Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T14:24:12.206Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  21 March 2018

Pierre Y. Julien
Affiliation:
Colorado State University
Get access
Type
Chapter
Information
River Mechanics , pp. 453 - 492
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AASHTO (1982). Hydraulic analyses for the location and design of bridges. In Highway Drainage Guidelines, VII. Washington, DC: American Association State Highway and Transportation Officials.Google Scholar
Abbott, M. B. and Basco, D. R. (1989). Computational Fluid Dynamics. London: Addison-Wesley.Google Scholar
Abdullah, J. (2013). Distributed runoff simulation of extreme monsoon rainstorms in Malaysia using TREX. Ph.D. dissertation, Colorado State University, 226 p.Google Scholar
Abdullah, J. and Julien, P. Y. (2014). Distributed flood simulations on a small tropical watershed with the TREX Model. J. Flood Eng., 5(1–2), 1737.Google Scholar
Abdullah, J., Kim, J. and Julien, P. Y. (2013). Hydrologic modeling of extreme events. In Encyclopedia of Natural Resources. New York, NY: Taylor & Francis.Google Scholar
Abdullah, J., Muhammad, S. N., Julien, P. Y., Ariffin, J. and Shafie, A. (2016). Flood flow simulations and return period calculation for the Kota Tinggi watershed, Malaysia. J. Flood Risk Manag., DOI: 10.1111/jfr3.12256, 17.Google Scholar
Abes, L. M. (1991). Local scour around bridge piers in pressure flow. Ph.D. dissertation, Colorado State University, Fort Collins, CO, 303 p.Google Scholar
Ab. Ghani, A., Zakaria, N. A., Abdullah, R. and Ahamad, S. S., eds. (2004). Rivers ’04, Proc. 1st Intl. Conf. Manag. Rivers 21st Century: Issues and Chall. Penang, Malaysia, 667 p.Google Scholar
Ables, J. H. Jr. (1978). Filling and emptying system for Bay Springs Lock, Tennessee–Tombigbee Waterway, Mississippi. Tech. Rep. H-78-19, USACE, Waterways Exp. Station, Vicksburg, MS.Google Scholar
Abt, S. R. and Johnson, T. L. (1991). Riprap design for overtopping flow. J. Hyd. Eng., ASCE, 117(8), 959–72.CrossRefGoogle Scholar
Abt, S. R., Khattak, M. S., Nelson, J. D., et al. (1987). Development of riprap design criteria by riprap testing in flumes: phase I. NUREG/CR-4651 ORNL/TM-10100, Division of Waste Management, US Nuclear Regulatory Commission, Washington, DC, 111 p.Google Scholar
Abt, S. R., Peterson, M. R., Watson, C. C. and Hogan, S. A. (1992). Analysis of ARS low-drop grade-control structures. J. Hyd. Eng., ASCE, 118(10), 1424–34.Google Scholar
Abt, S. R., Wittler, R. J., Ruff, J. F., et al. (1988). Development of riprap design criteria by riprap testing in flumes: phase II. NUREG/CR-4651 ORNL/TM-10100/V2, Division of Waste Management, US Nuclear Regulatory Commission, Washington, DC, 84 p.Google Scholar
Ackers, P. and Charlton, F. G. (1970). Dimensional analysis of alluvial channels with special reference to meander length. J. Hyd. Res., IAHR, 8, 287314.CrossRefGoogle Scholar
Aguirre-Pe, J. and Fuentes, R. (1990). Resistance to flow in steep rough streams. J. Hyd. Eng., ASCE, 116(11), 1374–87.Google Scholar
Akalin, S. (2002). Water temperature effect on sand transport by size fraction in the Lower Mississippi River. Ph.D. dissertation, Colorado State University, Fort Collins, CO, 218 p.Google Scholar
Akashi, N. and Saitou, T. (1986). Influence of water surface on scour from vertical jets. J. Hydrosci. Hyd. Eng., Japan Soc. Civil Eng., 4 5569.Google Scholar
Albert, J. (2004). Hydraulic analysis and double mass curves of the Middle Rio Grande from Cochiti to San Marcial, New Mexico. M.S. thesis, Colorado State University, 207 p.Google Scholar
Albertson, M. L., Dai, Y. B., Jensen, R. A. and Rouse, H. (1950). Diffusion of submerged jets. Trans. ASCE, 115, 639–97.Google Scholar
Al-Mattarneh, H., Mohd Sidek, L. and Yusoff, M. Z., eds. (2008). Innovations in water resources and environmental engineering. In Proc. Intl. Conf. Const. Build. Tech. 2008. UPENA, UiTM, Shah Alam, Malaysia, 486 p.Google Scholar
Altinbilek, H. D. and Basmaci, Y. (1973). Localized scour at the downstream of outlet structures. In Proc. 11th Cong. Large Dams. Intl. Comm. Large Dams, 105–21.Google Scholar
Ambrose, R. B., Martin, J. L. and Wool, T. A. (1993). WASP5, A hydrodynamic and water quality model – model theory, user’s manual, and programmer’s guide. US Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Athens, GA.Google Scholar
An, S. D. (2011). Interflow dynamics and three-dimensional modeling of turbid density currents in Imha Reservoir, South Korea. Ph.D. dissertation, Colorado State University, 151 p.Google Scholar
An, S. D. and Julien, P. Y. (2014). Case-study: three-dimensional modeling of turbid density currents in Imha Reservoir, South Korea. J. Hyd. Eng., ASCE, 140(5), 15.Google Scholar
An, S. D., Julien, P. Y. and Venayagamoorthy, S. K. (2012). Numerical simulation of particle driven gravity currents. J. Env. Fluid Mech., 12(6), 495513.CrossRefGoogle Scholar
An, S. D., Ku, H. and Julien, P. Y. (2015). Numerical modelling of local scour caused by submerged jets. J. Sci. Tech., Maejo Intl., 9(3), 328–43.Google Scholar
Anctil, F., Rousselle, J. and Lauzon, N. (2012). Hydrologie, Cheminement de l’Eau, 2e Ed. Montreal: Presses Internationales Polytechnique, 391 p.Google Scholar
Anderson, A. G. (1967). On the development of stream meanders. In Proc. 12th Congress. IAHR, Delft, The Netherlands, 1, 370–8.Google Scholar
Annable, W. K., Watson, C. C. and Thompson, P. J. (2010). Quasi-equilibrium conditions of urban gravel-bed stream channels in Southern Ontario. River Res. App., 26, 124.Google Scholar
Annandale, G. W. (2006). Scour Technology. New York, NY: McGraw-Hill, 430 p.Google Scholar
Anthony, D. J. (1987). Stage dependent channel adjustments in a meandering river, Fall River, Colorado. M.S. thesis, Earth Res., Colorado State University, Fort Collins, CO, 180 p.Google Scholar
Anthony, D. J. (1992). Bedload transport and sorting in meander bends, Fall River, Rocky Mountain National Park, Colorado. Ph.D. dissertation, Earth Res., Colorado State University, Fort Collins, CO.Google Scholar
Anthony, D. J. and Harvey, M. D. (1991). Stage-dependent cross-section adjustments in a meandering reach of Fall River, Colorado. Geomorphology, 4, 187203.Google Scholar
Anthony, D. J., Harvey, M. D., Laronne, J. B. and Mosley, M. P., eds. (2001). Applying Geomorphology to Environmental Management. Highlands Ranch: Water Resource Publications, 484 p.Google Scholar
Arcement, G. K. and Schneider, V. R. (1984). Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. USGS Water Supply Paper 2339, US Geological Survey, Washington, DC.Google Scholar
ASCE Hydraulics (1998). Bank mechanics, and modeling of river width adjustment, river width adjustment. I: processes and mechanisms. J. Hyd. Eng., ASCE, 124(9), 881902.CrossRefGoogle Scholar
ASCE Hydraulics (1998). Bank mechanics, and modeling of river width adjustment, river width adjustment. II: modeling. J. Hyd. Eng., ASCE, 124(9), 903–17.Google Scholar
ASCE Manual of Practice 54 (1977). Sedimentation Engineering. Ed. Vanoni, V. A., New York, NY: ASCE.Google Scholar
ASCE Manual of Practice 110 (2008). Sedimentation engineering – processes, measurements, modeling and practice. In Task Committee to Update Manual 54. Ed. Garcia, M. H., New York, NY: ASCE, 1132 p.Google Scholar
ASCE Manual of Practice 124 (2013). Inland navigation, channel training works. In Task Committee on Inland Navigation. Ed. Pokrefke, T. J., New York, NY: ASCE, 186 p.Google Scholar
