmetric spacetimes, Phys. Rev. D 54, 4862.CrossRefGoogle Scholar
February, S., Larena, J., Smith, M., and Clarkson, C.A. (2010). Rendering dark energy void, Mon. Not. Roy. Astr. Soc. 405, 2231. arXiv:0909.1479.Google Scholar
Feng, J.L. (2010). Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48, 495. arXiv:1003.0904.CrossRefGoogle Scholar
Ferrando, J.J., Morales, J.A., and Portilla, M. (1992). Inhomogeneous space-times admitting isotropic radiation: Vorticity-free case, Phys. Rev. D 46, 578.CrossRefGoogle ScholarPubMed
Ferreira, P.G. (2007). The State of the Universe: A Primer in Modern Cosmology (Phoenix, Los Angeles).Google Scholar
Ferreira, P.G., Juszkiewicz, R., Feldman, H.A., Davis, M., and Jaffe, A.H. (1999). Streaming velocities as a dynamical estimator of Omega, Astrophys. J. Lett. 515, L1. arXiv:astro-ph/9812456.CrossRefGoogle Scholar
Ferreira, P.G. and Starkman, G.D. (2009). Einstein's theory of gravity and the problem of missing mass, Science 326, 812. arXiv:0911.1212.CrossRefGoogle ScholarPubMed
Ferreras, I., Mavromatos, N.E., Sakellariadou, M., and Yusaf, M.F. (2009). Incompatibility of rotation curves with gravitational lensing for TeVeS, Phys. Rev. D 80, 103506. arXiv:0907.1463.CrossRefGoogle Scholar
Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A.et al. (1996). The Cosmic Microwave Background spectrum from the full COBE FIRAS data set, Astrophys. J. 473, 576. arXiv:astroph/9605054.CrossRefGoogle Scholar
Flesch, E. and Arp, H. (1999). Further evidence that some quasars originate in nearby galaxies: NGC3628. arXiv:astro-ph/9907219.
Florides, P.S. and McCrea, W.H. (1959). Observable relations in relativistic cosmology III, Zs. f. Astrophys. 48, 52.Google Scholar
Freedman, W.L. and Madore, B.F. (2010). The Hubble constant, Ann. Rev. Astron. Astrophys. 48, 673.CrossRefGoogle Scholar
Freivogel, B., Kleban, M., Rodríguez Martínez, M., and Susskind, L. (2006). Observational consequences of a landscape, J. High Energy Phys. 3, 39. arXiv:hep-th/0505232.CrossRefGoogle Scholar
Friedlander, F.G. (1975). The Wave Equation on a Curved Space-time (Cambridge University Press, Cambridge).Google Scholar
Frieman, J.A., Turner, M.S., and Huterer, D. (2008). Dark energy and the accelerating universe, Ann. Rev. Astron. Astrophys. 46, 385. arXiv:0803.0982.CrossRefGoogle Scholar
Frittelli, S. and Newman, E.T. (1999). Exact universal gravitational lensing equation, Phys. Rev. D 59, 124001. arXiv:gr-qc/9810017.CrossRefGoogle Scholar
Fu, L., Semboloni, E., Hoekstra, H., Kilbinger, M., vanWaerbeke, L.et al. (2008). Very weak lensing in the CFHTLS Wide: cosmology from cosmic shear in the linear regime, Astron. Astrophys. 479, 9. arXiv:0712.0884.CrossRefGoogle Scholar
Furlanetto, S.R., Oh, S.P., and Briggs, F.H. (2006). Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe, Phys. Reports 433, 181. arXiv:astro-ph/0608032.CrossRefGoogle Scholar
Futamase, T. (1991). A new description for a realistic inhomogeneous universe in general relativity, Prog. Theor. Phys. 86, 389.CrossRefGoogle Scholar
Futamase, T. (1996). Averaging of a locally inhomogeneous realistic universe, Phys. Rev. D 53, 681.CrossRefGoogle ScholarPubMed
Gale, G. (2007). Cosmology: Methodological debates in the 1930s and 1940s. Stanford Encyclopaedia of Philosophy. http://plato.stanford.edu/entries/cosmology-30s/.
García-Bellido, J. and Haugbølle, T. (2008). Looking the void in the eyes – the kinematic Sunyaev Zel'dovich effect in Lemaître Tolman Bondi models, J. Cosmol. Astropart. Phys. 0809, 016. arXiv:0807.1326.CrossRefGoogle Scholar
Garcia-Parrado, A. and Valiente Kroon, J.A. (2008). Kerr initial data, Class. Quant. Grav. 25, 205018.Google Scholar
Gardner, M. (2003). Are Universes Thicker than Blackberries? Discourses on Godel, Magic Hexagons, Little Red Riding Hood and Other Mathematical and Pseudoscientific Topics (W.W. Norton, New York and London).Google Scholar
Garrett, A.J.M. and Coles, P. (1993). Bayesian inductive inference and the anthropic cosmological principle, Comments Astrophys. 17, 23.Google Scholar
Garriga, J., Schwartz-Perlov, D.,Vilenkin, A., and Winitzki, S. (2006). Probabilities in the inflationary multiverse, J. Cosmol. Astropart. Phys. 0601, 017. arXiv:hep-th/0509184.CrossRefGoogle Scholar
Gasperini, M., Marozzi, G., and Veneziano, G. (2010). A covariant and gauge invariant formulation of the cosmological backreaction, J. Cosmol. Astropart. Phys. 1002, 009. arXiv:0912.3244.CrossRefGoogle Scholar
Gasperini, M. and Veneziano, G. (1993). Pre-big-bang in string cosmology, Astropart. Phys. 1, 317.CrossRefGoogle Scholar
Gaztañaga, E., Cabré, A., and Hui, L. (2009). Clustering of luminous red galaxies - IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z), Mon. Not. Roy. Astr. Soc. 399, 1663. arXiv:0807.3551.CrossRefGoogle Scholar
Gebbie, T., Dunsby, P.K.S., and Ellis, G.F.R. (2000). 1+3 covariant cosmic microwave background anisotropies II: The almost-Friedmann-Lemaître Model, Ann. Phys. (N.Y.) 282, 321. arXiv:astroph/9904408.CrossRefGoogle Scholar
Gebbie, T. and Ellis, G.F.R. (2000). 1+3 covariant cosmic microwave background anisotropies I: Algebraic relations for mode and multipole expansions, Ann. Phys. (N.Y.) 282, 285. arXiv:astroph/9804316.CrossRefGoogle Scholar
Geroch, R. and Lindblom, L. (1990). Dissipative relativistic fluid theories of divergence type, Phys. Rev. D 41, 1855.CrossRefGoogle ScholarPubMed
Geshnizjani, G. and Brandenberger, R.H. (2002). Backreaction and local cosmological expansion rate, Phys. Rev. D 66, 123507.CrossRefGoogle Scholar
Geshnizjani, G. and Brandenberger, R.H. (2005). Backreaction of perturbations in two scalar field inflationary models, J. Cosmol. Astropart. Phys. 0504, 006.CrossRefGoogle Scholar
Ghosh, T., Hajian, A., and Souradeep, T. (2007). Unveiling hidden patterns in CMB anisotropy maps, Phys. Rev. D 75, 083007. arXiv:astro-ph/0604279.CrossRefGoogle Scholar
Giannantonio, T., Scranton, R., Crittenden, R.G., Nichol, R.C., Boughn, S.P.et al. (2008). Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications, Phys. Rev. D 77, 123520. arXiv:0801.4380.CrossRefGoogle Scholar
Gibbons, G.W., Hawking, S.W., and Stewart, J.M. (1987). A natural measure on the set of all universes, Nucl. Phys. B 281, 736.CrossRefGoogle Scholar
Gibbons, G.W., Shellard, E.P.S., and Rankin, S.J. (Eds.) (2003). The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking's 60th Birthday (Cambridge University Press, Cambridge).Google Scholar
Gibbons, G.W. and Turok, N. (2008). The measure problem in cosmology, Phys. Rev. D 77, 063518. arXiv:hep-th/0609095.CrossRefGoogle Scholar
Giovannini, M. and Kunze, K.E. (2008). Magnetized CMB observables: A dedicated numerical approach, Phys. Rev. D 77, 063003. arXiv:0712.3483.CrossRefGoogle Scholar
Gödel, K. (1949). An example of a new type of cosmological solutions of Einstein's field equations of gravitation, Rev. Mod. Phys. 21, 447.CrossRefGoogle Scholar
Gödel, K. (1952). Rotating universes in general relativity theory, in Proc. Int. Cong. Math., Cambridge, Mass., 1950, ed. Graves, L.M., Hille, E., Smith, P.A., and Zariski, O., volume 1 (American Mathematical Society, Providence, R.I.), p. 175.Google Scholar
Godłowski, W., Stelmach, J., and Szydłowski, M. (2004). Can the Stephani model be an alternative to FRW accelerating models?, Class. Quant. Grav. 21, 3953. arXiv:astro-ph/0403534.CrossRefGoogle Scholar
Goenner, H.F. (2010). What kind of science is cosmology?, Ann. d. Phys. 522, 389. arXiv:0910.4333.CrossRefGoogle Scholar
Goetz, G. (1990). Gravitational field of plane symmetric thick domain walls, J. Math. Phys. 31, 2683.CrossRefGoogle Scholar
Goheer, N., Leach, J.A., and Dunsby, P.K.S. (2008). Compactifying the state space for alternative theories of gravity, Class. Quant. Grav. 25, 035013. arXiv:0710.0819.CrossRefGoogle Scholar
Goldwirth, D.S. and Piran, T. (1990). Inhomogeneity and the onset of inflation, Phys. Rev. Lett. 64, 2852.CrossRefGoogle ScholarPubMed
Gomero, G.I., Teixeira, A.F.F., Rebouças, M.J., and Bernui, A. (2002). Spikes in cosmic crystallography, Int. J. Mod. Phys. D 11, 869. arXiv:gr-qc/9811038.CrossRefGoogle Scholar
Goode, S.W. (1989). Analysis of spatially inhomogeneous perturbations of the FRW cosmologies, Phys. Rev. D 39, 2882.CrossRefGoogle ScholarPubMed
Goode, S.W. and Wainwright, J. (1982). Singularities and evolution of the Szekeres cosmological models, Phys. Rev. D 26, 3315.CrossRefGoogle Scholar
Goodman, J. (1995). Geocentrism reexamined, Phys. Rev. D 52, 1821. arXiv:astro-ph/9506068.CrossRefGoogle ScholarPubMed
Gordon, C., Wands, D., Bassett, B.A.C.C., and Maartens, R. (2001). Adiabatic and entropy perturbations from inflation, Phys. Rev. D 63, 023506. arXiv:astro-ph/0009131.Google Scholar
Goroff, M.H. and Sagnotti, A. (1985). Quantum gravity at two loops, Phys. Lett. B 160, 81.CrossRefGoogle Scholar
Gott, J.R. (1985). Gravitational lensing effects of vacuum strings: exact solutions, Astrophys. J. 288, 422.CrossRefGoogle Scholar
Gott, J.R. and Li, L.-X. (1998). Can the universe create itself?, Phys. Rev. D 58, 023501. arXiv:astro-ph/9712344.CrossRefGoogle Scholar
Gott, III, J.R., Gunn, J.E., Schramm, D.N., and Tinsley, B.M. (1976). Will the universe expand forever?, Sci. Am. 234, 62.CrossRefGoogle Scholar
Gowdy, R.H. (1971). Gravitational waves in closed universes, Phys. Rev. Lett. 27, 826.CrossRefGoogle Scholar
Gowdy, R.H. (1974). Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions, Ann. Phys. (N.Y.) 83, 203.CrossRefGoogle Scholar
Gowdy, R.H. (1975). Closed gravitational-wave universes: analytic solutions with two-parameter symmetry, J. Math. Phys. 16, 224.CrossRefGoogle Scholar
Greene, B., Hinterbichler, K., Judes, S. and Parikh, M.K. (2011). Smooth initial conditions from weak gravity, Phys. Lett. B 697, 178. arXiv:0911.0693.CrossRefGoogle Scholar
Greisen, K. (1966). End to the cosmic-ray spectrum?, Phys. Rev. Lett. 16, 748.CrossRefGoogle Scholar
Gribbin, J. and Rees, M. (1989). Cosmic Coincidences (Bantam Books, New York).Google Scholar
Griffiths, J.B. (1991). Colliding Plane Waves in General Relativity (Oxford University Press, Oxford).Google Scholar
Grishchuk, L.P. (1968). Cosmological models and spatial-homogeneity criteria, Soviet Astronomy -A.J. 11, 881.Google Scholar
Grunbaum, A. (1989). The pseudo problem of creation, Philosophy of Science 56, 373.CrossRefGoogle Scholar
Gümrükçüoğlu, A.E., Contaldi, C.R., and Peloso, M. (2007). Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB, J. Cosmol. Astropart. Phys. 0711, 005. arXiv:0707.4179.CrossRefGoogle Scholar
Gümrükçüoğlu, A.E., Himmetoglu, B., and Peloso, M. (2010). Scalar-scalar, scalar-tensor, and tensor-tensor correlators from anisotropic inflation, Phys. Rev. D 81, 063528. arXiv:1001.4088.CrossRefGoogle Scholar
Guth, A. (2001). Eternal inflation, in Proceedings of ‘Cosmic Questions’ Meeting (The New York Academy of Sciences Press, New York). arXiv:astro-ph/0101507.Google Scholar
Guth, A. (2007). Eternal inflation and its implications, J. Phys. A 40, 6811. arXiv:hep-th/0702178.CrossRefGoogle Scholar
Guzzo, L., Pierleoni, M., Meneux, B., Branchini, E., Le Fèvre, O.et al. (2008). A test of the nature of cosmic acceleration using galaxy redshift distortions, Nature 451, 541. arXiv:0802.1944.CrossRefGoogle ScholarPubMed
Hamilton, A.J.S. (1998). Linear redshift distortions: a review, in The evolving universe, ed. Hamilton, D., volume 231 of Astrophysics and Space Science Library (Springer, Berlin and Heidelberg), p. 185. arXiv:astro-ph/9708102.CrossRefGoogle Scholar
Hanquin, J.-L. and Demaret, J. (1984). Exact solutions for inhomogeneous generalizations of some vacuum Bianchi models, Class. Quant. Grav. 1, 291.CrossRefGoogle Scholar
Hanson, D., Challinor, A., and Lewis, A. (2010). Weak lensing of the CMB. p. 2197 in Jetzer, Mellier and Perlick (2010), arXiv:0911.0612.
Harness, R.S. (1982). Spacetimes homogeneous on a timelike hypersurface, J. Phys. A 15, 135.CrossRefGoogle Scholar
Harré, R. (1962). Philosophical aspects of cosmology, Brit. J. Phil. Sci. 13, 104.CrossRefGoogle Scholar
Harrison, E.R. (2000). Cosmology: The Science of the Universe (2nd edition) (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Hartle, J. (2003). The state of the universe, in Gibbons, Shellard and Rankin (2003).