Ashmore, P. and Parker, G. (1983). Confluence scour in coarse braided streams. Wat. Res. Res., AGU, 19, 392402.Google Scholar
Ashton, G. D., ed. (1986). River and Lake Ice Engineering. Littleton: Water Resource Publications, 485 p.Google Scholar
Atlas, D. and Ulbrich, C. (1977). Path and area-integrated rainfall measurement by micro-wave attenuation in the 1–3 cm band. J. Appl. Meteorol., 16, 1322–31.Google Scholar
Bagnold, R. A. (1960). Some aspects of the shape of river meanders, physiographic and hydraulic studies of rivers. Professional Paper 282E, US Geological Survey, Washington, DC.Google Scholar
Baird, D. C., Fotherby, L., Klumpp, C. C. and Scurlock, S. M. (2015). Bank stabilization design guidelines. SRH-2015-25, US Bureau of Reclamation, Denver, 331 p.Google Scholar
Barkau, R. L. (1993). UNET – one dimensional unsteady flow through a full network of open channels. Rep. CPD-66, USACE, Hydrologic Engineering Center, Davis, CA.Google Scholar
Barry, J. M. (1997). Rising Tide, The Great Mississippi Flood of 1927 and How It Changed America. New York, NY: Simon and Schuster, 524 p.Google Scholar
Bastian, D. F. (1995). Grant’s Canal: The Union’s Attempt to By-Pass Vicksburg. Shippenburg, PA: Burd Street Press, 88 p.Google Scholar
Battjes, J. and Labeur, R. J. (2017). Unsteady Flow in Open Channels. Cambridge: Cambridge University Press.Google Scholar
Bauer, T. R. (2000). Morphology of the Middle Rio Grande from Bernalillo Bridge to the San Acacia Diversion Dam, NM. M.S. thesis, Civil Engineering, Colorado State University, 308 p.Google Scholar
Bauer, T., Leon, C., Richard, G. and Julien, P. Y. (2000). Middle Rio Grande, Bernalillo Bridge to San Acacia, hydraulic geometry, discharge and sediment data base and report. Civil Engineering, Colorado State University, Fort Collins, CO.Google Scholar
Begin, Z. B., Meyer, D. F. and Schumm, S. A. (1981). Development of longitudinal profiles of alluvial channels in response to base level lowering. E. Surf. Proc. Landf., 6, 4968.CrossRefGoogle Scholar
Beltaos, S., ed. (1995). River Ice Jams. Highlands Ranch, CO: Water Resource Publications, 372 p.Google Scholar
Bender, T. R. and Julien, P. Y. (2012). Bosque reach overbank flow analysis 1962–2002. Colorado State University Report for USBR, Albuquerque, NM, 175 p.Google Scholar
Bernard, R. S. and Schneider, M. L. (1992). Depth-averaged numerical modeling for curved channels. HL-92-9, USACE, Waterways Experiment Station, Vicksburg, MS.Google Scholar
Best, J. L. and Ashworth, P. J. (1997). Scour in large braided rivers and the recognition of sequence stratigraphic boundaries. Nature, 387, 275–7.Google Scholar
Bestgen, K. and Platania, S. (1991). Status and conservation of the Rio Grande silvery minnow, Hibognathus amarus. Southwest. Nat., 36, 225–32.Google Scholar
Bethemont, J. (1994). Enfoncement de lits fluviaux: processus naturels et impacts des activités humaines. Revue de Geographie de Lyon, 69, 103.Google Scholar
Bhowmik, N., Richardson, E. V. and Julien, P. Y. (2008). Daryl B. Simons – hydraulic engineer, researcher and educator. J. Hyd. Eng., ASCE, 134(3), 287–94.CrossRefGoogle Scholar
Biedenharn, D. S. (1995). Lower Mississippi River channel response: past present and future. Ph.D. dissertation, Civil Engineering, Colorado State University, Fort Collins, CO.Google Scholar
Biedenharn, D. S., Combs, P. G., Hill, G. J., Pinkard, C. F. Jr. and Pinkiston, C. B. (1989). Relationship between the channel migration and radius of curvature on the Red River. In Proc. Intl. Symp. Sed. Transp. Modeling. New York, NY: ASCE, 536–41.Google Scholar
Biedenharn, D. S., Elliott, C. M. and Watson, C. C. (1997). The WES stream investigation and streambank stabilization handbook. USACE, Waterways Exp. St., Vicksburg, 436 p.Google Scholar
Biedenharn, D. S., Thorne, C. R., Soar, P. J., Hey, R. D. and Watson, C. C. (2001). Effective discharge calculation guide. Intl. J. Sed. Res., 16(4), 445–59.Google Scholar
Blaisdell, F. W. and Anderson, C. L. (1989). Scour at cantilevered outlets: plunge pool energy dissipator design criteria. ARS-76, USDA, Agricultural Research Service, Washington, DC.Google Scholar
Bledsoe, B. P., Stein, E. D., Hawley, R. J. and Booth, D. (2012). Framework and tool for rapid assessment of stream susceptibility to hydromodification. J. AWRA, 48(4), 788808.Google Scholar
Blench, T. (1969). Mobile-Bed Fluviology. Edmonton: University of Alberta Press.Google Scholar
Blench, T. (1986). Mechanics of Plains River. Edmonton: Printing Service University of Alberta, 111 p.Google Scholar
Bley, P. A. and Moring, J. R. (1988). Freshwater and ocean survival of Atlantic salmon and steelhead: a synopsis. U.S. Fish and Wildlife Serv. Biol. Rep. 88(9), 22.Google Scholar
Bogardi, J. L. (1974). Sediment Transport in Alluvial Streams. Budapest: Akademiai Kiado.Google Scholar
Bols, P. (1978). The iso-erodent map of Java and Madura. Belgian technical assistance project ATA105, Soil Research Institute, Bogor.Google Scholar
Bondurant, D. C. (1963). Missouri River Division. Omaha, NE: USACE.Google Scholar
Bormann, N. E. (1988). Equilibrium local scour depth downstream of grade-control structures. Ph.D. dissertation, Civil Engineering, Colorado State University, 214 p.Google Scholar
Bormann, N. E. and Julien, P. Y. (1991). Scour downstream of grade-control structures. J. Hyd. Eng., ASCE, 117(5), 579–94.Google Scholar
Bos, M. G., ed. (1989). Discharge Measurement Structures. Pub. 20, Wageningen: International Institute for Land Reclamation and Improvement, 401 p.Google Scholar
Bounvilay, B. (2003). Transport velocities of bedload particles in rough open channel flows. Ph.D. dissertation, Civil Engineering, Colorado State University, 155 p.Google Scholar
Boyce, R. (1975). Sediment routing and sediment delivery ratios. In Present and Prospective Technology for Predicting Sediment Yields and Sources, USDA-ARS-S-40. US Department of Agriculture, Washington, DC, 61–5.Google Scholar
Bradley, J. B. (1984). Transition of a meandering river to a braided system due to high sediment concentration flows. In River Meandering. In Proc. Conf. River ’83. ASCE, 89–100.Google Scholar
Bragg, M. (1990). Historic Names and Places on the Lower Mississippi River. Vicksburg, MS: Mississippi River Commission, USACE, 282 p.Google Scholar
Brahms, A. (1753). Anfangsgründe der Deich und Wasserbaukunst, Zurich.Google Scholar
Bray, D. I. (1979). Estimating average velocity in gravel bed rivers. J. Hyd. Eng., ASCE, 105, 1103–22.Google Scholar
Bray, D. I. (1980). Evaluation of effective boundary roughness for gravel-bed rivers. Can. J. Civ. Eng., 7, 392–7.Google Scholar
Bray, D. I. (1982a). Flow resistance in gravel-bed rivers, Chap. 6. In Gravel-Bed Rivers. New York, NY: Wiley, 109–37.Google Scholar
Bray, D. I. (1982b). Flow resistance in gravel-bed rivers, Chap. 19. In Gravel-Bed Rivers. New York, NY: Wiley, 517–52.Google Scholar
Bray, D. I. (1991). Resistance to flow in gravel-bed rivers. Tech. Rep. HTD-91-1, CSCE Monographs: Desktop Series, 2. Canadian Society for Civil Engineering, Montreal, 95 p.Google Scholar
Breusers, H. N. C. (1967). Two-dimensional local scour in loose sediment. In Closure of Estuarine Channels in Tidal Regions. Delft: Delft Hydraulic Publications, 64.Google Scholar
Breusers, H. N. C., Nicolet, G. and Shen, H. W. (1977). Local scour around cylindrical piers. J. Hyd. Res., IAHR, 15, 211–52.Google Scholar
Breusers, H. N. C. and Raudkivi, A. J. (1991). Scouring. Rotterdam: Balkema, 143 p.Google Scholar
Briaud, J. L., Chen, H. C., Chang, K. A., et al. (2007). Establish guidance for soil properties-based prediction of meander migration rate. FHWA/TX-07/0-4378-1, Texas Transportation Institute, Texas Department of Transportation, 315 p.Google Scholar
Brice, J. C. (1981). Stability of relocated stream channels. FHWA/RD-80/158. Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Brice, J. C. (1982). Stream channel stability assessment. FHWA/RD-82/21, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Brice, J. C. (1984a). Assessment of channel stability at bridge sites. Transp. Res. Record, 2(950).Google Scholar
Brice, J. C. (1984b). Planform properties of meandering rivers. In River Meandering: Proc. Conf. Rivers ’83. New York, NY: ASCE.Google Scholar
Brice, J. C. and Blodgett, J. C. (1978). Countermeasures for hydraulic problems at bridges. FHWA/RD-78-162 & 163, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Brookes, A. and Shields, F. D. Jr., eds. (1996). River Channel Restoration. Chichester: Wiley, 433 p.Google Scholar
Brown, S. A. (1985a). Design of spur-type streambank stabilization structures. FHWA/RD-84-101, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Brown, S. A. (1985b). Streambank stabilization measures for highway stream crossings. FHWA-RD-80-160, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Brown, S. A. (1985c). Streambank stabilization measures for highway engineers. FHWA/RD-84-100, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Brown, S. A. and Clyde, E. S. (1989). Design of riprap revetment, Hydraulic Engineering Circular 11. FHWA/IP-89-016, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Brown, S. A., McQuivey, R. S. and Keefer, T. N. (1980). Stream channel degradation and aggradation: analysis of impacts to highway crossings. FHWA/RD-80-159, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Bruens, A. (2003). Entraining mud suspensions. Communications on Hydraulic and Geotechnical Engineering, Rep. 03-1, ISSN 0169-6548, TUD, Delft University of Technology, The Netherlands, 137 p.Google Scholar
Bunte, K. (1996). Analyses of the temporal variation of coarse bedload transport and its grain size distribution, Squaw Creek Montana. Gen. Tech. Rep. RM-GTR-288, USDA, Rocky Mountain Forest and Range Experiment Station, Fort Collins, 124 p.Google Scholar
Bunte, K., Swingle, K. W. and Abt, S. R. (2007). Guidelines for using bedload traps in coarse-bedded mountain streams: construction, installation, operation, and sample processing. Gen. Tech. Rep. RMRS-GTR-191, USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 91 p.Google Scholar
Burke, T. K. (1994). Datalink, a real-time data acquisition system for hydrologic modeling. M.S. thesis, Civil Engineering, Colorado State University, 257 p.Google Scholar
Burrows, R. L., Emmett, W. W. and Parks, B. (1981). Sediment transport in the Tanana River near Fairbanks, Alaska, 1977–79. USGS Water Resources Investigations 81-20, Anchorage, AK.Google Scholar
Buska, J. S., Chacho, E. F., Collins, C. M. and Gatto, L. W. (1984). Overview of Tanana River monitoring and research studies near Fairbanks, Alaska. USACE Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
Busnelli, M. M. (2001). Numerical simulation of free surface flows with steep gradients. Communications on Hydraulic and Geotechnical Engineering, Rep. 01-3, ISSN 0169-6548,TUD, Delft University of Technology, The Netherlands, 180 p.Google Scholar
Bussi, G., Frances, F., Montoya, J. J. and Julien, P. Y. (2014). Distributed sediment yield modelling: importance of initial sediment conditions. J. Env. Model. Software, 58, 5870.Google Scholar
Calder, I. R. (1992). Hydrologic effect of land-use change, Chap. 13. In Handbook of Hydrology. New York, NY: McGraw-Hill, 50 p.Google Scholar
Callander, R. A. (1969). Instability and river channels. J. Fluid Mech., CUP, 36, 465–80.Google Scholar
Callander, R. A. (1978). River meandering. Ann. Rev. Fluid Mech., 10, 129–58.Google Scholar
Campbell, C. S. and Ogden, M. (1999). Constructed Wetlands in the Sustainable Landscape. New York, NY: Wiley, 270 p.Google Scholar
Carstens, M. R. (1966). Similarity laws for localized scour. J. Hyd. Eng., ASCE, 92, 1336.Google Scholar
Carter, D. and Michel, B. (1971). Lois et mécanismes de l’apparente fracture fragile de la glace de rivière et de lac. Rep. S-22, Génie Civil, Université Laval, Québec.Google Scholar
Caruso, B. S., Cox, T. J., Runkel, R. L., et al. (2008). Metals fate and transport modelling in streams and watersheds: state-of-the-science and US-EPA workshop review. J. Hydrol. Proc., 22, 4011–21.Google Scholar
Cecen, K., Bayazit, M. and Sumer, M. (1969). Distribution of suspended matter and similarity criteria in settling basins. Proc. 13th Congress of the IAHR, Kyoto, Japan, Vol. 4, 215–25.Google Scholar
Cha, Y. K., Lee, J. S., Lee, D. C., et al. (2003). Coastal Engineering. Seoul: Saeron, 407 p.Google Scholar
Chabert, J. and Engeldinger, P. (1956). Étude des affouillements autour des piles de ponts. Chatou: Lab. National d’Hydraulique.Google Scholar
Chabert, J., Remillieux, M. and Spitz, I. (1962). Correction des rivières par panneaux de fond. Bull. Centre Rech. D’Essais de Chatou, France, Sér. A, 1, 4963.Google Scholar
Chang, H. H. (1979a). Geometry of rivers in regime. J. Hyd. Eng., ASCE, 105, 691706.Google Scholar
Chang, H. H. (1979b). Minimum stream power and river channel patterns. J. Hydrol., 41, 303.Google Scholar
Chang, H. H. (1980). Stable alluvial canal design. J. Hyd. Eng., ASCE, 106, 873–91.Google Scholar
Chang, H. H. (1984). Analysis of river meanders. J. Hyd. Eng., ASCE, 110, 3750.CrossRefGoogle Scholar
Chang, H. H. (1988). Fluvial Processes in River Engineering. New York, NY: Wiley.Google Scholar
Chang, H. H. (2006). Generalized Computer Program FLUVIAL-12 Mathematical Model for Erodible Channels – User’s Manual. San Diego, CA: Chang Consultants, 66 p.Google Scholar
Chapra, S. C. (1997). Surface Water-Quality Modeling. New York, NY: McGraw-Hill, 844 p.Google Scholar
Charlton, F. G. (1982). River stabilization and training in gravel-bed rivers, Chap. 23. In Gravel-Bed Rivers, New York, NY: Wiley, 635–57.Google Scholar
Chaudhry, M. H. (2008). Open-Channel Flow, 2nd ed. New York, NY: Springer, 523 p.Google Scholar
Chauvin, J. L. (1962). Similitude des modèles de cours d’eau à fond mobile. Bull. Centre Rech. d’Essais de Chatou, France, Sér. A, 1, 6491.Google Scholar
Chee, S. P. and Yuen, E. M. (1985). Erosion of unconsolidated gravel beds. Can. J. Civ. Eng., 12, 559–66.Google Scholar
Chen, C. L. (1976). Flow resistance in broad shallow grassed channels. J. Hyd. Eng., ASCE, 102, 307–22.Google Scholar
Chen, Y. H. and Nordin, C. F. (1976). Temperature effects in the transition from dunes to plane bed. Missouri River Division Sediment Series 14, USACE, Omaha, NE, 37 p.Google Scholar
Cheng, N. S. (2015). Resistance coefficients for artificial and natural coarse-bed channels: alternative approach for large scale roughness. J. Hyd. Eng., ASCE, 141(2), 515–29.Google Scholar
Chien, N. (1954). Meyer–Peter formula for bedload transport and Einstein bedload function. Rep. 7, Institute of Engineering Research, University of California, Berkeley, CA.Google Scholar
Chien, N. (1957). A concept of the regime theory. Trans. ASCE, 122, 785–93.Google Scholar
Chiew, Y. M. (1990). Mechanics of local scour depth at submarine pipelines. J. Hyd. Eng., ASCE, 116, 515–29.Google Scholar
Chiew, Y. M. (1991). Prediction of maximum scour depth at submarine pipelines. J. Hyd. Eng., ASCE, 117, 452–66.Google Scholar