Hartle, J.B. (2004). Anthropic reasoning and quantum cosmology, in The New Cosmology, ed. Allen, R.E., Nanopoulos, D.V., and Pope, C.N., volume 743 of AIP Conference Proceedings (American Institute of Physics, Melville, NY). arXiv:gr-qc/0406104.Google Scholar
Hartle, J.B. (2011). The quasiclassical realms of this quantum universe, Found. Phys. 41, 982. arXiv:0806.3776.CrossRefGoogle Scholar
Hartle, J.B. and Hawking, S.W. (1983). Wave function of the universe, Phys. Rev. D 28, 2960.CrossRefGoogle Scholar
Hartle, J.B., Hawking, S.W., and Hertog, T. (2008). The no-boundary measure of the universe, Phys. Rev. Lett. 100, 201301. arXiv:0711.4630.CrossRefGoogle ScholarPubMed
Harvey, A.L. (1979). Automorphisms of the Bianchi model Lie groups, J. Math. Phys. 20, 251.CrossRefGoogle Scholar
Harwit, M. (1992). Cosmic curvature and condensation, Astrophys. J. 392, 394.CrossRefGoogle Scholar
Harwit, M. (1998). Astrophysical Concepts, 3rd edition (Springer, New York).CrossRefGoogle Scholar
Hasse, W. and Perlick, V. (1999). On spacetime models with an isotropic Hubble law, Class. Quant. Grav. 16, 2559.CrossRefGoogle Scholar
Hauser, M.G. and Dwek, E. (2001). The cosmic infrared background: Measurements and implications, Ann. Rev. Astron. Astrophys. 39, 249. arXiv:astro-ph/0105539.CrossRefGoogle Scholar
Hausman, M.A., Olson, D.W., and Roth, B.D. (1983). The evolution of voids in the expanding universe, Astrophys. J. 270, 351.CrossRefGoogle Scholar
Hawking, S.W. (1966). Perturbations of an expanding universe, Astrophys. J. 145, 544.CrossRefGoogle Scholar
Hawking, S.W. (1975). Particle creation by black holes, in Quantum Gravity: an Oxford Symposium, ed. Isham, C.J., Penrose, R., and Sciama, D.W. (Clarendon Press, Oxford). Also in Commun. Math. Phys. 43, 199 (1975).Google Scholar
Hawking, S.W. (1987). Quantum cosmology, in 300 Years of Gravitation, ed. Hawking, S.W. and Israel, W. (Cambridge University Press, Cambridge), p. 631.Google Scholar
Hawking, S.W. (1993). On the Big Bang and Black Holes (World Scientific, Singapore).CrossRefGoogle Scholar
Hawking, S.W. and Ellis, G.F.R. (1973). The Large Scale Structure of Space-time (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Hawking, S.W. and Page, D.N. (1988). How probable is inflation?, Nucl. Phys. B 298, 789.CrossRefGoogle Scholar
Hawking, S.W. and Penrose, R. (1970). Singularities of gravitational collapse and cosmology, Proc. R. Soc. London A 314, 529.CrossRefGoogle Scholar
Heavens, A. (2009). Weak lensing: Dark matter, dark energy and dark gravity, Nucl. Phys. B (Proc. Suppl.) 194, 76. arXiv:0911.0350.CrossRefGoogle Scholar
Heckmann, O. and Schucking, E. (1955). Bemerkungen zur Newtonschen Kosmologie. I, Zs. f. Astrophys. 38, 95.Google Scholar
Heckmann, O. and Schucking, E. (1956). Bemerkungen zur Newtonschen Kosmologie II, Zs. f. Astrophys. 40, 81.Google Scholar
Heckmann, O. and Schucking, E. (1962). Relativistic cosmology, in Gravitation, ed. Witten, L. (Wiley, New York), p. 438.Google Scholar
Heinzle, J.M. and Ringström, H. (2009). Future asymptotics of vacuum Bianchi type VI0 solutions, Class. Quant. Grav. 26, 145001.CrossRefGoogle Scholar
Heinzle, J.M. and Uggla, C. (2006). Dynamics of the spatially homogeneous Bianchi type I Einstein-Vlasov equations, Class. Quant. Grav. 23, 3463. arXiv:gr-qc/0512031.CrossRefGoogle Scholar
Heinzle, J.M. and Uggla, C. (2009a). Mixmaster: Fact and belief, Class. Quant. Grav. 26, 075016. arXiv:0901.0776.CrossRefGoogle Scholar
Heinzle, J.M. and Uggla, C. (2009b). A new proof of the Bianchi type IX attractor theorem, Class. Quant. Grav. 26, 075015. arXiv:0901.0806.CrossRefGoogle Scholar
Heinzle, J.M., Uggla, C., and Röhr, N. (2009). The cosmological billiard attractor, Adv. Theor. Math. Phys. 13, 293. arXiv:gr-qc/0702141.CrossRefGoogle Scholar
Hellaby, C.W. (1996). The null and KS limits of the Szekeres model, Class. Quant. Grav. 13, 2537.CrossRefGoogle Scholar
Hellaby, C.W. and Alfedeel, A.H.A. (2009). Solving the observer metric, Phys. Rev. D 79, 043501. arXiv:0811.1676.CrossRefGoogle Scholar
Hellaby, C.W. and Krasiński, A. (2006). Alternative methods of describing structure formation in the Lemaître-Tolman model, Phys. Rev. D 73, 023518. arXiv:gr-qc/0510093.CrossRefGoogle Scholar
Hellaby, C.W. and Krasiński, A. (2008). Physical and geometrical interpretation of the ε ≤ 0 Szekeres models, Phys. Rev. D 77, 023529. arXiv:0710.2171.CrossRefGoogle Scholar
Hellaby, C.W. and Lake, K. (1981). Local inhomogeneities in a Robertson–Walker background: III. Elementary growth rates in a flat background with a relativistic equation of state, Astrophys. J. 251, 429.CrossRefGoogle Scholar
Hellaby, C.W. and Lake, K. (1983). Mass scales in a universe of dust and blackbody radiation, Astrophys. Lett. 23, 81.Google Scholar
Hellaby, C.W. and Lake, K. (1984). The redshift structure of the big bang in inhomogeneous cosmological models. I. Spherical dust solutions, Astrophys. J. 282, 1.CrossRefGoogle Scholar
Hellaby, C.W. and Lake, K. (1985). Shell crossings and the Tolman model, Astrophys. J. 290, 381. Erratum: Astrophys. J.300, 461 (1986).CrossRefGoogle Scholar
Heller, M. (1974). On the interpretative paradox in cosmology, Acta Cosmologica 2, 37.Google Scholar
Hervik, S. (2000). The Bianchi type I minisuperspace model, Class. Quant. Grav. 17, 2765. arXiv:gr-qc/0003084.CrossRefGoogle Scholar
Hervik, S. (2004). The asymptotic behaviour of tilted Bianchi type VI0 universes, Class. Quant. Grav. 21, 2301. arXiv:gr-qc/0403040.CrossRefGoogle Scholar
Hervik, S. and Coley, A.A. (2005). Inhomogeneous perturbations of plane-wave spacetimes, Class. Quant. Grav. 22, 3391. arXiv:gr-qc/0505108.CrossRefGoogle Scholar
Hervik, S. and Lim, W.C. (2006). The late-time behaviour of vortic Bianchi type VIII universes, Class. Quant. Grav. 23, 3017. arXiv:gr-qc/0512070.CrossRefGoogle Scholar
Hervik, S., Lim, W.C., Sandin, P., and Uggla, C. (2010). Future asymptotics of tilted Bianchi type II cosmologies, Class. Quant. Grav. 27, 185006. arXiv:1004.3661.CrossRefGoogle Scholar
Hervik, S., van den Hoogen, R., and Coley, A.A. (2005). Future asymptotic behaviour of tilted Bianchi models of type IV and VIIh, Class. Quant. Grav. 22, 607. arXiv:gr-qc/0409106.CrossRefGoogle Scholar
Hervik, S., van den Hoogen, R.J., Lim, W.C., and Coley, A.A. (2006). The futures of Bianchi type VII0 cosmologies with vorticity, Class. Quant. Grav. 23, 845. arXiv:gr-qc/0509032.CrossRefGoogle Scholar
Hervik, S., van den Hoogen, R.J., Lim, W.C., and Coley, A.A. (2007). Late-time behaviour of the tilted Bianchi type VIh models, Class. Quant. Grav. 24, 3859. arXiv:gr-qc/0703038.CrossRefGoogle Scholar
Hervik, S., van den Hoogen, R.J., Lim, W.C., and Coley, A.A. (2008). Late-time behaviour of the tilted Bianchi type VI–1/9 models, Class. Quant. Grav. 25, 015002. arXiv:0706.3184.CrossRefGoogle Scholar
Hewitt, C.G. (1991). Algebraic invariant curves in cosmological dynamical systems and exact solutions, Gen. Rel. Grav. 23, 1363.CrossRefGoogle Scholar
Hewitt, C.G., Bridson, R., and Wainwright, J. (2001). The asymptotic regimes of tilted Bianchi II cosmologies, Gen. Rel. Grav. 33, 65. arXiv:gr-qc/0008037.CrossRefGoogle Scholar
Hewitt, C.G. and Wainwright, J. (1990). Orthogonally transitive G2 cosmologies, Class. Quant. Grav. 7, 2295.CrossRefGoogle Scholar
Hewitt, C.G. and Wainwright, J. (1992). Dynamical systems approach to tilted Bianchi cosmologies: irrotational models of type V, Phys. Rev. D 46, 4242.CrossRefGoogle ScholarPubMed
Hewitt, C.G. and Wainwright, J. (1993). A dynamical systems approach to Bianchi cosmologies: orthogonal models of class B, Class. Quant. Grav. 10, 99.CrossRefGoogle Scholar
Hewitt, C.G., Wainwright, J., and Glaum, M. (1991). Qualitative analysis of a class of inhomogeneous self-similar cosmological models: II, Class. Quant. Grav. 8, 1505.CrossRefGoogle Scholar
Hewitt, C.G., Wainwright, J., and Goode, S.W. (1988). Qualitative analysis of a class of inhomogeneous self-similar cosmological models, Class. Quant. Grav. 5, 1313.CrossRefGoogle Scholar
Hibler, D.L. (1976). Construction and some properties of the most general homogeneous Newtonian cosmological models, University of Texas at Austin PhD thesis. University Microfilms TSZ 77-3913.
Hicks, N.J. (1965). Notes on Differential Geometry, volume 3 of van Nostrand Mathematical Studies (van Nostrand, Princeton).Google Scholar
Hilbert, D. (1964). On the infinite, in Philosophy of Mathematics, ed. Benacerraf, P. and Putnam, H. (Prentice Hall, Englewood Cliffs N. J.), p. 134.Google Scholar
Hinshaw, G., Nolta, M.R., Bennett, C.L., Bean, R., Doré, O.et al. (2007). Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature analysis, Astrophys. J. Supp. 170, 288. arXiv:astro-ph/0603451.CrossRefGoogle Scholar
Hinshaw, G., Weiland, J.L., Hill, R.S., Odegard, N., Larson, D.et al. (2009). Five-year Wilkinson Microwave Anisotropy Probe observations: Data processing, sky maps, and basic results, Astrophys. J. Supp. 180, 225. arXiv:0803.0732.CrossRefGoogle Scholar
Hiscock, W.A. (1985). Exact gravitational field of a string, Phys. Rev. D 31, 3288.CrossRefGoogle Scholar
Hiscock, W.A. and Lindblom, L. (1987). Linear plane waves in dissipative relativistic fluids, Phys. Rev. D 35, 3723.CrossRefGoogle ScholarPubMed
Hobill, D.W., Burd, A., and Coley, A.A. (Eds.) (1994). Deterministic Chaos in General Relativity, volume 332 of Nato ASI Series B (Plenum Press, New York).CrossRefGoogle Scholar
Hobson, M.P., Efstathiou, G.P., and Lasenby, A.N. (2006). General Relativity: An Introduction for Physicists (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Hoekstra, H. (2007). A comparison of weak-lensing masses and X-ray properties of galaxy clusters, Mon. Not. Roy. Astr. Soc. 379, 317. arXiv:0705.0358.CrossRefGoogle Scholar
Hogan, C.J. (2000). Why the universe is just so, Rev. Mod. Phys. 72, 1149. arXiv:astro-ph/9909295.CrossRefGoogle Scholar
Hogan, C.J. (2005). Quarks, electrons, and atoms in closely related universes, in Universe or Multiverse?, ed. Carr, B.J. (Cambridge University Press, Cambridge). arXiv:astro-ph/0407086.Google Scholar
Hogan, P. and Ellis, G.F.R. (1989). The asymptotic field of an accelerating point charge, Ann. Phys. (N.Y.) 196, 293.CrossRefGoogle Scholar
Hogg, D.W. (2009). Is cosmology just a plausibility argument? arXiv:0910.3374.
Hollands, S. and Wald, R.M. (2005). Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes, Rev. Mod. Phys. 17, 227.Google Scholar
Hollenstein, L., Caprini, C., Crittenden, R., and Maartens, R. (2008). Challenges for creating magnetic fields by cosmic defects, Phys. Rev. D 77, 063517. arXiv:0712.1667.CrossRefGoogle Scholar
Holz, D.E. and Linder, E.V. (2005). Safety in numbers: gravitational degradation of the luminosity distance-redshift relation, Astrophys. J. 631, 678. arXiv:astro-ph/0412173.CrossRefGoogle Scholar
Holz, D.E. and Wald, R.M. (1998). New method for determining cumulative gravitational lensing effects in inhomogeneous universes, Phys. Rev. D 58, 063501. arXiv:astro-ph/9708036.CrossRefGoogle Scholar
Horwood, J.T. and Wainwright, J. (2004). Asymptotic regimes of magnetic Bianchi cosmologies, Gen. Rel. Grav. 36, 799. arXiv:gr-qc/0309083.CrossRefGoogle Scholar
Hosoya, A., Buchert, T., and Morita, M. (2004). Information entropy in cosmology, Phys. Rev. Lett. 92, 141302.CrossRefGoogle ScholarPubMed
Hoyle, F. (1948). A new model for the expanding universe, Mon. Not. Roy. Astr. Soc. 108, 372.CrossRefGoogle Scholar
Hoyle, F. (1962). Cosmological tests of gravitational theories, in Evidence for Gravitational Theories, ed. Møller, C., volume XX of Proceedings of the International School of Physics “Enrico Fermi” (Academic Press, New York and London), p. 147.Google Scholar
Hoyle, F., Burbidge, G., and Narlikar, J.V. (1993). A quasi-steady state cosmological model with creation of matter, Astrophys. J. 410, 437.CrossRefGoogle Scholar
Hoyle, F., Burbidge, G., and Narlikar, J.V. (1994). Astrophysical deductions from the quasi-steady state cosmology, Mon. Not. Roy. Astr. Soc. 267, 1007. Erratum: Mon. Not. Roy. Astr. Soc.269, 1152.CrossRefGoogle Scholar
Hsu, L. and Wainwright, J. (1986). Self-similar spatially homogeneous cosmologies: orthogonal perfect fluid and vacuum solutions, Class. Quant. Grav. 3, 1105.CrossRefGoogle Scholar
Hu, W., Seljak, U., White, M., and Zaldarriaga, M. (1998). Complete treatment of CMB anisotropies in a FRW universe, Phys. Rev. D 57, 3290. arXiv:astro-ph/9709066.CrossRefGoogle Scholar
Hu, W. and Sugiyama, N. (1995). Anisotropies in the cosmic microwave background: an analytic approach, Astrophys. J. 444, 489. arXiv:astro-ph/9407093.CrossRefGoogle Scholar
Hu, W. and White, M. (1997). CMB anisotropies: Total angular momentum method, Phys. Rev. D 56, 596. arXiv:astro-ph/9702170.CrossRefGoogle Scholar
Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae, Proc. Nat. Acad. Sci. 15, 168.CrossRefGoogle ScholarPubMed
Hubble, E. (1936). The Realm of the Nebulae (Yale University Press, Yale).Google Scholar
Huggett, S.A. and Tod, K.P. (1994). An Introduction to Twistor Theory, 2nd edition, volume 4 of London Mathematical Society Student Texts (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Humphreys, N.P., Maartens, R., and Matravers, D.R. (1997). Anisotropic observations in universes with nonlinear inhomogeneity, Astrophys. J. 477, 47. arXiv:astro-ph/9602033.CrossRefGoogle Scholar
Huterer, D. (2010). Weak lensing, dark matter and dark energy. p. 2177 in Jetzer, Mellier and Perlick (2010), arXiv:1001.1758.
Iguchi, O. and Ishihara, H. (1997). Onset of inflation in inhomogeneous cosmology, Phys. Rev. D 56, 3216.CrossRefGoogle Scholar
Ipser, J.R. and Sikivie, P. (1984). Gravitationally repulsive domain wall, Phys. Rev. D 30, 712.CrossRefGoogle Scholar
Isaacson, R.A. (1967). Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics, Phys. Rev. 166, 1263.CrossRefGoogle Scholar
Isaacson, R.A. (1968). Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor, Phys. Rev. 166, 1272.CrossRefGoogle Scholar
Ishak, M., Richardson, J., Garred, D., Whittington, D., Nwankwo, A.et al. (2008). Dark energy or apparent acceleration due to a relativistic cosmological model more complex than FLRW?, Phys. Rev. D 78, 123531. arXiv:0708.2943.CrossRefGoogle Scholar
Ishak, M., Rindler, W., and Dossett, J. (2010). More on lensing, Mon. Not. Roy. Astr. Soc. 403, 2152. arXiv:0810.4956.CrossRefGoogle Scholar
Isham, C.J. (1997). Lectures on Quantum Theory: Mathematical and Structural Foundations (Imperial College Press, London).Google Scholar
Isham, C.J. and Linden, N. (1995). Continuous histories and the history group in generalised quantum theory, J. Math. Phys. 36, 5392. arXiv:gr-qc/9503063.CrossRefGoogle Scholar
Ishibashi, A. and Wald, R.M. (2006). Can the acceleration of our universe be explained by the effects of inhomogeneities?, Class. Quant. Grav. 23, 235. arXiv:gr-qc/0509108.CrossRefGoogle Scholar
Israel, W. (1966). Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44, 1. Erratum: Nuovo Cim. B48, 463 (1967).CrossRefGoogle Scholar
Israel, W. and Stewart, J.M. (1979). On transient relativistic thermodynamics and kinetic theory II, Proc. Roy. Soc. London A 365, 43.CrossRefGoogle Scholar
Jackson, J.D. (1975). Classical Electrodynamics (Wiley, New York).Google Scholar
Jaffe, T.R., Hervik, S., Banday, A.J., and Gorski, K.M. (2006). On the viability of Bianchi type VIIh models with dark energy, Astrophys. J. 644, 701. arXiv:astro-ph/0512433.CrossRefGoogle Scholar
Jain, B. and Bertschinger, E. (1996). Selfsimilar evolution of cosmological density fluctuations, Astrophys. J. 456, 43. arXiv:astro-ph/9503025.CrossRefGoogle Scholar
Jain, B. and Khoury, J. (2010). Cosmological tests of gravity, Ann. Phys. (N.Y.) 325, 1479. arXiv:1004.3294.CrossRefGoogle Scholar
Jain, D. and Dev,A. (2006). Age of high redshift objects - a litmus test for dark energy models, Phys. Lett. B 633, 436. arXiv:astro-ph/0509212.CrossRefGoogle Scholar
Jantzen, R.T. (1979). The dynamical degrees of freedom in spatially homogeneous cosmology, Commun. Math. Phys. 64, 211.CrossRefGoogle Scholar
Jantzen, R.T. (1984). Spatially homogeneous dynamics: a unified picture, in Cosmology of the Early Universe, ed. Ruffini, R. and L.-Z., Fang (World Scientific, Singapore), p. 233. Also in Gamow Cosmology, (Proceedings of the International School of Physics ‘Enrico Fermi’, Course LXXXVI), (1987) ed. Ruffini, R. and Melchiorri, F. pp. 61–147 (North Holland, Amsterdam).Google Scholar
Jantzen, R.T. and Uggla, C. (1998). The kinematical role of automorphisms in the orthonormal frame approach to Bianchi cosmology, J. Math. Phys. 40, 353.CrossRefGoogle Scholar
Jarosik, N., Bennett, C.L., Dunkley, J., Gold, B., Greason, M.R.et al. (2011). Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Sky maps, systematic errors, and basic results, Astrophys. J. Supp. 192, 14. arXiv:1001.4744.CrossRefGoogle Scholar
Jee, M.J., Rosati, P., Ford, H.C., Dawson, K.S., Lidman, C.et al. (2009). Hubble space telescope weak-lensing study of the galaxy cluster XMMU J2235.3-2557 at z=1.4:Asurprisingly massive galaxy cluster when the universe is one-third of its current age, Astrophys. J. 704, 672. arXiv:0908.3897.CrossRefGoogle Scholar
Jetzer, P., Mellier, Y., and Perlick, V. (Eds.) (2010). Special issue on lensing, Gen. Rel. Grav. 42, 2009.CrossRefGoogle Scholar
Jordan, P., Ehlers, J., and Sachs, R.K. (1961). Beiträge zur Theorie der reinen Gravitationsstrahlung, Akad. Wiss. Lit. Mainz Abh. Math.-Nat. Kl. 1.Google Scholar
Joshi, P. (1996). Global Aspects in Gravitation and Cosmology, volume 87 of International Series of Monographs in Physics (Oxford University Press, Oxford). Revised paperback edition.Google Scholar
Joyce, M., Labini, F.S., Gabrielli, A., Montuori, M., and Pietronero, L. (2005). Basic properties of galaxy clustering in the light of recent results from the Sloan Digital Sky Survey, Astron. Astrophys. 443, 11.CrossRefGoogle Scholar
Kainulainen, K. and Marra, V. (2009). A new stochastic approach to cumulative weak lensing, Phys. Rev. D 80, 123020. arXiv:0909.0822.CrossRefGoogle Scholar
Kaiser, N. (1983). Small-angle anisotropy of the microwave background radiation in the adiabatic theory, Mon. Not. Roy. Astr. Soc. 202, 1169.CrossRefGoogle Scholar
Kaiser, N. and Squires, G. (1993). Mapping the dark matter with weak gravitational lensing, Astrophys. J. 404, 441.CrossRefGoogle Scholar
Kallosh, R. (2006). Towards string cosmology, Prog. Theor. Phys. Supp. 163, 323.CrossRefGoogle Scholar
Kallosh, R. (2008). On inflation in string theory, Lect. Notes Phys. 738, 119. arXiv:hep-th/0702059.CrossRefGoogle Scholar
Kaluza, T. (1921). Zum Unitätsproblem der Physik, Sitz. Preuss. Akad. Wiss., Math. Phys. Kl. p. 966.Google Scholar
Kamionkowski, M., Kosowsky, A., and Stebbins, A. (1997). A probe of primordial gravity waves and vorticity, Phys. Rev. Lett. 78, 2058. arXiv:astro-ph/9609132.CrossRefGoogle Scholar
Kamionkowski, M. and Loeb, A. (1997). Getting around cosmic variance, Phys. Rev. D 56, 4511.CrossRefGoogle Scholar
Kandus, A. and Tsagas, C.G. (2008). Generalized Ohm's law for relativistic plasmas, Mon. Not. Roy. Astr. Soc. 385, 883. arXiv:0711.3573.CrossRefGoogle Scholar
Kantowski, R. (1966). Some Relativistic Cosmological Models, University of Texas PhD thesis. Reprinted in Gen. Rel. Grav. 30, 1665-1700 (1998).CrossRef
Kantowski, R. (1969a). The Coma cluster as a spherical inhomogeneity in relativistic dust, Astrophys. J. 155, 1023.CrossRefGoogle Scholar
Kantowski, R. (1969b). Corrections in the luminosity-redshift relations of the homogeneous Friedman models, Astrophys. J. 155, 59.CrossRefGoogle Scholar
Kantowski, R. (1998). The effects of inhomogeneities on evaluating the mass parameter Ωm and the cosmological constant Λ, Astrophys. J. 507, 483. arXiv:astro-ph/9802208.CrossRefGoogle Scholar
Kantowski, R. (2001). Distance-redshift in inhomogeneous Ω0 = 1 Friedmann-Lemaître-Robertson-Walker cosmology, Astrophys. J. 561, 491.CrossRefGoogle Scholar
Kantowski, R. (2003). The Lamé equation for distance-redshift in partially filled beam Friedmann-Lemaître-Robertson-Walker cosmology, Phys. Rev. D 68, 123516.CrossRefGoogle Scholar
Kantowski, R., Chen, B., and Dai, X. (2010). Gravitational lensing corrections in flat ΩCDM cosmology, Astrophys. J. 718, 913. arXiv:0909.3308.CrossRefGoogle Scholar
Kantowski, R. and Sachs, R.K. (1966). Some spatially homogeneous anisotropic relativistic cosmological models, J. Math. Phys. 7, 443.CrossRefGoogle Scholar
Kazin, E.A., Blanton, M.R., Scoccimarro, R., McBride, C.K., and Berlind, A.A. (2010). Regarding the line-of-sight baryonic acoustic feature in the Sloan Digital Sky Survey and Baryon Oscillation Spectroscopic Survey luminous red galaxy samples, Astrophys. J. 719, 1032. arXiv:1004.2244.CrossRefGoogle Scholar
Kerr, R.P. (1963). Scalar invariants and groups of motions in a four dimensional Einstein space, J. Math. Mech. 12, 33.Google Scholar
Khoury, J., Ovrut, B.A., Steinhardt, P.J., and Turok, N. (2001). Ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys. Rev. D 64, 123522.CrossRefGoogle Scholar
Kibble, T.W.B. (1987). Cosmic strings, in Cosmology and Particle Physics, ed. Alvarez, E., Dominguez, R.J.M., TenreiroCabanell, Ibañez, and Quiros, M., Lectures at GIFT XVIIth International Seminar on Theoretical Physics (World Scientific, Singapore), p. 171.
Kibble, T.W.B. and Lieu, R. (2005). Average magnification effect of clumping of matter, Astrophys. J. 632, 718. arXiv:astro-ph/0412275.CrossRefGoogle Scholar
Kiefer, C. and Polarski, D. (2009). Why do cosmological perturbations look classical to us?, Adv. Sci. Lett. 2, 164. arXiv:0810.0087.CrossRefGoogle Scholar
Kilbinger, M., Benabed, K., Guy, J., Astier, P., Tereno, I.et al. (2009). Dark energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae IA and WMAP5, Astron. Astrophys. 497, 677. arXiv:0810.5129.CrossRefGoogle Scholar
Kim, T.-S., Bolton, J.S., Viel, M., Haehnelt, M.G., and Carswell, R.F. (2007). An improved measurement of the flux distribution of the Lyα forest in QSO absorption spectra: the effect of continuum fitting, metal contamination and noise properties, Mon. Not. Roy. Astr. Soc. 382, 1657. arXiv:0711.1862.CrossRefGoogle Scholar
King, A.R. and Ellis, G.F.R. (1973). Tilted homogeneous cosmological models, Commun. Math. Phys. 31, 209.CrossRefGoogle Scholar
King, D.H. (1991). Gravity-wave insights to Bianchi IX universes, Phys. Rev. D 44, 2356.CrossRefGoogle ScholarPubMed
Kirshner, R.P. (2009). Foundations of supernova cosmology, in Ruiz-Lapuente (2010). arXiv:0910.0257.
Kirschner, U. and Ellis, G.F.R. (2003). A probability measure for FLRW models, Class. Quant. Grav. 20, 1199.CrossRefGoogle Scholar
Klein, O. (1926). The quantum theory and five-dimensional relativity theory (in German), Z. Phys. 37, 895.CrossRefGoogle Scholar
Kling, T.P. and Keith, B. (2005). The Bianchi identity and weak gravitational lensing, Class. Quant. Grav. 22, 2921. arXiv:gr-qc/0506118.CrossRefGoogle Scholar
Kling, T.P., Newman, E.T., and Perez, A. (2000). Comparative studies of lensing methods, Phys. Rev. D 62, 024025. arXiv:gr-qc/0003057.CrossRefGoogle Scholar
Knobe, J., Ohm, K.D., andVilenkin, A. (2006). Philosophical implications of inflationary cosmology, Br. J. Phil. Sci 57, 47. arXiv:physics/0302071.CrossRefGoogle Scholar
Kobayashi, T., Maartens, R., Shiromizu, T., and Takahashi, K. (2007). Cosmological magnetic fields from nonlinear effects, Phys. Rev. D 75, 103501. arXiv:astro-ph/0701596.CrossRefGoogle Scholar
Kodama, H. (2002). Phase space of compact Bianchi models with fluid, Prog. Theor. Phys. 107, 305. arXiv:gr-qc/0109064v1.CrossRefGoogle Scholar
Kodama, H. and Sasaki, M. (1984). Cosmological perturbation theory, Prog. Theor. Phys. Supp. 78, 1.CrossRefGoogle Scholar
Koike, T., Tanimoto, M., and Hosoya, A. (1994). Compact homogeneous universes, J. Math. Phys. 35, 4855. arXiv:gr-qc/9405052.CrossRefGoogle Scholar
Kolb, E.W., Marra, V., and Matarrese, S. (2008). Description of our cosmological spacetime as a perturbed conformal Newtonian metric and implications for the backreaction proposal for the accelerating universe, Phys. Rev. D 78, 103002. arXiv:0807.0401.CrossRefGoogle Scholar
Kolb, E.W., Marra, V., and Matarrese, S. (2010). Cosmological background solutions and cosmological backreactions, Gen. Rel. Grav. 42, 1399. arXiv:0901.4566.CrossRefGoogle Scholar
Kolb, E.W., Matarrese, S., and Riotto, A. (2006). On cosmic acceleration without dark energy, New J. Phys. 8, 322. arXiv:astro-ph/0506534.CrossRefGoogle Scholar
Komatsu, E., Dunkley, J., Nolta, M.R., Bennett, C.L., Gold, B.et al. (2009). Five-year Wilkinson Microwave Anisotropy Probe observations: Cosmological interpretation, Astrophys. J. Supp. 180, 330. arXiv:0803.0547.CrossRefGoogle Scholar
Komatsu, E., Smith, K.M., Dunkley, J., Bennett, C.L., Gold, B.et al. (2011). Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation, Astrophys. J. Supp. 192, 18. arXiv:1004.1856.CrossRefGoogle Scholar
Kompaneets, A.S. and Chernov, A.S. (1965). Solution of the gravitation equations for a homogeneous anisotropic model, Sov. Phys. JETP 20, 1303.Google Scholar
Kopeikin, S.M. and Schäfer, G. (1999). Lorentz covariant theory of light propagation in gravitational fields of arbitrary-moving bodies, Phys. Rev. D 60, 124002.CrossRefGoogle Scholar
Korzynski, M. (2010). Covariant coarse-graining of inhomogeneous dust flow in general relativity, Class. Quant. Grav. 27, 105015. arXiv:0908.4593.CrossRefGoogle Scholar
Kowalski, M., Rubin, D., Aldering, G., Agostinho, R.J., Amadon, A.et al. (2008). Improved cosmological constraints from new, old, and combined Supernova data sets, Astrophys. J. 686, 749. arXiv:0804.4142.CrossRefGoogle Scholar
Koyama, K. and Maartens, R. (2006). Structure formation in the Dvali Gabadadze Porrati cosmological model, J. Cosmol. Astropart. Phys. 0601, 016. arXiv:astro-ph/0511634.CrossRefGoogle Scholar
Krasiński, A. (1989). Shearfree normal cosmological models, J. Math. Phys. 30, 433.CrossRefGoogle Scholar
Krasiński, A. (1997). Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Krasiński, A. (2008). Geometry and topology of the quasi-plane Szekeres model, Phys. Rev. D 78, 064038. arXiv:0805.0529.CrossRefGoogle Scholar
Krasiński, A. and Hellaby, C.W. (2004a). Formation of a galaxy with a central black hole in the Lemaître-Tolman model, Phys. Rev. D 69, 043502. arXiv:gr-qc/0309119.CrossRefGoogle Scholar
Krasiński, A. and Hellaby, C.W. (2004b). More examples of structure formation in the Lemaître-Tolman model, Phys. Rev. D 69, 023502. arXiv:gr-qc/0303016.CrossRefGoogle Scholar
Krasiński, A., Quevedo, H., and Sussman, R.A. (1997). On the thermodynamical interpretation of perfect fluid solutions of the Einstein equations with no symmetry, J. Math. Phys. 38, 2602.CrossRefGoogle Scholar
Kretschmann, E. (1917). Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprungliche Relativitätstheorie, Ann. Physik 53, 575.Google Scholar
Krisciunas, K. (2008). Type Ia supernovae and the acceleration of the universe: results from the ESSENCE Supernova survey. arXiv:0809.2612.
Kristian, J. and Sachs, R.K. (1966). Observations in cosmology, Astrophys. J. 143, 379.CrossRefGoogle Scholar
Kristiansen, J.R., Elgarøy, Ø., and Dahle, H. (2007). Using the cluster mass function from weak lensing to constrain neutrino masses, Phys. Rev. D 75, 083510.CrossRefGoogle Scholar
Kronborg, T., Hardin, D., Guy, J., Astier, P., Balland, C.et al. (2010). Gravitational lensing in the supernova legacy survey (SNLS), Astron. Astrophys. 514, A44. arXiv:1002.1249.CrossRefGoogle Scholar
Kuhn, T. (1977). Objectivity, value judgment, and theory choice, in The Essential Tension (University of Chicago Press, Chicago), p. 3.Google Scholar
Kundt, W. (2003). The Bianchi classification in the Schucking-Behr approach, Gen. Rel. Grav. 35, 475. Notes on a seminar by Schucking, with commentary.Google Scholar
Kurki-Suonio, H. and Centrella, J. (1991). Primordial nucleosynthesis with horizon-scale curvature fluctuations, Phys. Rev. D 43, 1087.CrossRefGoogle ScholarPubMed
Kurki-Suonio, H., Laguna, P., and Matzner, R.A. (1993). Inhomogeneous inflation: numerical evolution, Phys. Rev. D 48, 3611.CrossRefGoogle ScholarPubMed
Kurki-Suonio, H. and Liang, E. (1992). Relation of redshift surveys to matter distribution in spherically symmetric dust universes, Astrophys. J. 390, 5.CrossRefGoogle Scholar
Kustaanheimo, P. and Qvist, B. (1948). Anote on some general solutions of the Einstein field equations in a spherically symmetric world, Comment. Math. Phys. Helsingf. 13, 12.Google Scholar
Lachièze-Rey, M. and Luminet, J.P. (1995). Cosmic topology, Phys. Reports 254, 135. arXiv:grqc/9605010.CrossRefGoogle Scholar
Lake, K. (1980). Local inhomogeneities in a Robertson-Walker background I. General framework, Astrophys. J. 240, 744.CrossRefGoogle Scholar
Lake, K. (1987). Some notes on the propagation of discontinuities in solutions to the Einstein equations, in Vth Brazilian School of Cosmology and Gravitation, ed. Novello, M. (World Scientific, Singapore).Google Scholar
Lake, K. and Pim, R. (1985). Development of voids in the thin-wall approximation. I. General characteristics of spherical vacuum voids, Astrophys. J. 298, 439.CrossRefGoogle Scholar
Landry, S. and Dyer, C.C. (1997). Optical properties of the Einstein-de Sitter-Kasner universe, Phys. Rev. D 56, 3307.CrossRefGoogle Scholar
Lang, S. (1962). Introduction to Differentiable Manifolds (Interscience, New York).Google Scholar
Langlois, D. and Vernizzi, F. (2005). Conserved nonlinear quantities in cosmology, Phys. Rev. D 72, 103501. arXiv:astro-ph/0509078.CrossRefGoogle Scholar
Larena, J. (2009). Spatially averaged cosmology in an arbitrary coordinate system, Phys. Rev. D 79, 084006. arXiv:0902.3159.CrossRefGoogle Scholar
Larson, D., Dunkley, J., Hinshaw, G., Komatsu, E., Nolta, M.R.et al. (2011). Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Power spectra and WMAP-derived parameters, Astrophys. J. Supp. 192. arXiv:1001.4635.CrossRefGoogle Scholar
Lasky, P.D. and Bolejko, K. (2010). The effect of pressure gradients on luminosity distance-redshift relations, Class. Quant. Grav. 27, 035011. arXiv:1001.1159.CrossRefGoogle Scholar
Lazkoz, R., Maartens, R., and Majerotto, E. (2006). Observational constraints on phantomlike braneworld cosmologies, Phys. Rev. D 74, 083510. arXiv:astro-ph/0605701.CrossRefGoogle Scholar
LeBlanc, V.G. (1997). Asymptotic states of magnetic Bianchi I cosmologies, Class. Quant. Grav. 14, 2281.CrossRefGoogle Scholar
LeFloch, P.G. and Rendall, A.D. (2011). A global foliation of Einstein-Euler spacetimes with Gowdy symmetry on T3, Archiv. Rat. Mech. Anal. DOI 10.1007/5000205. Published online, arXiv:1004.0427.Google Scholar
Leith, B.M., Ng, S.C.C., and Wiltshire, D.L. (2008). Gravitational energy as dark energy: Concordance of cosmological tests, Astrophys. J. 672, L91. arXiv:0709.2535.CrossRefGoogle Scholar
Lemaître, G. (1931). The beginning of the world from the point of view of quantum theory, Nature 127, 706.CrossRefGoogle Scholar
Lemaître, G. (1933a). La formation des nébuleuses dans l'univers en expansion, C.R. Acad. Sci. Paris 196, 1085.Google Scholar
Lemaître, G. (1933b). L'univers en expansion, Ann. Soc. Sci. Bruxelles A 53, 51. Translation by M.A.H. MacCallum in Gen. Rel. Grav., 29, 641-680 (1997).Google Scholar
Lena, P., Lebrun, F., and Mignard, F. (2010). Observational Astrophysics (Springer, Berlin and Heidelberg).Google Scholar
Lesgourgues, J. and Pastor, S. (2006). Massive neutrinos and cosmology, Phys. Reports 429, 307. arXiv:astro-ph/0603494.CrossRefGoogle Scholar
Leslie, J. (1989). Universes (Routledge, London and New York).Google Scholar
Levin, J. (2002). Topology and the cosmic microwave background, Phys. Reports 365, 251. arXiv:grqc/0108043.CrossRefGoogle Scholar
Lewis, A. (2004a). CMB anisotropies from primordial inhomogeneous magnetic fields, Phys. Rev. D 70, 043011. arXiv:astro-ph/0406096.
Lewis, A. (2004b). Observable primordial vector modes, Phys. Rev. D 70, 043518. arXiv:astroph/0403583.