Chinnarasri, C., Kositgittiwong, D. and Julien, P. Y. (2012). Model of flow over spillways by computational fluid dynamics. In Proc. Inst. Civil Eng., Paper 1200034, 12 p.Google Scholar
Chitale, S. V. (1970). River channel patterns. J. Hyd. Eng., ASCE, 96, 201–21.Google Scholar
Chitale, S. V. (1973). Theory and relationship of river channel patterns. J. Hydrol., 19, 285308.Google Scholar
Choi, G. W. (1991). Hydrodynamic network simulation through channel junctions. Ph.D. dissertation, Civil Engineering, Colorado State University, 220 p.Google Scholar
Chow, V. T. (1959). Open-Channel Hydraulics. New York, NY: McGraw-Hill, 680 p.Google Scholar
Churchill, M. A., Elmore, H. L. and Buckingham, R. A. (1962). Prediction of stream reaeration rates. J. Sanitary Eng. Div., ASCE, 88(SA4), 146, Paper 3199.Google Scholar
Clements, W. (2004). Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community responses. Ecol. Appl., 14(3), 954–67.Google Scholar
Cline, T. J. (1988). Development of a watershed information system for HEC-1 with applications to Macks Creek, Idaho. M.S. thesis, Civil Engineering, Colorado State University, 238 p.Google Scholar
Cline, T. J., Molinas, A. and Julien, P. Y. (1989). An Auto-CAD-based watershed information system for the hydrologic model HEC-1. Wat. Res. Bull., AWRA, 25(3), 641–52.Google Scholar
Combs, P. G. (1994). Prediction of the loop rating curve in alluvial rivers. Ph.D. dissertation, Civil Engineering, Colorado State University, Fort Collins, CO.Google Scholar
Cooper, K. (2011). Evaluation of the relationship between the RUSLE R-factor and the mean annual precipitation. M.S. technical report, Civil Engineering, Colorado State University, 37 p.Google Scholar
Copeland, R. R. and Thomas, W. A. (1989). Corte Madera Creek sedimentation study: numerical model investigation. Tech. Rep. HL-89-6, USACE, Waterways Exp. Station, Vicksburg, MS.Google Scholar
Cowley, D. E., Shirey, P. D. and Hatch, M. D. (2006). Ecology of the Rio Grande silvery minnow (Cyprinidae: Hybognathus amarus) inferred from specimens collected in 1874. Rev. Fisheries Science, 14, 111–25.Google Scholar
Cox, A. L., Thornton, C. I. and Abt, S. R. (2014). Articulated concrete block stability assessment for embankment-overtopping conditions. J. Hyd. Eng., ASCE, 140(5), 7.Google Scholar
Creager, W. P., Justin, J. D. and Hinds, J. (1945). General Design, Vol. 1. Engineering Dams Series, New York, NY: Wiley.Google Scholar
Cunge, J. A. (1969). On the subject of a flood propagation computation method (Muskingum method). J. Hyd. Res., IAHR, 7, 205–30.Google Scholar
CURTAW (1991). Guide for the Design of River Dikes, Vol. 1 – Upper River Area. ISBN 90 376 00 11 5, Gouda, The Netherlands, 208 p.Google Scholar
CWPRS (2008). Guidelines for operation of desilting basins. Ministry of Water Resources, Government of India, Pune, 22 p.Google Scholar
D’Aoust, S. G. and Millar, R. G. (2000). Stability of ballasted woody debris habitat structures. J. Hyd. Eng., ASCE, 126(11), 810–17.Google Scholar
Dawod, A. M. (1986). Modeling of soil erosion using rainfall volume (for engineering and planning application). Ph.D. dissertation, Colorado State University, 135 p.Google Scholar
Dawod, A. M. and Julien, P. Y. (1987). On predicting upland erosion losses from rainfall depth Part 2: field applications in Iraq. J. Stoch. Hydrol. Hyd., 1, 135–40.Google Scholar
Delft Hydraulics (1996). Case: gravity based structure. Rep. Q 2225, Delft Hydraulics, Delft, The Netherlands.Google Scholar
Derbyshire, K. (2006). Fisheries guidelines for fish-friendly structures. Fish Habitat Department of Primary Industries and Fisheries, Guideline FHG 006, Queensland Government, 64 p.Google Scholar
Derrick, D. L. (1997). Harland Creek Bendway Weir/Willow post bank stabilization demonstration project. In Proc. Conf. Manag. Landscapes Disturbed by Channel Incision. Oxford, MS.Google Scholar
Derrick, D. L., Pokrefke, T. J., Boyd, M. B., Crutchfield, J. P. and Henderson, R. R. (1994). Design and development of bendway weirs for the Dogtooth Bend Reach, Mississippi River. HL-94-10, USACE, Waterways Experiment Station, Vicksburg, MS, 104 p.Google Scholar
Derruau, M. (1972). Les Formes du Relief Terrestre. Paris: Masson et Cie, 120 p.Google Scholar
de Vriend, H. J. (1976). A mathematical model of steady flow in curved open shallow channels. Rep. 76-1, Civil Engineering, University of Technology, Delft, The Netherlands.Google Scholar
de Vriend, H. J. (1977). A mathematical model of steady flow in curved shallow channels. J. Hyd. Res., IAHR, 15, 3753.Google Scholar
de Vries, M. (1973). Application of physical and mathematical models for river problems. DHL Pub. 112, Delft Hydraulics, The Netherlands.Google Scholar
DID (2009). River Management, DID Manual. Vol. 2, Department of Irrigation and Drainage, Government of Malaysia, Kulala Lumpur, Malaysia, 612 p.Google Scholar
Di Toro, D. M. (2001). Sediment Flux Modeling. New York, NY: Wiley, 624 p.Google Scholar
Doe, W. W. III (1992). Simulation of the spatial and temporal effects of army maneuvers on watershed response. Ph.D. dissertation, Civil Engineering, Colorado State University, 301 p.Google Scholar
Doe, W., Saghafian, B. and Julien, P. Y. III (1996). Land use impact on watershed response: the integration of two dimensional hydrologic modelling and Geographic Information Systems. J. Hydrol. Proc., 10, 1503–11.Google Scholar
Doehring, F. K. and Abt, S. R. (1994). Drop height influence on outlet scour. J. Hyd. Eng., ASCE, 120, 1470–6.Google Scholar
Duan, J. G. (2001). Simulation of streambank erosion processes with a two-dimensional numerical model, Chap. 13. In Landscape Erosion and Evolution Modeling, New York, NY: Kluwer Academic/Plenum Publishers, 389427.Google Scholar
Duan, J. G. and Julien, P. Y. (2005). Numerical simulation of the inception of channel meandering. Earth Surf. Proc. Landforms, 30, 1093–110.Google Scholar
Duan, J. G. and Julien, P. Y. (2010). Numerical simulation of meandering evolution. J. Hydrol., 391, 3446.Google Scholar
Dudley, R. K. and Platania, S. P. (1997). Habitat use of Rio Grande silvery minnow. Report to the New Mexico Department of Game and Fish, Santa Fe, and USBR, Albuquerque, NM, 96 p.Google Scholar
Einstein, A. (1926). Die Ursache der Mäanderbildung der Flussläufe und des sogenannten Baerschen Gesetzes, Naturwissenschaften, 11.Google Scholar
Einstein, H. A. and Chien, N. (1955). Effect of heavy sediment concentration near the bed on velocity and sediment distribution. MRD Series No. 8. University of California Institute of Engineering Research and USACE Missouri River Div., Omaha, Nebraska.Google Scholar
Elliott, C. M., ed. (1984). River Meandering Proceedings of the Conference Rivers ’83. New York, NY: ASCE.Google Scholar
Engelund, F. (1970). Instability of erodible beds. J. Fluid Mech., CUP, 42, 225–44.Google Scholar
Engelund, F. (1974). Flow and bed topography in channel bends. J. Hyd. Div., ASCE, 100, 1631–48.Google Scholar
Engelund, F. and Skovgaard, O. (1973). On the origin of meandering and braiding in alluvial streams. J. Fluid Mech., CUP, 57, 289302.Google Scholar
England, J. F. Jr. (2006). Frequency analysis and two-dimensional simulations of extreme floods on a large watershed. Ph.D. dissertation, Civil Engineering, Colorado State University, 237 p.Google Scholar
England, J. F. Jr., Godaire, J. E., Klinger, R. E., Bauer, T. R. and Julien, P. Y. (2010). Paleohydrologic bounds and extreme flood frequency of the Upper Arkansas River, Colorado, USA. J. Geomorphol., 124, 116.Google Scholar