Lewis, A. and Challinor, A. (2002). Evolution of cosmological dark matter perturbations, Phys. Rev. D 66, 023531. arXiv:astro-ph/0203507.CrossRefGoogle Scholar
Lewis, A. and Challinor, A. (2006). Weak gravitational lensing of the CMB, Phys. Reports 429, 1.CrossRefGoogle Scholar
Lewis, A., Challinor, A., and Lasenby, A. (2000). Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models, Astrophys. J. 538, 473. arXiv:astro-ph/9911177.CrossRefGoogle Scholar
Lewis, D.K. (1986). On the Plurality of Worlds (Basil Blackwell, Oxford).Google Scholar
Li, N. and Schwarz, D.J. (2007). On the onset of cosmological backreaction, Phys. Rev. D 76, 083011. arXiv:gr-qc/0702043.CrossRefGoogle Scholar
Li, N., Seikel, M., and Schwarz, D.J. (2008). Is dark energy an effect of averaging?, Fortsch. Phys. 56, 465. arXiv:0801.3420.CrossRefGoogle Scholar
Liang, E.P.T. (1979). Noncrossing timelike singularities of irrotational dust collapse, Gen. Rel. Grav. 10, 1572.CrossRefGoogle Scholar
Lichnerowicz, A. (1955). Théories relativistes de la gravitation et de l'électromagnétisme (Masson, Paris).Google Scholar
Lidsey, J.E., Wands, D., and Copeland, E.J. (2000). Superstring cosmology, Phys. Rep. 337, 343. arXiv:hep-th/9909061.CrossRefGoogle Scholar
Liebscher, S., Härterich, J., Webster, K. and Georgi, M. (2011). Ancient dynamics in Bianchi models: Approach to periodic cycles, Commun. Math. Phys. 305, 59. arXiv:1004.1989.CrossRefGoogle Scholar
Lifshitz, E.M. (1946). On the gravitational stability of the expanding universe, Acad. Sci. USSR J. Phys. 10, 116.Google Scholar
Lifshitz, E.M. and Khalatnikov, I.M. (1963). Investigations in relativistic cosmology, Adv. Phys. 12, 185.CrossRefGoogle Scholar
Lim, W.C. (2008). New explicit spike solution – non-local component of the generalized Mixmaster attractor, Class. Quant. Grav. 25, 045014. arXiv:0710.0628.CrossRefGoogle Scholar
Lim, W.C., Deeley, R.J., andWainwright, J. (2006). Tilted Bianchi VII0 cosmologies – the radiation bifurcation, Class. Quant. Grav. 23, 3215. arXiv:gr-qc/0601040.CrossRefGoogle Scholar
Lim, W.C., Nilsson, U.S., and Wainwright, J. (2001). Anisotropic universes with isotropic cosmic microwave background radiation, Class. Quant. Grav. 18, 5583. arXiv:gr-qc/9912001.CrossRefGoogle Scholar
Lim, W.C., Uggla, C., and Wainwright, J.A. (2006). Asymptotic silence-breaking singularities, Class. Quant. Grav. 23, 2607. arXiv:gr-qc/0511139.CrossRefGoogle Scholar
Lin, X.-F. and Wald, R.M. (1991). Proof of the closed universe recollapse conjecture for general Bianchi IX cosmologies, Phys. Rev. D 41, 2444.CrossRefGoogle Scholar
Linde, A.D. (1986). Eternally existing self-reproducing chaotic inflationary universe, Phys. Lett. B 175, 395.CrossRefGoogle Scholar
Linde, A.D., (2007). Towards a gauge invariant volume-weighted probability measure for eternal inflation, J. Cosmol. Astropart. Phys. 0706, 017. arXiv:0705.1160.CrossRefGoogle Scholar
Linde, A.D., Linde, D., and Mezhlumian, A. (1995). Do we live in the center of the world?, Phys. Lett. B 345, 203. arXiv:hep-th/9411111.CrossRefGoogle Scholar
Linde, A.D., and Noorbala, M. (2010). Measure problem for eternal and non-eternal inflation, J. Cosmol. Astropart. Phys. 1009, 008. arXiv:1006.2170.CrossRefGoogle Scholar
Linde, A.D., Vanchurin, V., and Winitzki, S. (2009). Stationary measure in the multiverse, J. Cosmol. Astropart. Phys. 0901, 031. arXiv:0812.0005.CrossRefGoogle Scholar
Linder, E.V. (1998). Averaging inhomogeneous universes: volume, angle, line of sight. arXiv:astroph/9801122.
Linder, E.V. (2005). Cosmic growth history and expansion history, Phys. Rev. D 72, 043529. arXiv:astro-ph/0507263.CrossRefGoogle Scholar
Linder, E.V. (2010). Constraining models of dark energy. arXiv:1004.4646.
Lindquist, R.W. (1966). Relativistic transport theory, Ann. Phys. (N.Y.) 37, 487.CrossRefGoogle Scholar
Lindquist, R.W. and Wheeler, J.A. (1957). Dynamics of a lattice universe by a Schwarzschild shell method, Rev. Mod. Phys. 29, 432.CrossRefGoogle Scholar
Linet, B. (1985). The static metrics with cylindrical symmetry describing a model of cosmic strings, Gen. Rel. Grav. 17, 1109.CrossRefGoogle Scholar
Lu, T.H.-C. and Hellaby, C. (2007). Obtaining the spacetime metric from cosmological observations, Class. Quant. Grav. 24, 4107. arXiv:0705.1060.CrossRefGoogle Scholar
Luminet, J. (1978). Spatially homothetic cosmological models, Gen. Rel. Grav. 9, 673.CrossRefGoogle Scholar
Luminet, J., Weeks, J.R., Riazuelo, A., Lehoucq, R., and Uzan, J.P. (2003). Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background, Nature 425, 593.CrossRefGoogle ScholarPubMed
Luzzi, G., Shimon, M., Lamagna, L., Rephaeli, Y., De Petris, M.et al (2009). Redshift dependence of the CMB temperature from S-Z measurements, Astrophys. J. 705, 1122. arXiv:0909.2815.CrossRefGoogle Scholar
Lyth, D.H. and Liddle, A.R. (2009). The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Lyth, D.H. and Mukherjee, M. (1988). Fluid flow description of density irregularities in the universe, Phys. Rev. D 38, 485.CrossRefGoogle ScholarPubMed
Lyth, D.H. and Woszczyna, A. (1995). Large scale perturbations in the open universe, Phys. Rev. D 52, 3338. arXiv:astro-ph/9501044.CrossRefGoogle ScholarPubMed
Lyttleton, R. and Bondi, H. (1959). On the physical consequences of a general excess of charge, Proc. Roy. Soc. London A 252, 313.CrossRefGoogle Scholar
Ma, C.-P. and Bertschinger, E. (1995). Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455, 7. arXiv:astro-ph/9401007.CrossRefGoogle Scholar
Ma, P.K.-H. and Wainwright, J. (1994). A dynamical systems approach to the oscillatory singularity in Bianchi cosmologies, in Hobill|Burd and Coley (1994), p. 449. A previous version appeared in Relativity Today, ed. Z. Perjés (Nova Science, Commack), 1992, the Proceedings of the Third Hungarian Workshop.
Maartens, R. (1980). Idealised observations in relativistic cosmology, University of Cape Town PhD thesis.
Maartens, R. (1997). Linearization instability of gravity waves?, Phys. Rev. D 55, 463. arXiv:astro-ph/9609198.CrossRefGoogle Scholar
Maartens, R. (1998). Covariant velocity and density perturbations in quasi-Newtonian cosmologies, Phys. Rev. D 5812, 4006. arXiv:astro-ph/9808235.Google Scholar
Maartens, R. (2004). Brane-world gravity, Living Rev. Relativityhttp://relativity.livingreviews.org/Articles/lrr-2004-7/. arXiv:gr-qc/0312059.CrossRefGoogle ScholarPubMed
Maartens, R. and Bassett, B.A.C.C. (1998). Gravito-electromagnetism, Class. Quant. Grav. 15, 705. arXiv:gr-qc/9704059.CrossRefGoogle Scholar
Maartens, R., Ellis, G.F.R., and Siklos, S.T.C. (1997). Local freedom in the gravitational field, Class. Quant. Grav. 14, 1927. arXiv:gr-qc/9611003.CrossRefGoogle Scholar
Maartens, R., Ellis, G.F.R., and Stoeger, W.R. (1995a). Improved limits on anisotropy and inhomogeneity from the cosmic background radiation, Phys. Rev. D 51, 5942.CrossRefGoogle ScholarPubMed
Maartens, R., Ellis, G.F.R., and Stoeger, W.R. (1995b). Limits on anisotropy and inhomogeneity from the cosmic background radiation, Phys. Rev. D 51, 1525. arXiv:astro-ph/9501016.CrossRefGoogle ScholarPubMed
Maartens, R., Gebbie, T., and Ellis, G.F.R. (1999). Cosmic microwave background anisotropies: Nonlinear dynamics, Phys. Rev. D 59, 083506. arXiv:astro-ph/9808163.CrossRefGoogle Scholar
Maartens, R., Humphreys, N.P., Matravers, D.R., and Stoeger, W.R. (1996). Inhomogeneous universes in observational coordinates, Class. Quant. Grav. 13, 253. Erratum: Class. Quant. Grav. (1996) 13, 1689.CrossRefGoogle Scholar
Maartens, R. and Koyama, K. (2010). Brane-World gravity, Living Rev. Relativityhttp://relativity.livingreviews.org/Articles/lrr-2010-5/.arXiv:1004.3962.CrossRefGoogle ScholarPubMed
Maartens, R., Lesame, W.M., and Ellis, G.F.R. (1998). Newtonian-like and anti-Newtonian universes, Class. Quant. Grav. 15, 1005.CrossRefGoogle Scholar
Maartens, R. and Majerotto, E. (2006). Observational constraints on self-accelerating cosmology, Phys. Rev. D 74, 023004. arXiv:astro-ph/0603353.CrossRefGoogle Scholar
Maartens, R. and Matravers, D.R. (1994). Isotropic and semi-isotropic observations in cosmology, Class. Quant. Grav. 11, 2693.CrossRefGoogle Scholar
Maartens, R., Triginer, J., and Matravers, D.R. (1999). Stress effects in structure formation, Phys. Rev. D 60, 103503. arXiv:astro-ph/9901213.CrossRefGoogle Scholar
Maartens, R., Tsagas, C.G., and Ungarelli, C. (2001). Magnetized gravitational waves, Phys. Rev. D 63, 123507. arXiv:astro-ph/0101151.CrossRefGoogle Scholar
MacCallum, M.A.H. (1973). Cosmological models from the geometric point of view, in Cargese Lectures in Physics Vol. 6, ed. Schatzman, E. (Gordon and Breach, New York), p. 61.Google Scholar
MacCallum, M.A.H. (1979). Anisotropic and inhomogeneous relativistic cosmologies, in General Relativity: An Einstein Centenary Survey, ed. Hawking, S.W. and Israel, W. (Cambridge University Press, Cambridge), p. 533.Google Scholar
MacCallum, M.A.H. (1982). Relativistic cosmology for astrophysicists, in Origin and Evolution of the Galaxies, ed. Sabbata, V. (World Scientific, Singapore), p. 9. Also, in revised form, in Origin and Evolution of the Galaxies, (1983) ed. B.J.T. and J.E. Jones, volume 97 of Nato Advanced Study Institute Series, p. 9 (D.Reidel and Co., Dordrecht).Google Scholar
MacCallum, M.A.H. (1998). Integrability in tetrad formalisms and conservation in cosmology, in Current Topics in Mathematical Cosmology (Proceedings of the International Seminar), ed. Rainer, M. and Schmidt, H.-J. (World Scientific, Singapore), p. 133.Google Scholar
MacCallum, M.A.H. and Ellis, G.F.R. (1970). A class of homogeneous cosmological models II: observations, Commun. Math. Phys. 19, 31.CrossRefGoogle Scholar
MacCallum, M.A.H. and Taub, A.H. (1972). Variational principles and spatially homogeneous universes, including rotation, Commun. Math. Phys. 25, 173.CrossRefGoogle Scholar
Maciejewski, A.J. and Szydlowski, M. (1998). On the integrability of Bianchi cosmological models, J. Phys. A 31, 2031. arXiv:gr-qc/9702045.CrossRefGoogle Scholar
Madsen, M.S. and Ellis, G.F.R. (1988). Evolution of Ω in inflationary universes, Mon. Not. Roy. Astr. Soc. 234, 217.CrossRef
Magueijo, J. (2003). New varying speed of light theories, Rep. Prog. Phys 66, 2025. arXiv:astroph/0305457.CrossRefGoogle Scholar
Malik, K.A. and Wands, D. (2009). Cosmological perturbations, Phys. Rep. 475, 1. arXiv:0809.4944.CrossRefGoogle Scholar
Manasse, F.K. and Misner, C.W. (1963). Fermi normal coordinates and some basic concepts in differential geometry, J. Math. Phys. 4, 735.CrossRefGoogle Scholar
Mantz, A., Allen, S.W., Ebeling, H., and Rapetti, D. (2008). New constraints on dark energy from the observed growth of the most X-ray luminous galaxy clusters, Mon. Not. Roy. Astr. Soc. 387, 1179. arXiv:0709.4294.CrossRefGoogle Scholar
Marra, V., Kolb, E.W., and Matarrese, S. (2008). Light-cone averages in a Swiss-cheese universe, Phys. Rev. D 77, 023003. arXiv:0710.5505.CrossRefGoogle Scholar
Marra, V., Kolb, E.W., Matarrese, S., and Riotto, A. (2007). On cosmological observables in a Swisscheese universe, Phys. Rev. D 76, 123004. arXiv:0708.3622.CrossRefGoogle Scholar
Mars, M. (2001). On the uniqueness of the Einstein-Straus model, Class. Quant. Grav. 18, 3645.CrossRefGoogle Scholar
Mars, M. and Senovilla, J.M.M. (1993). Geometry of general hypersurfaces in spacetime – junction conditions, Class. Quant. Grav. 10, 1865.CrossRefGoogle Scholar
Marsden, J.E. (1982). Spaces of solutions of relativistic field theories with constraints, in Differential Geometric Methods in Mathematical Physics, volume 905 of Springer Lecture Notes in Mathematics (Springer, Berlin and Heidelberg), p. 29.CrossRefGoogle Scholar
Martin, J. and Brandenberger, R.H. (2001).Trans-Planckian problem of inflationary cosmology, Phys. Rev. D 63, 123501. arXiv:hep-th/0005209.CrossRefGoogle Scholar
Martín, J. and Senovilla, J.M.M. (1986). Petrov type D perfect-fluid solutions in generalized Kerr-Schild form, J. Math. Phys. 27, 2209. Erratum: J. Math. Phys., 27, 2209.CrossRefGoogle Scholar
Martin-Pascual, F. and Senovilla, J.M.M. (1988). Petrov types D and II perfect fluid solutions in generalized Kerr-Schild form, J. Math. Phys. 29, 937.CrossRefGoogle Scholar
Martineau, P. and Brandenberger, R.H. (2005). The effects of gravitational backreaction on cosmological perturbations, Phys. Rev. D 72, 023507. arXiv:astro-ph/0505236.CrossRefGoogle Scholar
Massey, R., Kitching, T., and Richard, J. (2010). The dark matter of gravitational lensing, Rep. Prog Phys. 73, 086901. arXiv:1001.1739.CrossRefGoogle Scholar
Massey, R., Rhodes, J., Ellis, R., Scoville, N., Leauthaud, A.et al. (2007). Dark matter maps reveal cosmic scaffolding, Nature 445, 286. arXiv:astro-ph/0701594.CrossRefGoogle ScholarPubMed
Mather, J.C., Cheng, E.S., Eplee, R.E. Jr.Isaacman, R.B., Meyer, S.S.et al. (1990). A preliminary measurement of the cosmic microwave background spectrum by the cosmic background explorer (COBE) satellite, Astrophys. J. 354, L37.CrossRefGoogle Scholar
Matravers, D.R. and Ellis, G.F.R. (1989). Evolution of anisotropies in Friedmann cosmologies, Class. Quant. Grav. 6, 369.CrossRefGoogle Scholar
Matravers, D.R., Madsen, M.S., and Vogel, D.L. (1985). The microwave background and (m, z) relations in a tilted cosmological model, Astrophys. Sp. Sci. 112, 193.CrossRefGoogle Scholar
Matravers, D.R., Vogel, D.L., and Madsen, M.S. (1984). Helium formation in a Bianchi V universe with tilt, Class. Quant. Grav. 1, 407.CrossRefGoogle Scholar
Mattsson, T. (2010). Dark energy as a mirage, Gen. Rel. Grav. 42, 567. arXiv:0711.4264.CrossRefGoogle Scholar
Matzner, R.A., Rothman, T., and Ellis, G.F.R. (1986). Conjecture on isotope production in the Bianchi cosmologies, Phys. Rev. D 34, 2926.CrossRefGoogle ScholarPubMed
Mavrides, S. (1977). Anomalous Hubble expansion and inhomogeneous cosmological models, Mon. Not. Roy. Astr. Soc. 177, 709.CrossRefGoogle Scholar
McAllister, L. and Silverstein, E. (2008). String cosmology: a review, Gen. Rel. Grav. 40, 565. arXiv:0710.2951.CrossRefGoogle Scholar
McClure, M.L. and Hellaby, C.W. (2008). Determining the metric of the cosmos: stability, accuracy, and consistency, Phys. Rev. D 78, 044005. arXiv:0709.0875.CrossRefGoogle Scholar
McCrea, W.H. (1935). Observable relations in relativistic cosmology. I, Zs. f. Astrophys. 9, 290.Google Scholar
McCrea, W.H. (1939). Observable relations in relativistic cosmology. II, Zs. f. Astrophys. 18, 98. Reprinted as Gen. Rel. Grav.30, 315 (1998).Google Scholar
McCrea, W.H. (1953). Cosmology, Rep. Prog. Phys. 16, 321.CrossRefGoogle Scholar
McCrea, W.H. (1960). The interpretation of cosmology, Nature 186, 1035.CrossRefGoogle Scholar
McCrea, W.H. (1970). A philosophy for big-bang cosmology, Nature 228, 21.CrossRefGoogle ScholarPubMed
McCrea, W.H. and Milne, E.A. (1934). Newtonian universes and the curvature of space, Q. J. Math. 5, 73.CrossRefGoogle Scholar
McGaugh, S.S., de Blok, W.J.G., Schombert, J.M., Kuzio de Naray, R., and Kim, J.H. (2007). The rotation velocity attributable to dark matter at intermediate radii in disk galaxies, Astrophys. J. 659, 149. arXiv:astro-ph/0612410.CrossRefGoogle Scholar
McLenaghan, R.G. and Sasse, F.D. (1996). Non-existence of Petrov type III space-times on which Weyl's neutrino or Maxwell's equations satisfy Huygens'principle, Ann. Inst. H. Poincaré 65, 253.Google Scholar
McVittie, G.C. (1933). The mass-particle in an expanding universe, Mon. Not. Roy. Astr. Soc. 93, 325.CrossRefGoogle Scholar
Mena, F.C. and MacCallum, M.A.H. (2002). Locally discretely isotropic space-times, in Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity, ed. Gurzadyan, V.G., Jantzen, R.T., and Ruffini, R. (World Scientific, Singapore), p. 1976.CrossRefGoogle Scholar
Mena, F.C.and Tavakol, R.K. (1999). Evolution of the density contrast in inhomogeneous dust models, Class. Quant. Grav. 16, 435.CrossRefGoogle Scholar
Mena, F.C., Tavakol, R.K., and Vera, R. (2002). Generalization of the Einstein-Strauss model to anisotropic settings, Phys. Rev. D 66, 044004.CrossRefGoogle Scholar
Meszaros, A. (1991). On shell crossing in the Tolman metric, Mon. Not. Roy. Astr. Soc. 253, 619.CrossRefGoogle Scholar
Meszaros, A. and Molner, Z. (1996). On the alternative origin of the dipole anisotropy of microwave background due to the Rees-Sciama effect, Astrophys. J. 470, 49.CrossRefGoogle Scholar
Meszaros, P. (1974). The behaviour of point masses in an expanding cosmological substratum, Astron. Astrophys. 37, 225.Google Scholar
Milne, E.A. (1934). A Newtonian expanding universe, Q. J. Math. 5, 64.CrossRefGoogle Scholar
Milne, E.A. (1935). Relativity Gravitation and World-Structure (Clarendon Press, Oxford).Google Scholar
Miralda-Escudé, J. (1996). The mass distribution in clusters of galaxies from weak and strong lensing, in Astrophysical Applications of Gravitational Lensing, ed. Kochanek, C.S. and Hewitt, J.N., volume 173 of IAU Symposium (Kluwer Academic Publishers, Dordrecht), p. 131. arXiv:astro-ph/9509077.CrossRefGoogle Scholar
Misner, C.W. (1967). Neutrino viscosity and the isotropy of primordial blackbody radiation, Phys. Rev. Lett. 19, 533.CrossRefGoogle Scholar
Misner, C.W. (1968). The isotropy of the universe, Astrophys. J. 151, 431.CrossRefGoogle Scholar
Misner, C.W. (1969a). Mixmaster universe, Phys. Rev. Lett. 22, 1071.CrossRefGoogle Scholar
Misner, C.W. (1969b). Quantum cosmology I, Phys. Rev. 186, 1319.CrossRefGoogle Scholar
Misner, C.W., Thorne, K.S., and Wheeler, J.A. (1973). Gravitation (W.H. Freeman and Co., San Francisco).Google Scholar
Mollerach, S. and Roulet, E. (2002). Gravitational Lensing and Microlensing (World Scientific, Singapore).CrossRefGoogle Scholar
Moniez, M. (2010). Microlensing as a probe of the galactic structure; 20 years of microlensing optical depth studies. p. 2047 in Jetzer, Mellier and Perlick (2010), arXiv:1001.2707.