England, J. F., Julien, P. Y. and Velleux, M. L. (2014). Physically-based extreme flood frequency analysis using stochastic storm transposition and paleoflood data. J. Hydrol., 510, 228–45.Google Scholar
England, J. F. Jr., Velleux, M. L. and Julien, P. Y. (2007). Two-dimensional simulations of extreme floods on a large watershed. J. Hydrol., 347(1–2), 22941.Google Scholar
EPA (1997). EPA’s National hardrock mining framework. EPA Rep. 833-B-97-003, Washington, DC.Google Scholar
EPA and USACE (1998). Evaluation of dredged material proposed for discharge in waters of the U.S. – testing manual. EPA-823-B-98-004, Washington, DC, 87 p.Google Scholar
Ettema, R. (1980). Scour at bridge piers. Rep. 216, The University of Auckland, New Zealand.Google Scholar
Ettema, R. (2008). Ice effects on sediment transport in rivers, Chap. 13. In ASCE MOP 110, 613–48.Google Scholar
Fahlbusch, F. E. (1994). Scour in rock riverbeds downstream of large dams. Intl. J. Hydropower Dams, 1(4), 30–2.Google Scholar
FAP24 (1996). Floodplain levels and bankfull discharge, river survey project, special reports 6 and 7. Government of the People’s Republic of Bangladesh, 36 p. and 40 p.Google Scholar
Falconer, R. A., Lin, B., Harris, E. L. and Wilson, C. A. M. E., eds. (2002). Hydroinformatics 2002. In Proc. 5th Intl. Conf. on Hydroinformatics. Cardiff, UK, 794 p.Google Scholar
Farhoudi, J. and Smith, K. V. H. (1985). Local scour profiles downstream of hydraulic jumps. J. Hyd. Res., IAHR, 23, 343–58.Google Scholar
Farias, H. D., Brea, J. D. and Garcia, C. M., eds. (2011). Hidraulica Fluvial: Procesos de Erosion y Sedimentacion, Obras de Control y Gestion de Rios. ISBN: 978-987-1780-05-1, Univ. Nac. deSantiago del Estero, Argentina, 122 p.Google Scholar
Federal Interagency Stream Restoration Working Group (1998). Stream Corridor Restoration, Principles, Processes and Practices. Washington, DC: US Federal Government.Google Scholar
FEMA (1986). Design manual for retrofitting flood-prone residential structures. Rep. FEMA 114, Federal Emergency Management Agency, 265 p.Google Scholar
Fennema, R. J. and Chaudhry, M. H. (1986). Explicit numerical schemes for unsteady free-surface flows with shocks. Wat. Res. Res., AGU, 22, 1923–30.Google Scholar
Fennema, R. J. and Chaudhry, M. H. (1990). Numerical solution of two-dimensional transient free-surface flows. J. Hyd. Eng., ASCE, 116, 1013–34.Google Scholar
Ferguson, R. I. (1984). The threshold between meandering and braiding, channels, and channel control structures. In Proceedings 1st International Conference on Hydraulic Design in Water Resource Engineering. Ed. Smith, K. V. H., New York, NY: Springer-Verlag, 6-15–6-30.Google Scholar
Ferguson, R. (2007). Flow resistance equations for gravel – and boulder bed streams. Wat. Res. Res., AGU, 43(5), W05427.Google Scholar
FHWA (1984). Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. FHWA-TS-84-204, Turner-Fairbank Highway Research Center, McLean, VA, 62 p.Google Scholar
FHWA (1989). Design of riprap revetments. HEC-11, Turner-Fairbank Highway Research Center, VA.Google Scholar
FHWA-HEC18 (2012). Evaluating Scour at Bridges, 5th ed. Hydraulic Engineering Circular 18, FHWA-HIF-12-003, Federal Highway Administration, USDOT, Washington, DC, 340 p.Google Scholar
FHWA-HEC20 (2012). Stream Stability at Highway Structures, 4th ed. Hydraulic Engineering Circular 20, FHWA-HIF-12-004, Federal Highway Administration, USDOT, Washington, DC, 328 p.Google Scholar
FHWA-HEC23a (2009). Bridge Scour and Stream Instability Countermeasures: Experience, Selection, and Design Guidance, Vol. 1, 3rd ed. Hydraulic Engineering Circular 23, FHWA-NHI-09-111, Federal Highway Administration, USDOT, Washington, DC, 256 p.Google Scholar
FHWA-HEC23b (2009). Bridge Scour and Stream Instability Countermeasures: Experience, Selection, and Design Guidance, Vol. 2, 3rd ed. Hydraulic Engineering Circular 23, FHWA-NHI-09-112, Federal Highway Administration, USDOT, Washington, DC, 376 p.Google Scholar
FHWA-HRE (2001). River engineering for highway encroachments – highways in the river environment. FHWA NHI 01-004, Hydraulic Design Series No. 6, Federal Highway Administration, USDOT, Washington, DC, 646 p.Google Scholar
Fischenich, C. (2001). Stability thresholds for stream restoration materials. EMRRP Tech. Notes Coll. (ERDC TN-EMRRP-SR-29), USACE, ERDC, Vicksburg, MS.Google Scholar
Fischenich, C. and Allen, H. (2000). Stream management. Water operations special rep. ERDC/EL SRW-00-1, USACE, ERDC, Vicksburg, MS.Google Scholar
Fischenich, C. and Seal, R. (2000). Boulder clusters. EMRRP Tech. Notes Coll., ERDC TN-EMRRP-SR-11, USACE, ERDC, Vicksburg, MS.Google Scholar
Follum, M. L., Downer, C. W., Niemann, J. D., Roylance, S. M. and Vuyovich, C. M. (2015). A radiation-derived temperature index snow routine for the GSSHA hydrologic model. J. Hydrol., 529, 723–36.Google Scholar
Fortier, S. and Scobey, F. C. (1926). Permissible canal velocities. Trans. ASCE, 89, Paper 1588, 940–84.Google Scholar
Fotherby, L. M. (2009). Valley confinement as a factor of braided river pattern for the Platte River. Geomorphology, 103(4), 562–76.Google Scholar
Fournier, F. (1969). Transports solides effectués par les cours d’eau. Bull. IAHS, 14, 749.Google Scholar
Franco, J. J. and McKellar, C. D. (1968). Navigation conditions at Lock and Dam No. 3, Arkansas River, Arkansas and Oklahoma. H-68-8, USACE, Waterways Experiment Station, Vicksburg, MS.Google Scholar
Fredsøe, J. (1978). Meandering and braiding of rivers. J. Fluid Mech., CUP, 84, 609–24.Google Scholar
Fredsøe, J. (1979). Unsteady flow in straight alluvial streams: modification of individual dunes. J. Fluid Mech., CUP, 91, 497512.Google Scholar
Fredsøe, J. and Deigaard, R. (1992). Mechanics of Coastal Sediment Transport. Singapore: World Scientific, 369 p.Google Scholar
Frenette, M., Caron, M., Julien, P. Y. and Gibson, R. J. (1984). Interaction between salmon parr population and discharge in the Matamec River. Can. J. Fish. Aquat. Sci., 41, 954–64.Google Scholar
Frenette, M. and Harvey, B. (1971). Hydraulique Fluviale I. Québec: Les Presses de l’Université Laval, 157 p.Google Scholar
Frenette, M. and Julien, P. Y. (1980). Rapport synthèse sur les caractéristiques hydro-physiques du bassin de la rivière Matamec. Rep. CENTREAU-80-06, Laval Univ., Québec, Canada, 283 p.Google Scholar
Frenette, M. and Julien, P. (1981). Etude hydrodynamique du site d’installation d’une barrière à saumons sur la rivière Mitis, Hydrotech Rep., Québec, Canada, 21 p.Google Scholar
Frenette, M. and Julien, P. Y. (1986). LAVSED-I – Un modèle pour prédire l’érosion des bassins et le transfer de sédiments fins dans les cours d’eau nordiques. Can. J. Civ. Eng., CSCE, 13, 150–61.Google Scholar
Frenette, M. and Julien, P. Y. (1987). Computer modelling of soil erosion and sediment yield from large watersheds. Intl. J. Sed. Res., 1, 3968.Google Scholar
Frenette, M., Llamas, J. and Larinier, M. (1974). Modèle de simulation du transport en suspension des rivières Châteauguay et Chaudière. Rapport CRE 74/05, CENTREAU, Univ. Laval, Québec, Canada, 33 p.Google Scholar
Friedman, D., Schechter, J., Baker, B., Mueller, C., Villarini, G. and White, K. D. (2016). US Army Corps of Engineers nonstationarity detection tool user guide. USACE, Climate Preparedness and Resilience Community of Practice, Washington, DC, 57 p.Google Scholar
Friesen, N. (2007). Amplification of supercritical surface waves in steep open channels near Las Vegas, NV. M.S. thesis, Civil Engineering, Colorado State University, 140 p.Google Scholar
Frings, R. (2007). From gravel to sand – downstream fining of bed sediments in the lower river Rhine. Netherlands Geographical studies 368, ISBN 0169-4839, Utrecht, 219 p.Google Scholar
Froehlich, D. C. (1988). Analysis of on site measurements of scour at piers. In Proc. National Hyd. Eng. Conf. New York, NY: ASCE.Google Scholar
Fujita, Y. and Muramoto, Y. (1982a). Experimental study on stream channel processes in alluvial rivers. Bull. Disaster Prev. Res. Inst., Kyoto Univ., 32, 4996.Google Scholar
Fujita, Y. and Muramoto, Y. (1982b). The widening process of straight stream channels in alluvial rivers. Bull. Disaster Prev. Res. Inst., Kyoto Univ., 32, 115–41.Google Scholar
Fujita, Y. and Muramoto, Y. (1985). Studies on the process and development of alternate bars. Bull. Disaster Prev. Res. Inst., Kyoto Univ., 35, 5586.Google Scholar
Galay, V. J. (1983). Causes of river bed degradation. Water Res. Res., AGU, 19, 1057–90.Google Scholar
Galay, V. (1987). Erosion and Sedimentation in the Nepal Himalaya. An Assessment of River Processes. Singapore: Kefford Press.Google Scholar
Garcia de Jalon, D. and Gonzalez del Tanago, M. (1988). Rios Y Riberas, Enciclop. Naturaleza de Espana. Madrid: Borja Cardelus, 128 p.Google Scholar
Garde, R. J. (1989). 3rd International Workshop on Alluvial River Problems. Rotterdam: Balkema, 329 p.Google Scholar
Gatto, L. W. (1984). Tanana River monitoring and research program: relationships among bank recession, vegetation, soils, sediments, and permafrost on the Tanana River near Fairbanks, Alaska. Rep. 84-21, USACE, CRREL, Hanover, NH.Google Scholar
Gessler, D., Hall, B., Spasojevic, M., et al. (1999). Application of 3D mobile bed hydrodynamic model. J. Hyd. Eng., ASCE, 125(7), 737–49.Google Scholar
Gibson, R. J. (1993). The Atlantic salmon in fresh water: spawning, rearing and production. Reviews in Fish Biology and Fisheries, 3, 3973.Google Scholar
Gibson, R. J. and Cutting, R. E., eds. (1993). The production of juvenile Atlantic salmon, Salmo salar, in natural waters. Can. Spec. Publ. Fish. Aquat. Sci., National Research Council, Ottawa, Canada, 262 p.Google Scholar
Gill, M. A. (1972). Erosion of sand beds around spur dikes. J. Hyd. Div., ASCE, 98, 1587–602.Google Scholar
Gole, C. V. and Chitale, S. V. (1966). Inland delta building activity of the Kosi River. J. Hyd. Eng., ASCE, 92(2), 111–26.Google Scholar
Goode, J. (2009). Substrate influences on bedrock channel forms and processes. Ph.D. dissertation, Earth Res., Colorado State University, 158 p.Google Scholar
Gordon, N. D., McMahon, T. A. and Finlayson, B. L. (1992). Stream Hydrology an Introduction for Ecologists. New York, NY: Wiley.Google Scholar
Graf, W. H. (1984). Hydraulics of Sediment Transport. New York, NY: McGraw-Hill.Google Scholar
Graf, W. H. and Altinakar, M. S. (1993). Hydraulique Fluviale, Vol. 16, Tome 1 and 2. Lausanne: Presses Polytechniques et Universitaires Romandes, 259, 378 p.Google Scholar
Gray, D. M. and Prowse, T. D. (1992). Snow and floating ice, Chap. 7. In Handbook of Hydrology. New York, NY: McGraw-Hill, 58 p.Google Scholar
Gray, D. H. and Sotir, R. B. (1996). Biotechnical and Soil Bioengineering: A Practical Guide for Erosion Control. New York, NY: Wiley.Google Scholar
Greco, M., Carravetta, A. and Della Morte, R., eds. (2004). River Flow 2004. Leiden: Balkema, 1455 p.Google Scholar
Green, W. H. and Ampt, G. A. (1911). Studies of soil physics, 1, the flow of air and water through soils. J. Agric. Sci., 4, 124.Google Scholar
Gregory, K. J. (1977). River Channel Changes. New York, NY: Wiley-Interscience.Google Scholar
Griffiths, G. A. (1981). Stable-channel design in gravel-bed rivers. J. Hydrol., 52, 291305.Google Scholar
Grozier, R. V., McCain, J. F., Lang, L. F. and Merriman, D. R. (1976). The Big Thompson River flood of July 31–August 1, 1976, Larimer County, Colorado. Flood Information Report, US Geological Survey and Colorado Water Conservation Board.Google Scholar
Guo, J. (1998). Turbulent velocity profiles in clear water and sediment-laden flows. Ph.D. dissertation, Civil Engineering, Colorado State University, 237 p.Google Scholar
Guo, J., ed. (2002). Advances in hydraulics and water engineering. In Proc. 13th IAHR-APD Congress. Singapore, 1098 p.Google Scholar
Guo, J. and Julien, P. Y. (2001). Turbulent velocity profiles in sediment-laden flows. J. Hyd. Res., IAHR, 39(1), 1123.Google Scholar
Guo, J. and Julien, P. Y. (2003). Modified log-wake law for turbulent flow in smooth pipes. J. Hyd. Res., IAHR, 41(5), 493501.Google Scholar
Guo, J. and Julien, P. Y. (2004). Efficient algorithm for computing Einstein integrals. J. Hyd. Eng., ASCE, 130(12), 30–7.Google Scholar
Guo, J. and Julien, P. Y. (2005a). Application of the modified log-wake law in open channels. J. Appl. Fluid Mech., 1(2), 1723.Google Scholar
Guo, J. and Julien, P. Y. (2005b). Shear stress in smooth rectangular open-channel flows. J. Hyd. Eng., ASCE, 131(1), 1198–201.Google Scholar
Guo, J., Julien, P. Y. and Meroney, R. N. (2005). Modified log-wake law for zero-pressure-gradient turbulent boundary layers. J. Hyd. Res., IAHR, 43(4), 421–30.Google Scholar
Haan, C. T., Barfield, B. J. and Hayes, J. C. (1993). Design Hydrology and Sedimentology for Small Catchment. San Diego, CA: Academic Press, 588 p.Google Scholar
Hager, W. H. and Schleiss, A. J. (2009). Constructions Hydrauliques. 15. Lausanne: Presses Polytech. et Univ. Romandes, 597 p.Google Scholar
Hagerty, D. J. (1992). Identification of piping and sapping erosion of streambanks, HL-92-1, University of Louisville, KY, for USACE, Vicksburg, MS.Google Scholar
Hagerty, D. J., Spoor, M. F. and Kennedy, J. F. (1986). Interactive mechanisms of alluvial-stream bank erosion. In River Sedimentation, Vol. III Proc. 3rd Intl. Symp. River Sed. Oxford, MS: University of Mississippi, 1160–8.Google Scholar
Halgren, J. (2012). TREX-SMA: A multi-event hybrid hydrological model applied at California Gulch Colorado. Ph.D. dissertation, Civil Engineering, Colorado State University, 300 p.Google Scholar
Harrison, J. S. and Doe, W. W. III (1997). Erosion modeling in Pinon Canyon maneuver site using the Universal Soil Loss Equation in GRASS. CEMML TPS 97-21, Center for Ecological Management of Military Lands, Colorado State University, 47 p.Google Scholar
Hartley, D. (1990). Boundary shear stress induced by raindrop impact. Ph.D. dissertation, Civil Engineering, Colorado State University, 193 p.Google Scholar
Hartley, D. M. and Julien, P. Y. (1992). Boundary shear stress induced by raindrop impact. J. Hyd. Res., 30, 341–59.Google Scholar
Hasan, A. J. (2005). Permodelan Hidrodinamik Sungai. River hydrodynamic modelling – the practical approach. ISBN 983-42905-0-0, NAHRIM, Malaysia, 155 p.Google Scholar
Hayashi, T. (1970a). The formation of meanders in rivers. Trans. Japan Soc. Civ. Eng., 2, 180.Google Scholar
Hayashi, T. (1970b). On the cause of the initiations of meandering of rivers. Trans. Japan Soc. Civ. Eng., 2, 235–9.Google Scholar
Henderson, F. M. (1961). Stability of alluvial channels. J. Hyd. Div., ASCE, 87, 109–38.Google Scholar
Henderson, F. M. (1963). Stability of alluvial channels. Trans. ASCE, 128(3440), 657–86.Google Scholar
Herbich, J. B. (1992). Handbook of Dredging Engineering. New York, NY: McGraw-Hill.Google Scholar
Hey, R. D. (1978). Determinate hydraulic geometry of river channels. J. Hyd. Eng., ASCE, 104, 869–85.Google Scholar