Morganson, E., Marshall, P., Treu, T., Schrabback, T. and Blandford, R.D. (2010). Direct observation of cosmic strings via their strong gravitational lensing effect: II. Results from the HST/ACS image archive, Mon. Not. Roy. Astr. Soc. 406, 2452. arXiv:0908.0602.CrossRefGoogle Scholar
Moss, A., Zibin, J.P. and Scott, D. (2011). Precision cosmology defeats void models for acceleration, Phys. Rev. D 83, 103515. arXiv:1007.3725.CrossRefGoogle Scholar
Mota, B., Rebouças, M.J., and Tavakol, R. (2010). Circles-in-the-sky searches and observable cosmic topology in a flat universe, Phys. Rev. D 81, 103516. arXiv:1002.0834.CrossRefGoogle Scholar
Mukhanov, V.F. (2005). Cosmology (Cambridge University Press, Cambridge).Google Scholar
Mukhanov, V.F., Abramo, L.R., and Brandenberger, R.H. (1997). Backreaction problem for cosmological perturbations, Phys. Rev. Lett. 78, 1624.CrossRefGoogle Scholar
Mukhanov, V.F., Feldman, H.A., and Brandenberger, R.H. (1992). Theory of cosmological perturbations, Phys. Reports 215, 203.CrossRefGoogle Scholar
Mulryne, D.J., Tavakol, R., Lidsey, J.E., and Ellis, G.F.R. (2005). An emergent universe from a loop, Phys. Rev. D 71, 123512. See also M. Bojowald. (2005). Original Questions, Nature436, 920–921 (2005).CrossRefGoogle Scholar
Munitz, M.K. (1962). The logic of cosmology, Br. J. Phil. Sci. 13, 104.Google Scholar
Munitz, M.K. (1986). Cosmic Understanding: Philosophy and Science of the Universe (Princeton University Press, Princeton).Google Scholar
Mureika, J.R. and Dyer, C.C. (2004). Multifractal analysis of packed Swiss cheese cosmologies, Gen. Rel. Grav. 36, 151. arXiv:gr-qc/0505083.CrossRefGoogle Scholar
Murphy, M.T., Webb, J.K., and Flambaum, V.V. (2008). Revision of VLT/UVES constraints on a varying fine-structure constant, Mon. Not. Roy. Astr. Soc. 384, 1053.CrossRefGoogle Scholar
Mustapha, N., Bassett, B.A.C.C., Hellaby, C.W., and Ellis, G.F.R. (1998). The distortion of the area distance-redshift relation in inhomogeneous isotropic universes, Class. Quant. Grav. 15, 2363.CrossRefGoogle Scholar
Mustapha, N., Ellis, G.F.R., van Elst, H., and Marklund, M. (2000). Partially locally rotationally symmetric perfect fluid cosmologies I, Class. Quant. Grav. 17, 3135.CrossRefGoogle Scholar
Mustapha, N., Hellaby, C.W., and Ellis, G.F.R. (1999). Large-scale inhomogeneity versus source evolution: can we distinguish them observationally?, Mon. Not. Roy. Astr. Soc. 292, 817. arXiv:grqc/9808079.CrossRefGoogle Scholar
Nakahara, M. (1990). Geometry, Topology and Physics (Institute of Physics Publishing, Bristol).CrossRefGoogle Scholar
Nambu, Y. (2002). Backreaction and the effective Einstein equation for the universe with ideal fluid cosmological perturbations, Phys. Rev. D 65, 104013.CrossRefGoogle Scholar
Narlikar, J.V. (1963). Newtonian solutions with shear and rotation, Mon. Not. Roy. Astr. Soc. 126, 203.CrossRefGoogle Scholar
Nel, S.D. (1980). Observational Space-times, University of Cape Town PhD thesis.
Newman, R.P.A.C. (1979). Singular perturbations of the empty Robertson-Walker cosmologies, University of Kent PhD thesis.
Nicastro, F., Mathur, S., Elvis, M., Drake, J., Fang, T.et al. (2005). A mass measurement for the missing baryons in the warm-hot intergalactic medium via the X-ray forest, Nature 433, 495.CrossRefGoogle Scholar
Nilsson, U.S., Hancock, M.J., and Wainwright, J. (2000). Non-tilted Bianchi VII0 models - the radiation fluid, Class. Quant. Grav. 17, 3119. arXiv:gr-qc/9912019.CrossRefGoogle Scholar
Nilsson, U.S., Uggla, C.,Wainwright, J., and Lim, W.C. (1999). Analmost isotropic cosmic microwave temperature does not imply an almost isotropic universe, Astrophys. J. Lett. 522, L1. arXiv:astroph/9904252.CrossRefGoogle Scholar
Noerdlinger, P.D. and Petrosian, V. (1971). The effect of cosmological expansion on self-gravitating ensembles of particles, Astrophys. J. 168, 1.CrossRefGoogle Scholar
Nolan, B. (1993). Sources for McVittie mass particle in an expanding universe, J. Math. Phys. 34, 178.CrossRefGoogle Scholar
Nolan, B. (1999). A point mass in an isotropic universe: II. Global properties, Class. Quant. Grav. 16, 1227.CrossRefGoogle Scholar
Nolan, B.C. and Vera, R. (2005). Axially symmetric equilibrium regions of Friedmann-Lemaître-Robertson-Walker universes, Class. Quant. Grav. 22, 4031. arXiv:gr-qc/0505093.CrossRefGoogle Scholar
Nolan, B.C. and Vera, R. (2007). On global models for finite rotating objects in equilibrium in cosmological backgrounds, in Beyond General Relativity, Proceedings of the 2004 Spanish Relativity Meeting 2004 (ERE 2004), ed. Alonso-Alberca, N., E., Álvarez, T., Ortín, and M.A., Vázquez-Mozo, volume 119 of Colección de Estudios (Ediciones de la Universidad Autónoma de Madrid, Madrid). arXiv:gr-qc/0501074.Google Scholar
North, J.D. (1965). The Measure of the Universe (Oxford University Press, Oxford). Re-issued by Dover, New York, 1990 with new preface.Google Scholar
Norton, J. (1998). The cosmological woes of Newtonian theory, in The Expanding Worlds of General Relativity, ed. Goenner, H., Renn, J., Ritter, J., and Sauer, T., volume 7 of Einstein Studies (Birkhäuser, Basel and Boston), p. 271.Google Scholar
Notari, A. (2006). Late time failure of the Friedmann equation, Mod. Phys. Lett. A 21, 2997. arXiv:astro-ph/0503715.CrossRefGoogle Scholar
Nwankwo, A., Thompson, J. and Ishak, M. (2011). Luminosity distance and redshift in the Szekeres inhomogeneous cosmological models, J. Cosmol. Astropart. Phys. 1105, 028. arXiv:1005.2989.CrossRefGoogle Scholar
O'Brien, S. and Synge, J.L. (1952). Jump conditions at discontinuities in general relativity, Commun. Dublin Inst. Adv. Studies A 9, 1. Reprinted 1973.Google Scholar
Occhionero, F., Santangelo, P., and Vittorio, N. (1983). Holes in cosmology, Astron. Astrophys. 117, 365.Google Scholar
Oleson, M. (1971). A class of type [4] perfect fluid space-times, J. Math. Phys. 12, 666.CrossRefGoogle Scholar
Olive, K.A. (2010). The violent Universe: the Big Bang. arXiv:1005.3955.
Ozsváth, I. (1965). New homogeneous solutions of Einstein's field equations with incoherent matter obtained by a spinor technique, J. Math. Phys. 6, 590.CrossRefGoogle Scholar
Ozsváth, I. (1970). Dust-filled universes of class II and class III, J. Math. Phys. 11, 2871.CrossRefGoogle Scholar
Ozsváth, I. and Schucking, E. (1962). An anti-Mach metric, in Recent Developments in General Relativity (Pergamon Press and PWNWarsaw, Oxford), p. 339.Google Scholar
Padmanabhan, T. (1993). Structure Formation in the Universe (Cambridge University Press, Cambridge).Google Scholar
Padmanabhan, T., Seshadri, T.R., and Singh, T.P. (1989). Making inflation work – damping of density perturbations due to Planck energy cutoff, Phys. Rev. D 39, 2100.CrossRefGoogle ScholarPubMed
Page, D.N. (2003). Quantum cosmology, in Gibbons, Shellard and Rankin (2003).
Page, L., Hinshaw, G., Komatsu, E., Nolta, M.R., Spergel, D.N.et al. (2007). Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Polarization analysis, Astrophys. J. Supp. 170, 335. arXiv:astro-ph/0603450.CrossRefGoogle Scholar
Panek, M. (1992). Cosmic background radiation anisotropies from cosmic structures – Models based on the Tolman solution, Astrophys. J. 388, 225.CrossRefGoogle Scholar
Paoletti, D., Finelli, F., and Paci, F. (2009). The scalar, vector and tensor contributions of a stochastic background of magnetic fields to cosmic microwave background anisotropies, Mon. Not. Roy. Astr. Soc. 396, 523. arXiv:0811.0230.CrossRefGoogle Scholar
Paraficz, D. and Hjorth, J. (2010). The Hubble constant inferred from 18 time-delay lenses, Astrophys. J. 712, 1378. arXiv:1002.2570.CrossRefGoogle Scholar
Paranjape, A. and Singh, T.P. (2008). Explicit cosmological coarse graining via spatial averaging, Gen. Rel. Grav. 40, 139. arXiv:astro-ph/0609481.CrossRefGoogle Scholar
Pareja, M.J. and MacCallum, M.A.H. (2006). Local freedom in the gravitational field revisited, Class. Quant. Grav. 23, 5039. arXiv:gr-qc/0605075.CrossRefGoogle Scholar
Parry, J., Salopek, D.S., and Stewart, J.M. (1994). Solving the Hamilton-Jacobi equation for general relativity, Phys. Rev. D 49, 2872. arXiv:gr-qc/9310020.CrossRefGoogle ScholarPubMed
Peacock, J. (1999). Cosmological Physics (Cambridge University Press, Cambridge).Google Scholar
Peebles, P.J.E. (1968). Recombination of the primeval plasma, Astrophys. J. 153, 1.CrossRefGoogle Scholar
Peebles, P.J.E. (1971). Physical Cosmology (Princeton University Press, Princeton).Google Scholar
Peebles, P.J.E. (1980). The Large-scale Structure of the Universe (Princeton University Press, Princeton).Google Scholar
Peebles, P.J.E. (1982). Large-scale background temperature and mass fluctuations due to scaleinvariant primeval perturbations, Astrophys. J. Lett. 263, L1.CrossRefGoogle Scholar
Peebles, P.J.E. and Yu, J.T. (1970). Primeval adiabatic perturbation in an expanding universe, Astrophys. J. 162, 815.CrossRefGoogle Scholar
Peiris, H.V. and Easther, R. (2006). Recovering the inflationary potential and primordial power spectrum with a slow roll prior: methodology and application to WMAP three year data, J. Cosmol. Astropart. Phys. 0607, 002. arXiv:astro-ph/0603587.CrossRefGoogle Scholar
Pelavas, N. and Coley, A.A. (2006). Gravitational entropy in cosmological models, Int. J. Theor. Phys. 45, 1258. arXiv:gr-qc/0410008.CrossRefGoogle Scholar
Penrose, R. (1965). Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14, 579.CrossRefGoogle Scholar
Penrose, R. (1968). Structure of space-time, in Battelle rencontres 1967: Lectures in Mathematics and Physics, ed. DeWitt, C.M. and Wheeler, J.A. (W.A. Benjamin, New York), p. 121.Google Scholar
Penrose, R. (1989). Difficulties with inflationary cosmology, in 14th Texas Symposium on Relativistic Astrophysics, ed. Fergus, E.J. (Proc. New York Academy of Science, New York).Google Scholar
Penrose, R. (1999). The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford University Press, Oxford). Second edition.Google Scholar
Penrose, R. (2004). The Road to Reality: A Complete Guide to the Laws of the Universe (Jonathan Cape, London).Google Scholar
Penrose, R. (2006). Before the big bang: An outrageous new perspective and its implications. Proc. of EPAC 2006 (Edinburgh, Scotland), online at CERN|Geneva. http://accelconf.web.cern.ch/AccelConf/e06/.Google Scholar
Penrose, R. and Isham, C.J. (1986). Quantum Concepts in Space and Time (Oxford University Press, Oxford).Google Scholar
Penrose, R. and Rindler,W. (1984). Spinors and Space-time I: Two-spinor Calculus and Relativistic Fields (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Penrose, R. and Rindler, W. (1985). Spinors and Space-time II: Spinor and Twistor Methods in Space-time Geometry (Cambridge University Press, Cambridge).Google Scholar
Percival, W.J., Nichol, R.C., Eisenstein, D.J., Frieman, J.A., Fukugita, M.et al. (2007). The shape of the Sloan Digital Sky Survey Data Release 5 galaxy power spectrum, Astrophys. J. 657, 645. arXiv:astro-ph/0608636.CrossRefGoogle Scholar
Percival, W.J., Reid, B.A., Eisenstein, D.J., Bahcall, N.A., Budavari, T.et al (2010). Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample, Mon. Not. Roy. Astr. Soc. 401, 2148. arXiv:0907.1660.Google Scholar
Pereira, T.S., Pitrou, C., and Uzan, J.-P. (2007). Theory of cosmological perturbations in an anisotropic universe, J. Cosmol. Astropart. Phys. 0709, 006. arXiv:0707.0736.CrossRefGoogle Scholar
Peresetskii, A.A. (1977). Singularity of homogeneous Einstein metrics, Math. Notes X, 39.CrossRefGoogle Scholar
Perez, A., Sahlmann, H., and Sudarsky, D. (2006). On the quantum origin of the seeds of cosmic structure, Class. Quant. Grav. 23, 2317. arXiv:gr-qc/0508100.CrossRefGoogle Scholar
Perivolaropoulos, L. (2010). Consistency of ΛCDM with geometric and dynamical probes, J. Phys.: Conf. Series 222, 012024. arXiv:1002.3030.Google Scholar
Perlick, V. (2004). Gravitational lensing from a spacetime perspective, Living Rev. Relativityhttp://relativity.livingreviews.org/Articles/lrr-2004-9/.
Peter, P. and Uzan, J.-P. (2009). Primordial Cosmology (Oxford University Press, Oxford).Google Scholar
Petters, A.O., Levine, H., and Wambsganss, J. (2001). Singularity Theory and Gravitational Lensing, volume 21 of Progress in Mathematical Physics (Birkhäuser, Boston, U.S.A.).CrossRefGoogle Scholar
Petters, A.O. and Werner, M. (2010). Mathematics of gravitational lensing: multiple imaging and magnification. p. 2011 in Jetzer, Mellier and Perlick (2010), arXiv:0912.0490.Google Scholar
Pettini, M. (1999). Element abundances at high redshifts, in Chemical Evolution from Zero to High Redshift, ed. Walsh, J.R. and Rosa, M.R. (Springer-Verlag, Berlin). arXiv:astro-ph/9902173.Google Scholar
Pettini, M., Lipman, K., and Hunstead, R.W. (2005). Element abundances at high redshifts: The N/O ratio in a primeval galaxy. arXiv:astro-ph/9502077.
Pirani, F.A.E. (1956). On the physical significance of the Riemann tensor, Acta. Phys. Polon. 15, 389.Google Scholar
Pitrou, C. (2009). The radiative transfer at second order: a full treatment of the Boltzmann equation with polarization, Class. Quant. Grav. 26, 065006. arXiv:0809.3036.CrossRefGoogle Scholar
Pitrou, C. and Uzan, J.-P. (2007). Quantization of perturbations during inflation in the 1+3 covariant formalism, Phys. Rev. D 75, 087302. arXiv:gr-qc/0701121.CrossRefGoogle Scholar
Pogosian, L., Silvestri, A., Koyama, K., and Zhao, G.-B. (2010). How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations, Phys. Rev. D 81(10), 104023. arXiv:1002.2382.CrossRefGoogle Scholar
Polnarev, A.G. (1985). Polarization and anisotropy induced in the microwave background by cosmological gravitational waves, Sov. Astron. 29, 607.Google Scholar
Pontzen, A. (2009). Rogue's gallery: the full freedom of Bianchi CMB anomalies, Phys. Rev. D 79, 103518. arXiv:0901.2122.CrossRefGoogle Scholar
Pontzen, A. and Challinor, A. (2010). Linearization of homogeneous, nearly-isotropic cosmological models. arXiv:1009.3935.
Pullen, A.R. and Hirata, C.M. (2010). Non-detection of a statistically anisotropic power spectrum in large-scale structure, J. Cosmol. Astropart. Phys. 1005, 027. arXiv:1003.0673.CrossRefGoogle Scholar
Pyne, T. and Birkinshaw, M. (1996). Beyond the thin lens approximation, Astrophys. J. 458, 46Â 56.CrossRefGoogle Scholar
Raine, D.J. (1981). The Isotropic Universe (Adam Hilger, Bristol).Google Scholar
Raine, D.J. and Thomas, E.G. (1981). Large-scale inhomogeneity in the universe and the anisotropy of the microwave background, Mon. Not. Roy. Astr. Soc. 195, 649.CrossRefGoogle Scholar
Rainer, M. and Schmidt, H.J. (1995). Inhomogeneous cosmological models with homogeneous inner hypersurface geometry, Gen. Rel. Grav. 27, 1265.CrossRefGoogle Scholar
Räsänen, S. (2004). Dark energy from backreaction, J. Cosmol. Astropart. Phys. 0402, 003. arXiv:astro-ph/0311257.Google Scholar
Räsänen, S. (2008). Evaluating backreaction with the peak model of structure formation, J. Cosmol. Astropart. Phys. 0804, 026. arXiv:0801.2692.CrossRefGoogle Scholar
Räsänen, S. (2009). Relation between the isotropy of the CMB and the geometry of the universe, Phys. Rev. D 79, 123522. arXiv:0903.3013.CrossRefGoogle Scholar
Raychaudhuri, A.K. (1955). Relativistic cosmology I, Phys. Rev. 98, 1123.CrossRefGoogle Scholar
Raychaudhuri, A.K. and Modak, B. (1988). Cosmological inflation with arbitrary initial conditions, Class. Quant. Grav. 5, 225.CrossRefGoogle Scholar
Rees, M.J. (1968). Polarization and spectrum of the primeval radiation in an anisotropic universe, Astrophys. J. Lett. 153, L1.CrossRefGoogle Scholar
Rees, M.J. (1999). Just Six Numbers: The Deep Forces that Shape the Universe (Weidenfeld and Nicholson, London).Google Scholar
Rees, M.J. (2001). Our Cosmic Habitat (Princeton University Press, Princeton).Google Scholar
Rees, M.J. and Sciama, D.W. (1968). Large scale density inhomogeneities in the Universe, Nature 217, 511.CrossRefGoogle Scholar
Regis, M. and Clarkson, C.A. (2010). Do primordial Lithium abundances imply there's no dark energy? arXiv:1003.1043.
Reiterer, M. and Trubowitz, E. (2010). The BKL conjectures for spatially homogeneous spacetimes. arXiv:1005.4908.
Rendall, A.D. (1996). The initial singularity in solutions of the Einstein-Vlasov system of Bianchi type I, Class. Quant. Grav. 16, 1705.CrossRefGoogle Scholar
Rendall, A.D. (2004). Asymptotics of solutions of the Einstein equations with positive cosmological constant, Ann. Inst. H. Poincaré 5, 1041. arXiv:gr-qc/0312020.CrossRefGoogle Scholar
Rendall, A.D. and Tod, K.P. (1999). Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric, J. Math. Phys. 37, 438.CrossRefGoogle Scholar
Rendall, A.D. and Weaver, M. (2001). Manufacture of Gowdy spacetimes with spikes, Class. Quant. Grav. 18, 2959.CrossRefGoogle Scholar
Reyes, R., Mandelbaum, R., Seljak, U., Baldauf, T., Gunn, J.E.et al. (2010). Confirmation of general relativity on large scales from weak lensing and galaxy velocities, Nature 464, 256. arXiv:1003.2185.CrossRefGoogle ScholarPubMed
Riazuelo, A., Weeks, J., Uzan, J.-P., Lehoucq, R., and Luminet, J.-P. (2004). Cosmic microwave background anisotropies in multi-connected flat spaces, Phys. Rev. D 69, 103518. arXiv:astroph/0311314.Google Scholar
Ribeiro, M.B. (1992a). On modelling a relativistic hierarchical (fractal) cosmology by Tolman's spacetime. I. Theory, Astrophys. J. 388, 1.CrossRefGoogle Scholar
Ribeiro, M.B. (1992b). On modelling a relativistic hierarchical (fractal) cosmology by Tolman's spacetime. II. Analysis of the Einstein-de Sitter model, Astrophys. J. 395, 29.CrossRefGoogle Scholar
Ricci, G. and Levi-Civita, T. (1901). Méthodes de calcul differentiel absolu et leurs applications, Math. Ann. 54, 125.CrossRefGoogle Scholar
Rindler, W. (1956). Visual horizons in world models, Mon. Not. Roy. Astr. Soc. 116, 662.CrossRefGoogle Scholar
Rindler, W. (1977). Essential Relativity (2nd edition) (Springer, New York).CrossRefGoogle Scholar
Rindler, W. (2001). Relativity: Special, General, and Cosmological (Oxford University Press, Oxford).Google Scholar
Ringström, H. (2000). On the asymptotics of Bianchi class A spacetimes, Royal Institute of Technology, Stockholm, PhD thesis.
Ringström, H. (2003). Future asymptotic expansions of Bianchi VIII vacuum metrics, Class. Quant. Grav. 20, 1943. arXiv:gr-qc/0301101.CrossRefGoogle Scholar
Robertson, H.P. (1933). Relativistic cosmology, Rev. Mod. Phys. 5, 62.CrossRefGoogle Scholar
Röhr, N. and Uggla, C. (2005). Conformal regularization of Einstein's field equations, Class. Quant. Grav. 22, 3775.CrossRefGoogle Scholar
Rosenthal, E. and Flanagan, É.É. (2008). Cosmological backreaction and spatially averaged spatial curvature. arXiv:0809.2107.
Rosquist, K. (1980). Global rotation, Gen. Rel. Grav. 12, 649.CrossRefGoogle Scholar
Rosquist, K. and Uggla, C. (1991). Killing tensors in two-dimensional space-times with applications to cosmology, J. Math. Phys. 32, 3412.CrossRefGoogle Scholar
Rothman, T. and Ellis, G.F.R. (1986). Can inflation occur in anisotropic cosmologies?, Phys. Lett. B 180, 19.CrossRefGoogle Scholar
Rothman, T. and Matzner, R.A. (1984). Nucleosynthesis in anisotropic cosmologies revisited, Phys. Rev. D 30, 1649.CrossRefGoogle Scholar
Roukema, B.F., Bulinski, Z., Szaniewska, A., and Gaudin, N.E. (2008). The optimal phase of the generalised Poincaré dodecahedral space hypothesis implied by the spatial cross-correlation function of the WMAP sky maps, Astron. Astrophys. 486, 55. arXiv:0801.0006.CrossRefGoogle Scholar
Rovelli, C. (2004). Quantum Gravity (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Rudnick, L., Brown, S., and Williams, L.R. (2007). Extragalactic radio sources and the WMAP cold spot, Astrophys. J. 671, 40. arXiv:0704.0908.CrossRefGoogle Scholar
Ruiz, E. and Senovilla, J.M.M. (1992). General class of inhomogeneous perfect-fluid solutions, Phys. Rev. D 45, 1995.CrossRefGoogle ScholarPubMed
Ruiz-Lapuente, P. (2010). Dark Energy: Observational and Theoretical Approaches (Cambridge University Press, New York, NY).CrossRefGoogle Scholar
Russ, H., Soffel, M.H., Kasai, M., and Börner, G. (1997). Age of the universe: influence of the inhomogeneities on the global expansion factor, Phys. Rev. D 56, 2044.CrossRefGoogle Scholar
Ryan, M.P. and Shepley, L.C. (1975). Homogeneous Relativistic Cosmologies (Princeton University Press, Princeton).Google Scholar
Rykoff, E.S., Evrard, A.E., McKay, T.A., Becker, M.R., Johnston, D.E.et al. (2008). The LX-M relation of clusters of galaxies, Mon. Not. Roy. Astr. Soc. 387, L28. arXiv:0802.1069.CrossRefGoogle Scholar
Sachs, R.K. and Wolfe, A.M. (1967). Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147, 73.CrossRefGoogle Scholar
Sakagami, M. (1988). Evolution from pure states into mixed states in de-Sitter space, Prog. Theor. Phys. 79, 442.CrossRefGoogle Scholar
Salam, A. (1990). Unification of the Fundamental Forces (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Sandage, A. (1961). The ability of the 200-inch telescope to discriminate between selected world-models, Astrophys. J. 133, 355.CrossRefGoogle Scholar
Sandin, P. (2009). Tilted two-fluid Bianchi type I models, Gen. Rel. Grav. 41, 2707. arXiv:0901.0800.CrossRefGoogle Scholar
Sandin, P. and Uggla, C. (2010). Perfect fluids and generic spacelike singularities, Class. Quant. Grav. 27, 025013. arXiv:0908.0298.CrossRefGoogle Scholar
Sarkar, P., Yadav, J., Pandey, B. and Bharadwaj, S. (2009). The scale of homogeneity of the galaxy distribution in SDSS DR6, Mon. Not. Roy. Astr. Soc. 399, L128. arXiv:0906.3431.CrossRefGoogle Scholar
Sasaki, M. (1993). Cosmological gravitational lens equation – its validity and limitation, Prog. Theor. Phys. 90, 753.CrossRefGoogle Scholar
Sato, H. (1984). Voids in the expanding universe, in General Relativity and Gravitation: Proceedings of the 10th International Conference on General Relativity and Gravitation, ed. Bertotti, B., Felice, F., and Pascolini, A. (D. Reidel and Co., Dordrecht), p. 289.CrossRefGoogle Scholar
Schmidt, B.G. (1969). Discrete isotropies in a class of cosmological models., Commun. Math. Phys. 15, 329.CrossRefGoogle Scholar
Schneider, P., Ehlers, J., and Falco, E.E. (1992). Gravitational Lenses (Springer-Verlag, New York).Google Scholar
Schneider, P., Kochanek, C., and Wambsganss, J. (2006). Gravitational Lensing: Strong, Weak and Micro, volume 33 of Saas-Fee Advanced Course ed. Meylan, G., Jetzer, P. and North, P. (Springer, Berlin and Heidelberg).Google Scholar
Schouten, E. (1954). Ricci Calculus: An Introduction to Tensor Analysis and its Geometrical Applications (2nd edition), volume X of Die Grundlehren der Mathematischen Wissenschaften (Springer, Berlin).CrossRefGoogle Scholar
Schrödinger, E. (1956). Expanding Universe (Cambridge University Press, Cambridge).Google Scholar
Schucking, E. (1954). The Schwarzschild line element and the expansion of the universe (in German), Zs. f. Phys. 137, 595.Google Scholar
Schutz, B.F. (1980). Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Schutz, B.F. (2009). A First Course in General Relativity (2nd edition) (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Schwab, J., Bolton, A.S., and Rappaport, S.A. (2010). Galaxy-scale strong lensing tests of gravity and geometric cosmology: Constraints and systematic limitations, Astrophys. J. 708, 750. arXiv:0907.4992.CrossRefGoogle Scholar
Sciama, D.W. (1969). The Physical Foundations of General Relativity (Doubleday, New York).Google Scholar
Seitz, S., Schneider, P., and Ehlers, J. (1994). Light-propagation in arbitrary spacetimes and the gravitational lens approximation, Class. Quant. Grav. 11, 2345.CrossRefGoogle Scholar
Sekino, Y., Shenker, S., and Susskind, L. (2010). On the topological phases of eternal inflation, Phys. Rev. D 81, 123515. arXiv:1003.1347.CrossRefGoogle Scholar
Seljak, U. and Zaldarriaga, M. (1996). A line-of-sight integration approach to cosmic microwave background anisotropies, Astrophys. J. 469, 437. arXiv:astro-ph/9603033.CrossRefGoogle Scholar
Seljak, U. and Zaldarriaga, M. (1997). Signature of gravity waves in the polarization of the microwave background, Phys. Rev. Lett. 78, 2054. arXiv:astro-ph/9609169.CrossRefGoogle Scholar
Sen, N.R. (1934). On the stability of cosmological models, Zs. f. Astrophys. 9, 215. Reprinted in Gen. Rel. Grav.29, 1477–1488 (1997).Google Scholar
Senovilla, J.M.M. (1990). New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity, Phys. Rev. Lett. 64, 2219.CrossRefGoogle ScholarPubMed
Senovilla, J.M.M. (1998). Singularity theorems and their consequences, Gen. Rel. Grav. 30, 701.CrossRefGoogle Scholar
Senovilla, J.M.M. and Sopuerta, C.F. (1994). New G1 and G2 inhomogeneous cosmological models from the generalized Kerr-Schild transformation, Class. Quant. Grav. 11, 2073.CrossRefGoogle Scholar
Senovilla, J.M.M., Sopuerta, C.F., and Szekeres, P. (1998). Theorems on shear-free perfect fluids with their Newtonian analogues, Gen. Rel. Grav. 30, 389. arXiv:gr-qc/9702035.CrossRefGoogle Scholar
Sethi, S.K., Nath, B.B., and Subramanian, K. (2008). Primordial magnetic fields and formation of molecular hydrogen, Mon. Not. Roy. Astr. Soc. 387, 1589. arXiv:0804.3473.CrossRefGoogle Scholar
Shafieloo, A. and Clarkson, C.A. (2010). Model independent tests of the standard cosmological model, Phys. Rev. D 81, 083537. arXiv:0911.4858.CrossRefGoogle Scholar
Shan, H-Y., Qin, B., Fort, B., Tao, C., Wu, X.-P.et al. (2010). Offset between dark matter and ordinary matter: evidence from a sample of 38 lensing clusters of galaxies, Mon. Not. Roy. Astr. Soc. 406, 1134. arXiv:1004.1475.Google Scholar
Shapiro Key, J., Cornish, N.J., Spergel, D.N., and Starkman, G.D. (2007). Extending the WMAP bound on the size of the universe, Phys. Rev. D 75, 084034. arXiv:astro-ph/0604616.Google Scholar
Shikin, I.S. (1967). A uniform axisymmetrical cosmological model in the ultrarelativistic case, Dokl. Akad. nauk SSSR 176, 1048.Google Scholar
Shiromizu, T., Maeda, K.-I. and Sasaki, M. (2000). The Einstein equations on the 3-brane world, Phys. Rev. D 62, 024012. arXiv:gr-qc/9910076.CrossRefGoogle Scholar
Shoji, M., Jeong, D., and Komatsu, E. (2009). Extracting angular diameter distance and expansion rate of the Universe from two-dimensional galaxy power spectrum at high redshifts: Baryon Acoustic Oscillation fitting versus full modeling, Astrophys. J. 693, 1404. arXiv:0805.4238.CrossRefGoogle Scholar
Sigurdson, K. and Furlanetto, S.R. (2006). Measuring the primordial deuterium abundance during the cosmic dark ages, Phys. Rev. Lett. 97, 091301. arXiv:astro-ph/0505173.CrossRefGoogle ScholarPubMed
Siklos, S.T.C. (1976). Singularities, Invariants and Cosmology, University of Cambridge PhD thesis.