Hey, R. D., Bathurst, J. C. and Thorne, C. R., eds. (1982). Gravel-Bed Rivers: Fluvial Processes, Engineering and Management. New York, NY: Wiley.Google Scholar
Hey, R. D. and Thorne, C. R. (1986). Stable channels with mobile gravel beds. J. Hyd. Eng., ASCE, 112, 671–89.Google Scholar
Hibma, A. (2004). Morphodynamic modeling of estuarine channel-shoal systems. Communications on Hydraulic and Geotechnical Engineering 04-3, ISSN 0169-6548, TUD, Delft University of Technology, 122 p.Google Scholar
Hickin, E. J. and Nanson, G. C. (1975). The character of channel migration on the Beatton River, northeast B.C., Canada. Geol. Soc. Am. Bull., 86, 487494.Google Scholar
Hirano, M. (1973). River-bed variation with bank erosion. Proc. Japan Soc. Civ. Eng., 210, 1320.Google Scholar
Hite, J. E. (1992). Vortex formation and flow separation at hydraulic intakes. Ph.D. dissertation, Washington State University, Pullman, WA, 195 p.Google Scholar
Hoffmans, G. J. C. M. (1994a). Scour due to plunging jets. Rep. W-DWW-94-302, Ministry of Transport, Public Works and Water Management, Road and Hydraulic Engineering Division, Delft, The Netherlands.Google Scholar
Hoffmans, G. J. C. M. (1994b). Scour due to submerged jets. Rep. W-DWW-94-303, Ministry of Transport, Public Works and Water Management, Road and Hydraulic Engineering Division, Delft, The Netherlands.Google Scholar
Hoffmans, G. J. C. M. (1995). Ontgrondingen rondom brugpijlers en aan de kop van kribben. Rep. W-DWW-94-312, Ministry of Transport, Public Works and Water Management, Road and Hydraulic Engineering Division, Delft, The Netherlands.Google Scholar
Hoffmans, G. J. C. M. and Booij, R. (1993). Two-dimensional mathematical modeling of local-scour holes. J. Hyd. Res., IAHR, 31, 615–34.Google Scholar
Hoffmans, G. J. C. M. and Pilarczyk, K. W. (1995). Local scour downstream of hydraulics structures. J. Hyd. Eng., ASCE, 121, 326–40.Google Scholar
Hoffmans, G. J. C. M. and Verheij, H. J. (1997). Scour Manual. Rotterdam: Balkema.Google Scholar
Hofland, B. (2005). Rock & roll turbulence-induced damage to granular bed protections. Communications on Hydraulic and Geotechnical Engineering Report 05-4, ISSN 0169-6548, TUD, Delft University of Technology, The Netherlands, 221 p.Google Scholar
Holmes, R. R. (1996). Sediment transport in the Lower Missouri and the Central Mississippi Rivers, June 26 through September 14, 1993. Geological Survey Circular 1120-I, US Department of the Interior, 23 p.Google Scholar
Hooke, R. L. (1975). Distribution of sediment transport and shear stress in a meander bend. J. Geol., 83, 543–60.Google Scholar
Hooke, J. M. (1979). An analysis of the processes of river bank erosion. J. Hydrol., 42, 3962.Google Scholar
Hooke, J. M. (1980). Magnitude and distribution of rates of river bank erosion. Earth Surf. Proc., 5, 143–57.Google Scholar
Horner, C. L. (2016). Middle Rio Grande habitat suitability criteria. M.S. technical report, Civil Engineering, Colorado State University, 61 p.Google Scholar
Hussain, H. (1999). Analysis of different models to predict the mean flow velocity in hyperconcentrations, mudflows and debris flows. M.S. thesis, Civil Engineering, Colorado State University, 170 p.Google Scholar
Hussein, K. and Smith, V. H. (1986). Flow and bed deviation angle in curved open channels. J. Hyd. Res., IAHR, 24, 93108.Google Scholar
Hutchings, J. A. and Jones, M. E. B. (1998). Life history variation and growth rate thresholds for maturity in Atlantic salmon, Salmo salar. Can. J. Fish. Aquat. Sci., 55, 2247.Google Scholar
Ijima, T. and Tang, F. L. W. (1966). Numerical calculations of wind waves in shallow waters. In Proc. 10th Coastal Eng. Conf. Tokyo, Japan, 3845.Google Scholar
Ikeda, S. (1982). Lateral bedload on side slopes. J. Hyd. Div., ASCE, 108, 1369–73.Google Scholar
Ikeda, S. (1984a). Flow and bed topography in channels with alternate bars. In River Meandering, Proc. Conf. Rivers ’83. New York, NY: ASCE, 733–46.Google Scholar
Ikeda, S. (1984b). Prediction of alternate bar wavelength and height. J. Hyd. Eng., ASCE, 110, 371–86.Google Scholar
Ikeda, S. (1987). Bed topography and sorting in bends. J. Hyd. Eng., ASCE, 113(2), 190206.Google Scholar
Ikeda, S., Parker, G. and Sawai, K. (1981). Bend theory of river meanders, part 1. linear development. J. Fluid Mech., CUP, 112, 363–77.Google Scholar
Ikeda, H. and Ohta, A. (1986). On the formation of stationary bars in a straight flume. Annual Report of the Institute of Geoscience, 12, Tsukuba University, Japan, 42–6.Google Scholar
Inglis, C. C. (1947). Meanders and the bearing on river training. Institution of Civil Engineers, Maritime and Waterways, Paper 7.Google Scholar
Inglis, C. C. (1949). The effect of variations in charge and grade on the slopes and shapes of channels. In Proc. 3rd Congress. IAHR, Delft, The Netherlands, II.1.1–II.1.10.Google Scholar
Isbash, S. V. (1935). Construction of dams by dumping stones in flowing water, translated by A. Dorijikov, US Army Engineer District, Eastport, ME.Google Scholar
Ivicsics, L. (1975). Hydraulic Models. Fort Collins, CO: Water Resource Publications, 310 p.Google Scholar
Jacobson, R. B. and Oberg, K. A. (1993). Geomorphic changes on the Mississippi River flood plain at Miller City, Illinois, as a result of the flood of 1993. Geological Survey Circular 1120-J, US Department of the Interior, Washington, DC, 22 p.Google Scholar
Jain, S. C. and Fischer, E. E. (1980). Scour around bridge piers at high velocities. J. Hyd. Eng., ASCE, 106, 1827–42.Google Scholar
Jansen, P., van Bendegom, L., van den Berg, J., de Vries, M. and Zanen, A. (1979). Principles of River Engineering: The Non-Tidal Alluvial River. San Francisco, CA: Pitman.Google Scholar
Jarrett, R. D. (1985). Determination of roughness coefficients for streams in Colorado, USGS Water Resources Investigations Rep. 85-4004, Lakewood, CO, 54 p.Google Scholar
Jarrett, R. D. and Boyle, J. M. (1986). Pilot study for collection of bridge-scour data. USGS Water Resources Investigations Rep. 86-4030, Denver, 46 p.Google Scholar
Jarrett, R. D. and Costa, J. E. (1986). Hydrology, geomorphology and dam-break modeling of the July 15, 1982 Lawn Lake dam and Cascade Lake dam failures, Larimer County, CO, USGS Open File Rep. 84-612, and also USGS Professional Paper 1369, US Geological Survey, Washington, DC, 78 p.Google Scholar
Jarrett, R. D. and Costa, J. E. (1988). Evaluation of the flood hydrology in the Colorado front range using precipitation, streamflow, and paleoflood data for the Big Thompson River basin. USGS Water Resources Investigations Rep. 87-4177, Denver, CO, 37 p.Google Scholar
Ji, U. (2006). Numerical model for sediment flushing at the Nakdong River Estuary Barrage. Ph.D. dissertation, Civil Engineering, Colorado State University, 195 p.Google Scholar
Ji, U., Julien, P. Y. and Park, S. K. (2011). Sediment flushing at the Nakdong River Estuary Barrage. J. Hyd. Eng., ASCE, 137(11), 1522–35.Google Scholar
Ji, U., Julien, P. Y., Park, S. K. and Kim, B. (2008). Numerical modeling for sedimentation characteristics of the Lower Nakdong River and sediment dredging effects at the Nakdong River Estuary Barrage. Korean J. Civ. Eng., 28(4B), 405–11.Google Scholar
Ji, U., Velleux, M., Julien, P. Y. and Hwang, M. (2014). Risk assessment of watershed erosion at Naesung Stream, South Korea. J. Environ. Manag., 136, 1626.Google Scholar
Jia, Y., Scott, S. and Wang, S. S. (2001). 3D Numerical model validation using field data and simulation of flow in Mississippi River. World Water Forum, ASCE.Google Scholar