Siklos, S.T.C. (1981). Non-scalar singularities in spatially homogeneous cosmologies, Gen. Rel. Grav. 13, 433.CrossRefGoogle Scholar
Siklos, S.T.C. (1984). Einstein's equations and some cosmological solutions, in Relativistic Astrophysics and Cosmology (Proceedings of the XIVth GIFT International Seminar on Theoretical Physics), ed. Fustero, X. and Verdaguer, E. (World Scientific, Singapore), p. 201.Google Scholar
Silk, J. (1967). Fluctuations in the primordial fireball, Nature 215, 1155.CrossRefGoogle Scholar
Silk, J. (1968). Cosmic black-body radiation and galaxy formation, Astrophys. J. 151, 459.CrossRefGoogle Scholar
Silk, J. (1977). Large-scale inhomogeneity of the universe: spherically symmetric models, Astron. Astrophys. 59, 53.Google Scholar
Silk, J. (2008). The Infinite Cosmos: Questions from the Frontiers of Cosmology (Oxford University Press, New York).Google Scholar
Singh, P. (2008). Transcending big bang in loop quantum cosmology: Recent advances, J. Phys.: Conf. Ser. 140, 012005. arXiv:0901.1301.Google Scholar
Sintes, A.M. (1998). Kinematic self-similar locally rotationally symmetric models, Class. Quant. Grav. 15, 3689.CrossRefGoogle Scholar
Skordis, C. (2009). The tensor-vector-scalar theory and its cosmology, Class. Quant. Grav. 26, 143001. arXiv:0903.3602.CrossRefGoogle Scholar
Smarr, L. and York, J.W. Jr. (1978). Kinematical conditions in the construction of spacetime, Phys. Rev. D 17, 2529.CrossRefGoogle Scholar
Smith, M.S., Kawano, L.H., and Malaney, R.A. (1993). Experimental, computational, and observational analysis of primordial nucleosynthesis, Astrophys. J. Suppl. 85, 219.CrossRefGoogle Scholar
Smith, T.L. (2009). Testing gravity on kiloparsec scales with strong gravitational lenses. arXiv:0907.4829.
Sneddon, G.E. (1975). Hamiltonian cosmology: a further investigation, J. Phys. A 9, 229.CrossRefGoogle Scholar
Sollerman, J., Mörtsell, E., Davis, T.M., Blomqvist, M., Bassett, B.A.C.C. et al. (2009). First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova results: Constraints on non-standard cosmological models, Astrophys. J. 703, 1374. arXiv:0908.4276.CrossRefGoogle Scholar
Song, Y.-S., Peiris, H., and Hu, W. (2007). Cosmological constraints on f(R) acceleration models, Phys. Rev. D 76, 063517. arXiv:0706.2399.CrossRefGoogle Scholar
Sopuerta, C.F. (1998). Covariant study of a conjecture on shear-free barotropic perfect fluids, Class. Quant. Grav. 15, 1043.CrossRefGoogle Scholar
Sotiriou, T.P. and Faraoni, V. (2010). f(R) theories of gravity, Rev. Mod. Phys. 82, 451. arXiv:0805.1726.CrossRefGoogle Scholar
Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N. et al. (2005). Simulations of the formation, evolution and clustering of galaxies and quasars, Nature 435, 629. arXiv:astro-ph/0504097.CrossRefGoogle ScholarPubMed
Stabell, R. and Refsdal, S. (1966). Classification of general relativistic world models, Mon. Not. Roy. Astr. Soc. 132, 379.CrossRefGoogle Scholar
Starobinsky, A.A. (1983). Isotropization of arbitrary cosmological expansion given an effective cosmological constant, JETP Lett. 37, 66.Google Scholar
Starobinsky, A.A. (1985). Multicomponent de Sitter (inflationary) stages and the generation of perturbations, JETP Lett. 42, 152.Google Scholar
Steigman, G. (2006). Primordial nucleosynthesis:. Successes and challenges, Int. J. Mod. Phys. E 15, 1. arXiv:astro-ph/0511534.CrossRefGoogle Scholar
Steigman, G. (2010). Primordial nucleosynthesis after WMAP, in Chemical Abundances in the Universe: Connecting First Stars to Planets, ed. Cunha, K., Spite, M., and Barbuy, B., volume 265 of IAU Symposia (Cambridge University Press, Cambridge), p. 15.Google Scholar
Steinhardt, P.J. and Turok, N. (2002). Cosmic evolution in a cyclic universe, Phys. Rev. D 65, 126003. arXiv:hep-th/0111030.CrossRefGoogle Scholar
Stelmach, J. and Jakacka, I. (2006). Angular sizes in spherically symmetric Stephani cosmological models, Class. Quant. Grav. 23, 6621.CrossRefGoogle Scholar
Stephani, H. (1967). Konform flache gravitationsfelder, Commun. Math. Phys. 5, 337.CrossRefGoogle Scholar
Stephani, H. (1987). Some perfect fluid solutions of Einstein's field equations without symmetries, Class. Quant. Grav. 4, 125.CrossRefGoogle Scholar
Stephani, H. (2004). Relativity: An Introduction to Special and General Relativity (Cambridge University Press, Cambridge). Third edition, translated by Stewart, J.M..CrossRefGoogle Scholar
Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C.A., and Herlt, E. (2003). Exact Solutions of Einstein's Field Equations, Second edition (Cambridge University Press, Cambridge). Corrected paperback reprint, 2009.CrossRefGoogle Scholar
Stephani, H. and Wolf, T. (1985). Perfect fluid and vacuum solutions of Einstein's field equations with flat 3-dimensional slices, in Galaxies, Axisymmetric Systems and Relativity. Essays Presented to W.B. Bonnor on his 65th Birthday., ed. MacCallum, M.A.H. (Cambridge University Press, Cambridge), p. 275.Google Scholar
Stewart, J.M. (1971). Non-equilibrium Relativistic Kinetic Theory, volume 10 of Lecture Notes in Physics (Springer, Berlin and Heidelberg).CrossRefGoogle Scholar
Stewart, J.M. (1990). Perturbations of Friedmann-Robertson-Walker cosmological models, Class. Quant. Grav. 7, 1169.CrossRefGoogle Scholar
Stewart, J.M. (1994). Advanced General Relativity (Cambridge University Press, Cambridge). Paperback edition.Google Scholar
Stewart, J.M. and Ellis, G.F.R. (1968). On solutions of Einstein's equations for a fluid which exhibit local rotational symmetry, J. Math. Phys. 9, 1072.CrossRefGoogle Scholar
Stewart, J.M. and Walker, M. (1974). Perturbations of space-times in general relativity, Proc. Roy. Soc. London A 341, 49.CrossRefGoogle Scholar
Stoeger, W.R., Maartens, R., and Ellis, G.F.R. (1995). Proving almost-homogeneity of the universe: an almost Ehlers-Geren-Sachs theorem, Astrophys. J. 443, 1.CrossRefGoogle Scholar
Subramanian, K. (2010). Magnetic fields in the early Universe, Astron. Nachr. 331, 110. arXiv:0911.4771.CrossRefGoogle Scholar
Sultana, J. and Dyer, C.C. (2005). Cosmological black holes: A black hole in the Einstein-de Sitter universe, Gen. Rel. Grav. 37, 1347.CrossRefGoogle Scholar
Sun, C.-Y. (2011). Does the apparent horizon exist in the Sultana–Dyer space-time?, Commun. Math. Phys. 55, 597. arXiv:1004.1760.Google Scholar
Sung, R. and Coles, P. (2009). Polarized spots in anisotropic open universes, Class. Quant. Grav. 26, 172001. arXiv:0905.2307.CrossRefGoogle Scholar
Sunyaev, R.A. and Zel'dovich, Y.B. (1970). Small-scale fluctuations of relic radiation, Astrophys. Space Sci. 7, 3.Google Scholar
Susskind, L. (2005). The Cosmic Landscape: String Theory and the Illusion of Intelligent Design (Little Brown, New York).Google Scholar
Sussman, R.A. (1988). On spherically symmetric shear-free perfect fluid configurations (neutral and charged). III. Global view, J. Math. Phys. 29, 1177.CrossRefGoogle Scholar
Sussman, R.A. (2010a). Evolution of radial profiles in regular Lemaître-Tolman-Bondi dust models, Class. Quant. Grav. 27, 175001. arXiv:1005.0717.CrossRefGoogle Scholar
Sussman, R.A. (2010b). A new approach for doing theoretical and numeric work with Lemaître-Tolman-Bondi dust models. arXiv:1001.0904.
Sussman, R.A. and Izquierdo, G. (2011). A dynamical systems study of the inhomogeneous ∧CDM model, Class. Quant. Grav. 28, 045006. arXiv:1004.0773.CrossRefGoogle Scholar
Suto, Y., Sato, K., and Sato, H. (1984). Nonlinear evolution of negative density perturbations in a radiation-dominated universe, Prog. Theor. Phys. 72, 1137.CrossRefGoogle Scholar
Suyu, S.H., Marshall, P.J., Auger, M.W., Hilbert, S., Blandford, R.D. et al. (2010). Dissecting the gravitational lens B1608+656. II. Precision measurements of the Hubble constant, spatial curvature, and the dark energy equation of state, Astrophys. J. 711, 201.CrossRefGoogle Scholar
Sylos Labini, F., Vasilyev, N.L., Pietronero, L., and Baryshev, Y.V. (2009). Absence of self-averaging and of homogeneity in the large-scale galaxy distribution, Europhys. Lett. 86, 49001. arXiv:0805.1132.CrossRefGoogle Scholar
Synge, J.L. (1937). Relativistic hydrodynamics, Proc. Lond. Math. Soc. 43, 376.Google Scholar
Synge, J.L. (1971). Relativity: The General Theory (North-Holland, Amsterdam). Fourth printing.Google Scholar
Synge, J.L. and Schild, A. (1949). Tensor Calculus (University of Toronto Press, Toronto). Reprinted 1961.Google Scholar
Szafron, D.A. (1977). Inhomogeneous cosmologies: new exact solutions and their evolution, J. Math. Phys. 18, 1673.CrossRefGoogle Scholar
Szafron, D.A. and Collins, C.B. (1979). A new approach to inhomogeneous cosmologies: intrinsic symmetries II. Conformally flat slices and an invariant classification, J. Math. Phys. 20, 2354.CrossRefGoogle Scholar
Szczyryba, W. (1976). A symplectic structure of the set of Einstein metrics: a canonical formalism for general relativity, Commun. Math. Phys. 51, 163.CrossRefGoogle Scholar
Szekeres, P. (1971). Linearized gravitational theory in macroscopic media, Ann. Phys. (N.Y.) 64, 599.CrossRefGoogle Scholar
Szekeres, P. (1975). A class of inhomogeneous cosmological models, Commun. Math. Phys. 41, 55.CrossRefGoogle Scholar
Tanimoto, M., Moncrief, V., and Yasuno, K. (2003). Perturbations of spatially closed Bianchi III spacetimes, Class. Quant. Grav. 20, 1879. arXiv:gr-qc/0210078.CrossRefGoogle Scholar
Taub, A.H. (1951). Empty space-times admitting a three-parameter group of motions, Ann. Math. 53, 472. Reprinted as Gen. Rel. Grav.36, 2689-2719 (2004).CrossRefGoogle Scholar
Taub, A.H. (1971). Variational principles in general relativity, in Relativistic Fluid dynamics (C.I.M.E., Bressanone, 1970), ed. Cattaneo, C. (Edizioni Cremonese, Rome), p. 206.Google Scholar
Taub, A.H. (1980). Space-times with distribution-valued curvature tensors, J. Math. Phys. 21, 1423.CrossRefGoogle Scholar
Tegmark, M. (2003). Parallel universes, in Science and Ultimate Reality: From Quantum to Cosmos, ed. Barrow, J.D., Davies, P.C.W., and Harper, C. (Cambridge University Press, Cambridge). arXiv:astro-ph/0302131.Google Scholar
Tegmark, M. (2008). The mathematical universe, Found. Phys. 38, 101. arXiv:0704.0646.CrossRefGoogle Scholar
Tegmark, M., Aguirre, A., Rees, M.J., and Wilczek, F. (2006). Dimensionless constants, cosmology and other dark matters: Theory, Phys. Rev. D 73, 023505. arXiv:astro-ph/0511774.CrossRefGoogle Scholar
Tegmark, M., Blanton, M.R., Strauss, M.A., Hoyle, F., Schlegel, D.et al. (2004). The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey, Astrophys. J. 606, 702. arXiv:astro-ph/0310725.CrossRefGoogle Scholar
Tegmark, M., Vilenkin, A., and Pogosan, L. (2005). Anthropic predictions for neutrino masses, Phys. Rev. D 71, 103523. arXiv:astro-ph/0304536.CrossRefGoogle Scholar
Thiemann, T. (2007). Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Thomson (Lord Kelvin), W. (1862). On the age of the sun's heat, Macmillan's Magazine 5, 388.Google Scholar
Thorne, K.S. (1967). Primordial element formation, primordial magnetic fields and the isotropy of the universe, Astrophys. J. 148, 51.CrossRefGoogle Scholar
Thorne, K.S. (1980). Multipole expansions of gravitational radiation, Rev. Mod. Phys. 52, 299.CrossRefGoogle Scholar
Thorne, K.S. (1981). Relativistic radiative transfer – Moment formalisms, Mon. Not. Roy. Astr. Soc. 194, 439.CrossRefGoogle Scholar
Thurston, W.P. (1997). Three-dimensional Geometry and Topology (Princeton University Press, Princeton).CrossRefGoogle Scholar
Tipler, F.J., Clarke, C.J.S., and Ellis, G.F.R. (1980). Singularities and horizons: a review article, in General Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein, ed. Held, A., volume 2 (Plenum, New York), p. 97.Google Scholar
Titov, O. (2009). Systematic effects in the radio source proper motion, in 19th European VLBI for Geodesy and Astrometry Working Meeting, ed. Bourda, G., Charlot, P., and Collioud, A. (UniversitéBordeaux 1 - CNRS, Bordeaux), p. 14. arXiv:0906.4840.Google Scholar
Tod, K.P. (2002). Isotropic cosmological singularities, in The Conformal Structure of Space-time, ed. Frauendiener, J. and Friedrich, H., volume 604 of Lecture Notes in Phys (Springer, Berlin), p. 123.Google Scholar
Tolman, R. (1934). Effect of inhomogeneity on cosmological models, Proc. Nat. Acad. Sci. 20, 169. Reprinted in Gen. Rel. Grav., 29, 935-943 (1997).CrossRefGoogle ScholarPubMed
Tolman, R. and Ward, M. (1932). On the behaviour of non-static models of the universe when the cosmological constant is omitted, Phys. Rev. 39, 835.CrossRefGoogle Scholar
Tomita, K. (1968). Theoretical relations between observable quantities in an anisotropic and homogeneous universe, Prog. Theor. Phys. 40, 264.CrossRefGoogle Scholar
Tomita, K. (1978). Inhomogeneous cosmological models containing space-like and time-like singularities alternately, Prog. Theor. Phys. 59, 1150.CrossRefGoogle Scholar
Tomita, K. (1982). Tensor spherical and pseudo-spherical harmonics in four-dimensional spaces, Prog. Theor. Phys. 68, 310.CrossRefGoogle Scholar
Tomita, K. (2010). Gauge-invariant treatment of the integrated Sachs-Wolfe effect on general spherically symmetric spacetimes, Phys. Rev. D 81, 063509. arXiv:0912.4773.CrossRefGoogle Scholar
Torrence, R.J. and Couch, W.E. (1988). Note on Kantowski-Sachs spacetimes, Gen. Rel. Grav. 20, 603.CrossRefGoogle Scholar
Traschen, J. (1984). Causal cosmological perturbations and implications for the Sachs-Wolfe effect, Phys. Rev. D 29, 1563.CrossRefGoogle Scholar
Traschen, J. (1985). Constraints on stress-energy perturbations in general relativity, Phys. Rev. D 31, 283.CrossRefGoogle ScholarPubMed
Trautman, A. (1965). Foundations and current problems of general relativity, in Lectures on General Relativity, Vol. 1, Brandeis 1964 (Prentice-Hall, Englewood Cliffs, New Jersey).Google Scholar
Treciokas, R. (1972). Relativistic kinetic theory, University of Cambridge PhD thesis.
Treciokas, R. and Ellis, G.F.R. (1971). Isotropic solutions of the Einstein-Boltzmann equations, Commun. Math. Phys. 23, 1.CrossRefGoogle Scholar
Trümper, M. (1962). Beitrage zur Theorie der Gravitations-Strahlungsfelder, Akad. Wiss. Lit. Mainz, Abh. Mat.-Nat. Kl. 12.Google Scholar
Tsagas, C.G., Challinor, A., and Maartens, R. (2008). Relativistic cosmology and large-scale structure, Phys. Reports 465, 61. arXiv:0705.4397.CrossRefGoogle Scholar
Turok, N., Pen, U., and Seljak, U. (1998). Scalar, vector, and tensor contributions to CMB anisotropies from cosmic defects, Phys. Rev. D 58, 023506. arXiv:astro-ph/9706250.CrossRefGoogle Scholar
Uggla, C., van Elst, H., Wainwright, J., and Ellis, G.F.R. (2003). Past attractor in inhomogeneous cosmology, Phys. Rev. D 68, 103502. arXiv:gr-qc/0304002.CrossRefGoogle Scholar
Uggla, C. and von Zur-Muhlen, H. (1990). Compactified and reduced dynamics for locally rotationally symmetric Bianchi type IX perfect fluid models, Class. Quant. Grav. 7, 1365.CrossRefGoogle Scholar
Uzan, J.-P. (1998). Dynamics of relativistic interacting gases: from a kinetic to a fluid description, Class. Quant. Grav. 15, 1063. arXiv:gr-qc/9801108.CrossRefGoogle Scholar
Uzan, J.-P. (2003). The fundamental constants and their variation: observational status and theoretical motivations, Rev. Mod. Phys. 75, 403. arXiv:hep-ph/0205340.CrossRefGoogle Scholar
Uzan, J.-P., Clarkson, C.A., and Ellis, G.F.R. (2008). Time drift of cosmological redshifts as a test of the Copernican principle, Phys. Rev. Lett 100, 191303. arXiv:0801.0068.CrossRefGoogle ScholarPubMed
Uzan, J.-P., Lehoucq, R., and Luminet, J.-P. (2000). New developments in the search for the topology of the universe, Nucl. Phys. B: Proc. Suppl. 80. In Proceedings of the XIXth Texas meeting, ed. Aubourg, E., Montmerle, T., Paul, J. and Peter, P.. CD-Rom version, article-no: 04/25, arXiv:grqc/0005128.Google Scholar
Van den Bergh, N. (1988). Perfect-fluid models admitting a non-Abelian and maximal two-parameter group of isometries, Class. Quant. Grav. 5, 861.CrossRefGoogle Scholar
Van den Bergh, N. (1992). A qualitative discussion of the Wils inhomogeneous stiff fluid cosmologies, Class. Quant. Grav. 9, 2297.CrossRefGoogle Scholar
Van den Bergh, N. and Wylleman, L. (2004). Silent universes with a cosmological constant, Class. Quant. Grav. 21, 2291.CrossRefGoogle Scholar
van den Hoogen, J. (2009). A complete cosmological solution to the averaged Einstein field equations as found in macroscopic gravity, J. Math. Phys. 50, 082503. arXiv:0909.0070.CrossRefGoogle Scholar
van den Hoogen, R. and Olasagasti, I. (1999). Isotropization of scalar field Bianchi type-IX models with an exponential potential, Phys. Rev. D 59, 107302.CrossRefGoogle Scholar
van der Walt, P.J. and Bishop, N.T. (2010). Observational cosmology using characteristic numerical relativity, Phys. Rev. D 82, 084001. arXiv:1007.3189.CrossRefGoogle Scholar
van Elst, H. (1996). Extensions and applications of 1+3 decomposition methods in general relativistic cosmological modelling, Queen Mary and Westfield College, London, PhD thesis.
van Elst, H. and Ellis, G.F.R. (1996). The covariant approach to LRS perfect fluid spacetime geometries, Class. Quant. Grav. 13, 1099.CrossRefGoogle Scholar
van Elst, H. and Ellis, G.F.R. (1998). Quasi-Newtonian dust cosmologies, Class. Quant. Grav. 15, 3545. arXiv:gr-qc/9805087.CrossRefGoogle Scholar
van Elst, H. and Ellis, G.F.R. (1999). Causal propagation of geometrical fields in relativistic cosmology, Phys. Rev. D 59, 024013.Google Scholar
van Elst, H. and Uggla, C. (1997). General relativistic 1+3 orthonormal frame approach, Class. Quant. Grav. 14, 2673.CrossRefGoogle Scholar
van Elst, H., Uggla, C., and Wainwright, J. (2002). Dynamical systems approach to G2 cosmology, Class. Quant. Grav. 19, 51.CrossRefGoogle Scholar
van Oirschot, P., Kwan, J. and Lewis, G.F. (2010). Through the looking glass: Why the ‘cosmic horizon’ is not a horizon, Mon. Not. Roy. Astr. Soc. 404, 1633. arXiv:1001.4795.Google Scholar
Vanderveld, R.A., Flanagan, É.É., and Wasserman, I. (2006). Mimicking dark energy with Lemaître-Tolman-Bondi models: Weak central singularities and critical points, Phys. Rev. D 74, 023506. arXiv:astro-ph/0602476.CrossRefGoogle Scholar
Vanderveld, R.A., Flanagan, É.É., and Wasserman, I. (2007). Systematic corrections to the measured cosmological constant as a result of local inhomogeneity, Phys. Rev. D 76, 083504. arXiv:0706.1931.CrossRefGoogle Scholar
Vaudrevange, P.M. and Kofman, L. (2007). Trans-Planckian issue in the Milne Universe. arXiv:0706.0980.
Velden, T. (1997). Dynamics of pressure-free matter in general relativity. Diplomarbeit, University of Bielefeld.
Vilenkin, A. (1983). Gravitational field of vacuum domain walls, Phys. Lett. B 133, 177.CrossRefGoogle Scholar
Vilenkin, A. (2003). Quantum cosmology and eternal inflation, in Gibbons, Shellard and Rankin (2003).
Vilenkin, A. (2006). Many Worlds in One. The Search for Other Universes (Hill and Wang, New York).Google Scholar
Vonlanthen, M., Räsänen, S., and Durrer, R. (2010). Model-independent cosmological constraints from the CMB, J. Cosmol. Astropart. Phys. 8, 23. arXiv:1003.0810.CrossRefGoogle Scholar
Wagoner, R.V., Fowler, W.A., and Hoyle, F. (1967). On synthesis of elements at very high temperatures, Astrophys. J. 148, 3.CrossRefGoogle Scholar
Wainwright, J. (1974). Algebraically special fluid space-times with hypersurface-orthogonal shearfree rays, Int. J. Theor. Phys. 10, 39.CrossRefGoogle Scholar
Wainwright, J. (1977). Characterization of the Szekeres inhomogeneous cosmologies as algebraically special space-times, J. Math. Phys. 18, 672.CrossRefGoogle Scholar
Wainwright, J. (1979). A classification scheme for non-rotating inhomogeneous cosmologies, J. Phys. A 12, 2015.CrossRefGoogle Scholar
Wainwright, J. (1981). Exact spatially inhomogeneous cosmologies, J. Phys. A 14, 1131.CrossRefGoogle Scholar
Wainwright, J. (1983). A spatially homogeneous cosmological model with plane-wave singularity, Phys. Lett. A 99, 301.CrossRefGoogle Scholar
Wainwright, J. (1988). On the asymptotic states of orthogonal spatially homogeneous cosmologies, in Relativity Today. Proceedings of the Second Hungarian Relativity Workshop, ed. Perjes, Z. (World Scientific, Singapore), p. 237.Google Scholar
Wainwright, J. and Andrews, S. (2009). The dynamics of Lemaître–Tolman cosmologies, Class. Quant. Grav. 26, 085017.CrossRefGoogle Scholar
Wainwright, J., Coley, A.A., Ellis, G.F.R., and Hancock, M. (1998). On the isotropy of the universe: do Bianchi VIIh cosmologies isotropize?, Class. Quant. Grav. 15, 331.CrossRefGoogle Scholar
Wainwright, J. and Ellis, G.F.R. (1997). Dynamical Systems in Cosmology (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Wainwright, J. and Hsu, L. (1989). A dynamical systems approach to Bianchi cosmologies: orthogonal models of class A, Class. Quant. Grav. 6, 1409.CrossRefGoogle Scholar
Wainwright, J. and Lim, W.C. (2005). Cosmological models from a dynamical systems perspective, J. Hyper. Diff. Equat. 2, 437. arXiv:gr-qc/0409082.CrossRefGoogle Scholar
Wald, R.M. (1983). Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D 28, 2118.CrossRefGoogle Scholar
Wald, R.M. (1984). General Relativity (University of Chicago Press, Chicago).CrossRefGoogle Scholar
Wald, R.M. (1993). Correlations beyond the cosmological horizon, in The Origin of Structure in the Universe, ed. Gunzig, E. and Nardone, P., volume 393 of NATO ASI Series C (Kluwer, Dordrecht), p. 217.CrossRefGoogle Scholar
Wald, R.M. (1994). Quantum Field Theory in Curved Space-time and Black Hole Thermodynamics (University of Chicago Press, Chicago).Google Scholar
Wald, R.M. (2005). The arrow of time and the initial conditions for the universe. arXiv:gr-qc/0507094.
Wald, R.M. and Yip, P. (1981). On the existence of simultaneous coordinates in spacetimes with spacelike singularities, J. Math. Phys. 22, 2659.CrossRefGoogle Scholar
Walker, A.G. (1944). Completely symmetric spaces, J. Lond. Math. Soc. 19, 219.CrossRefGoogle Scholar
Walsh, D., Carswell, R.F., and Weymann, R. (1979). 0957 + 561 A, B – twin quasistellar objects or gravitational lens, Nature 279, 381.CrossRefGoogle ScholarPubMed
Wambsganss, J. (2001). Gravitational lensing in astronomy, Living Rev. Relativityhttp://relativity.livingreviews.org/Articles/lrr-1998-12/.
Wands, D., Malik, K., Lyth, D.H., and Liddle, A. (2000). A new approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D 62, 043527. astro-ph/0003278.CrossRefGoogle Scholar
Wang, A.-Z. (1992). Planar domain walls emitting and absorbing electromagnetic radiation, Phys. Rev. D 44, 1705.CrossRefGoogle Scholar
Weaver, M. (2000). Dynamics of magnetic Bianchi VI0 cosmologies, Class. Quant. Grav. 17, 421. arXiv:gr-qc/9909043.CrossRefGoogle Scholar
Weaver, M., Isenberg, J., and Berger, B.K. (1998). Mixmaster behaviour in inhomogeneous cosmological spacetimes, Phys. Rev. Lett. 80, 2984. arXiv:gr-qc/9712055.CrossRefGoogle Scholar
Weber, E. (1984). Kantowski-Sachs cosmological models approaching isotropy, J. Math. Phys. 25, 3279.CrossRefGoogle Scholar
Weber, E. (1985). Kantowski-Sachs cosmological models as big-bang models, J. Math. Phys. 26, 1308.CrossRefGoogle Scholar
Weeks, J. and Gundermann, J. (2007). Dodecahedral topology fails to explain quadrupole-octupole alignment, Class. Quant. Grav. 24, 1863.CrossRefGoogle Scholar
Weeks, J., Luminet, J.-P., Riazuelo, A., and Lehoucq, R. (2004). Well-proportioned universes suppress CMB quadrupole, Mon. Not. Roy. Astr. Soc. 352, 258. arXiv:astro-ph/0312312.CrossRefGoogle Scholar
Weinberg, S. (1972). Gravitation and Cosmology; Principles and Applications of the General Theory of Relativity (Wiley, New York).Google Scholar
Weinberg, S. (1976). Apparent luminosities in a locally inhomogeneous universe, Astrophys. J. 208, L1.CrossRefGoogle Scholar
Weinberg, S. (1989). The cosmological constant problem, Rev. Mod. Phys. 61, 1.CrossRefGoogle Scholar
Weinberg, S. (2000a). The cosmological constant problem. arXiv:astro-ph/0005265.
Weinberg, S. (2000b). A priori distribution of the cosmological constant, Phys. Rev. D 61, 103505. arXiv:astro-ph/0002387.CrossRefGoogle Scholar
Weinberg, S. (2007). Living in the multiverse, in Universe or Multiverse?, ed. Carr, B.J. (Cambridge University Press, Cambridge). arXiv:hep-th/0511037.Google Scholar
Weinberg, S. (2008). Cosmology (Oxford University Press, New York).Google Scholar
Weltmann, A., Murugan, J., and Ellis, G.F.R. (2010). Foundations of Space and Time: Reflections on Quantum Gravity (Cambridge University Press, Cambridge).Google Scholar
Wesson, P.S. (1978). General-relativistic hierarchical cosmology: an exact model, Astrophys. Space Sci. 54, 489.CrossRefGoogle Scholar
Wesson, P.S. (1979). Observable relations in an inhomogeneous self-similar cosmology, Astrophys. J. 228, 647.CrossRefGoogle Scholar
Wetterich, C. (2003). Can structure formation influence the cosmological evolution?, Phys. Rev. D 67, 043513.CrossRefGoogle Scholar
Wheeler, J.A. (1962). Geometrodynamics (Academic Press, New York).Google Scholar
White, S.D.M. (2007). Fundamentalist physics: why dark energy is bad for astronomy, Rep. Prog. Phys. 70, 883. arXiv:0704.2291.Google Scholar
Will, C.M. (2006). The confrontation between general relativity and experiment, Living Rev. Relativityhttp://relativity.livingreviews.org/Articles/lrr-2006-3/.
Wilson, M.L. (1983). On the anisotropy of the cosmological background matter and radiation distribution. II – The radiation anisotropy in models with negative spatial curvature, Astrophys. J. 273, 2.CrossRefGoogle Scholar
Wiltshire, D.L. (2007a). Cosmic clocks, cosmic variance and cosmic averages, New. J. Phys. 9, 377. arXiv:gr-qc/0702082.CrossRefGoogle Scholar
Wiltshire, D.L. (2007b). Exact solution to the averaging problem in cosmology, Phys. Rev. Lett. 99, 251101. arXiv:0709.0732.CrossRefGoogle ScholarPubMed
Wiltshire, D.L. (2008a). Cosmological equivalence principle and the weak-field limit, Phys. Rev. D 78, 084032. arXiv:0809.1183.CrossRefGoogle Scholar
Wiltshire, D.L. (2008b). Dark energy without dark energy, in Dark Matter in Astroparticle and Particle Physics: Proceedings of the 6th International Heidelberg Conference, ed. Klapdor-Kleingrothaus, H.V. and Lewis, G.F. (World Scientific, Singapore), p. 565. arXiv:0712.3984.CrossRefGoogle Scholar
Wiltshire, D.L. (2009). Average observational quantities in the timescape cosmology, Phys. Rev. D 80, 123512. arXiv:0909.0749.CrossRefGoogle Scholar
Wolf, J.A. (1972). Spaces of Constant Curvature (2nd edition) (J. A. Wolf, Berkeley).Google Scholar
Wright, E.L. (2007). Constraints on dark energy from supernovae, Gamma ray bursts, acoustic oscillations, nucleosynthesis and large scale structure and the Hubble constant, Astrophys. J. 664, 633. arXiv:astro-ph/0701584.CrossRefGoogle Scholar
Wu, Z.-C. (1981). Self-similar cosmological models, Gen. Rel. Grav. 13, 625.Google Scholar
Wylleman, L. (2006). Anti-Newtonian universes do not exist, Class. Quant. Grav. 23, 2727.CrossRefGoogle Scholar
Wylleman, L. and Van den Bergh, N. (2006). Complete classification of purely magnetic, non-rotating and non-accelerating perfect fluids, Phys. Rev. D 74, 084001.CrossRefGoogle Scholar
Wyman, M. (1946). Equations of state for radially symmetric distributions of matter, Phys. Rev. 70, 396.CrossRefGoogle Scholar
Wyman, M. (1976). Jeffery-Williams lecture 1976: Nonstatic radially symmetric distributions of matter, Can. Math. Bull. 19(3), 343.CrossRefGoogle Scholar
Yamamoto, K. and Suto, Y. (1999). Two-point correlation function of high-redshift objects: an explicit formulation on a light-cone hypersurface, Astrophys. J. 517, 1. arXiv:astro-ph/9812486.CrossRefGoogle Scholar
Yamazaki, D.G., Ichiki, K., Kajino, T., and Mathews, G.J. (2010). New constraints on the primordial magnetic field, Phys. Rev. D 81, 023008. arXiv:1001.2012.CrossRefGoogle Scholar
Yoo, C-M., Kai, T., and Nakao, K-I. (2008). Solving the inverse problem with inhomogeneous universes, Prog. Theor. Phys. 120, 937. arXiv:0807.0932.CrossRefGoogle Scholar
Yoo, J. (2010). General relativistic description of the observed galaxy power spectrum: Do we understand what we measure?, Phys. Rev. D 82, 083508. arXiv:1009.3021.CrossRefGoogle Scholar
Yoo, J., Fitzpatrick, A.L., and Zaldarriaga, M. (2009). New perspective on galaxy clustering as a cosmological probe: General relativistic effects, Phys. Rev. D 80, 083514. arXiv:0907.0707.CrossRefGoogle Scholar
Yoshimura, M. (1988). The universe as a laboratory for high energy physics, in Cosmology and Particle Physics, ed. Fang, L.-Z. and Zee, A. (Gordon and Breach, New York), p. 293.Google Scholar
Zalaletdinov, R.M. (1997). Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology, Bull. Astron. Soc. India 25, 401. arXiv:gr-qc/9703016.Google Scholar
Zalaletdinov, R.M., Tavakol, R.K., and Ellis, G.F.R. (1996). On general and restricted covariance in general relativity, Gen. Rel. Grav. 28, 1251.CrossRefGoogle Scholar
Zaldarriaga, M., Seljak, U., and Bertschinger, E. (1998). Integral solution for the microwave background anisotropies in nonflat universes, Astrophys. J. 494, 491. arXiv:astro-ph/9704265.CrossRefGoogle Scholar
Zatsepin, G.T. and Kuz'min, V.A. (1966). Upper limit of the spectrum of cosmic rays, JETP Lett. 4, 78.Google Scholar
Zeh, H.D. (1992). The Physical Basis of the Direction of Time (Springer Verlag, Berlin).CrossRefGoogle Scholar
Zel'dovich, Y.B. (1964). Observations in a universe homogeneous in the mean, Sov. Astr. 8, 13.Google Scholar
Zel'dovich, Y.B. (1970). The hypothesis of cosmological magnetic inhomogeneity, Sov. Astr. 13, 608.Google Scholar
Zel'dovich, Y.B. and Grishchuk, L.P. (1984). Structure and future of the ‘new’ universe, Mon. Not. Roy. Astr. Soc. 207, 23P.CrossRefGoogle Scholar
Zel'dovich, Y.B., Kurt, V.G., and Sunyaev, R.A. (1968). Recombination of hydrogen in the hot model of the Universe, Zh. Eksp. Teor. Fiz. 55, 278.Google Scholar
Zel'dovich, Y.B. and Sunyaev, R.A. (1969). The interaction of matter and radiation in a hot-model universe, Astrophys. Space Sci. 4, 301.CrossRefGoogle Scholar
Zhang, P., Liguori, M., Bean, R., and Dodelson, S. (2007). Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity, Phys. Rev. Lett. 99, 141302. arXiv:0704.1932.CrossRefGoogle ScholarPubMed
Zibin, J.P. (2008). Scalar perturbations on Lemaître-Tolman-Bondi spacetimes, Phys. Rev. D 78, 043504. arXiv:0804.1787.CrossRefGoogle Scholar
Zibin, J.P., Moss, A., and Scott, D. (2008). Can we avoid dark energy?, Phys. Rev. Lett. 101(25), 251303. 0809.3761.CrossRefGoogle ScholarPubMed
Zibin, J.P. and Scott, D. (2008). Gauging the cosmic microwave background, Phys. Rev. D 78, 123529. arXiv:0808.2047.CrossRefGoogle Scholar
Zuntz, J., Zlosnik, T.G., Bourliot, F., Ferreira, P.G., and Starkman, G.D. (2010). Vector field models of modified gravity and the dark sector, Phys. Rev. D 81, 104015. arXiv:1002.0849.CrossRefGoogle Scholar
Zwiebach, B. (2004). A First Course in String Theory (Cambridge University Press, Cambridge).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×