Johnson, P. A. (1992). Reliability-based pier scour engineering. J. Hyd. Eng., ASCE, 118, 1344–58.Google Scholar
Johnson, P. A. (1995). Comparison of pier-scour equations using field data. J. Hyd. Eng., ASCE, 121, 626–9.Google Scholar
Johnson, B. E. (1997). Development of a storm event based two-dimensional upland erosion model. Ph.D. dissertation, Civil Engineering, Colorado State University, 254 p.Google Scholar
Johnson, T. L. (2002). Design of erosion protection for long-term stabilization. Manual NUREG-1623, Office of Nuclear Material Safety and Safeguards, US Nuclear Regulatory Commission, Washington, DC, 161 p.Google Scholar
Johnson, W. W. and Finley, M. T. (1980). Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Fish and Wildlife Services, Resources Publication 137, US Department of the Interior, Washington, DC, 106 p.Google Scholar
Johnson, B. E., Julien, P. Y., Molnar, D. K. and Watson, C. C. (2000). The two-dimensional upland erosion model CASC2D-SED. J. AWRA, 36(1), 3142.Google Scholar
Johnson, A. W. and Stypula, J. M., eds. (1993). Guidelines for bank stabilization projects in riverine environments of King County. Surface Water Management Division, King County Department of Public Works, Seattle, WA.Google Scholar
Johnson, B., Zhang, Z., Velleux, M. and Julien, P. Y. (2011). Development of a distributed watershed Contaminant Transport, Transformation, and Fate (CTT&F) Sub-model. J. Soil Sed. Contam., 20(6), 702–21.Google Scholar
Jones, J. S. (1983). Comparison of prediction equations for bridge pier and abutment scour. TRB Record 950, 2nd Bridge Eng. Conf., 2, Transportation Research Board, Washington, DC.Google Scholar
Jones, J. S. (1989). Laboratory studies of the effect of footings and pile groups on bridge pier scour. In Proc. 1989 Bridge Scour Symp. Washington, DC: Federal Highway Administration.Google Scholar
Jordan, B. (2008). An urban geomorphic assessment of the Berryessa and upper Penitencia Creek watersheds in San Jose, California. Ph.D. dissertation, Civil Engineering, Colorado State University, 146 p.Google Scholar
Jorgeson, J. D. (1999). Peak flow analysis using a two-dimensional watershed model with radar precipitation data. Ph.D. dissertation, Civil Engineering, Colorado State University, 192 p.Google Scholar
Jorgeson, J. and Julien, P. Y. (2005). Peak flow forecasting with CASC2D and radar data. Water International, IWRA, 30(1), 40–9.Google Scholar
Julien, P. Y. (1979). Erosion de bassin et apport solide en suspension dans les cours d’eau nordiques. M.Sc. thesis, Civil Engineering, Laval University, Québec, Canada, 186 p.Google Scholar
Julien, P. Y. (1982). Prédiction d’apport solide pluvial et nival dans les cours d’eau nordiques à partir du ruisselement superficiel. Ph.D. dissertation, Civil Engineering, Laval University, Québec, Canada, 240 p.Google Scholar
Julien, P. Y. (1985). Planform geometry of meandering alluvial channels, Report CER84-85PYJ5, Civil Engineering, Colorado State University, Fort Collins, CO, 49 p.Google Scholar
Julien, P. Y. (1986). Concentration of fine sediment particles in a vortex. J. Hyd. Res., IAHR, 24(4), 255–64.Google Scholar
Julien, P. Y. (1988). Downstream hydraulic geometry of noncohesive alluvial channels. In International Conference on River Regime, New York, NY: Wiley, 916.Google Scholar
Julien, P. Y. (1989). Géométrie hydraulique des cours d’eau à lit alluvial. In Proc. IAHR Conf. Natural Resources Council, Ottawa, Canada, B9–16.Google Scholar
Julien, P. Y. (1996). Transforms for runoff and sediment transport. J. Hydrol. Eng., ASCE, 1(3), 114–22.Google Scholar
Julien, P.Y. (2002). River Mechanics, First Ed. Cambridge: Cambridge University Press, 434 p.Google Scholar
Julien, P. Y. (2009). Fluvial transport of suspended solids. In Encyclopedia of Inland Waters. Amsterdam: Elsevier.Google Scholar
Julien, P. Y. (2010). Erosion and Sedimentation, 2nd ed. Cambridge: Cambridge University Press, 371 p.Google Scholar
Julien, P. Y. (2017). Our hydraulic engineering profession, 2015 Hunter Rouse Lecture. In 60th Anniversary State-of-the-Art Reviews, J. Hyd. Eng., ASCE, ISSN 0733-9429.Google Scholar
Julien, P. Y., Ab. Ghani, A., Zakaria, N. A., Abdullah, R. and Chang, C. K. (2010). Flood mitigation of the Muda River, Malaysia. J. Hyd. Eng., ASCE, 136(4), 251–61.Google Scholar
Julien, P. Y. and Anthony, D. (2002). Bedload motion by size fractions in meander beds. J. Hyd. Res., IAHR, 40(2), 125–33.Google Scholar
Julien, P. Y. and Bounvilay, B. (2013). Velocity of rolling bedload particles. J. Hyd. Eng., ASCE, 139(2), 1344–59.Google Scholar
Julien, P. Y. and Dawod, A. M. (1987). On predicting upland erosion losses from rainfall depth part 1: probabilistic approach. J. Stoch. Hydrol. and Hyd., 1, 127–34.Google Scholar
Julien, P. Y. and Frenette, M. (1985). Modeling of rainfall erosion. J. Hyd. Eng., ASCE, 111, 1344–59.Google Scholar
Julien, P. Y. and Frenette, M. (1986). LAVSED II – a model for predicting suspended load in northern streams. Can. J. Civ. Eng., CSCE, 13, 162–70.Google Scholar
Julien, P. Y. and Frenette, M. (1987). Macroscale analysis of upland erosion. Hydrol. Sci. J., IAHS, 32, 347–58.Google Scholar
Julien, P. Y., Friesen, N., Duan, J. G. and Eykholt, R. (2010). Celerity and amplification of supercritical surface waves. J. Hyd. Eng., ASCE, 136(9), 656–61.Google Scholar
Julien, P. Y. and del Tanago, M. Gonzalez (1991). Spatially-varied soil erosion under different climates. Hydrol. Sci. J., 36(6), 511–24.Google Scholar
Julien, P. Y. and Halgren, J. S. (2014). Hybrid hydrologic modelling, Chap. 17. In Handbook of Engineering Hydrology. New York, NY: Taylor & Francis, 22 p.Google Scholar
Julien, P. Y. and Hartley, D. M. (1986). Formation of roll waves in laminar sheet flow. J. Hyd. Res., IAHR, 24(1), 517.Google Scholar
Julien, P. Y. and Klaassen, G. J. (1995). Sand–dune geometry of large rivers during floods. J. Hyd. Eng., ASCE, 121(9), 657–63.Google Scholar
Julien, P. Y., Klaassen, G. J., ten Brinke, W. T. M. and Wilbers, A. W. E. (2002). Case study: bed resistance of the Rhine River during the 1998 flood. J. Hyd. Eng., ASCE, 128(12), 1042–50.Google Scholar
Julien, P. Y. and Lan, Y. Q. (1991). Rheology of hyperconcentrations. J. Hyd. Eng., ASCE, 117(3), 346–53.Google Scholar
Julien, P. Y. and Moglen, G. E. (1990). Similarity and length scale for spatially-varied overland flow. Wat. Res. Res., AGU, 26(8), 1819–32.Google Scholar
Julien, P. Y. and Paris, A. (2010). Mean velocity of mudflows and debris flows, J. Hyd. Eng., ASCE, 136(9), 676–9.Google Scholar
Julien, P. Y. and Raslan, Y. (1998). Upper regime plane bed. J. Hyd. Eng., ASCE, 124(11), 1086–96.Google Scholar
Julien, P. Y., Richard, G. A. and Albert, J. (2005). Stream restoration and environmental river mechanics. Intl. J. River Basin Manag., IAHR & INBO, 3(3), 191202.Google Scholar
Julien, P. Y. and Rojas, R. (2002). Upland erosion modeling with CASC2D-SED. Intl. J. Sed. Res., 17(4), 265–74.Google Scholar
Julien, P. Y., Saghafian, B. and Ogden, F. (1995). Raster-based hydrologic modeling of spatially-varied surface runoff. Water Res. Bull., AWRA, 31(3), 523–36.Google Scholar
Julien, P. Y. and Simons, D. B. (1984). Analysis of hydraulic geometry relationships in alluvial channels. CER83-84PYJ-DBS45, Civil Engineering, Colorado State University, Fort Collins, CO.Google Scholar
Julien, P. Y. and Simons, D. B. (1985). Sediment transport capacity of overland flow. Trans. ASAE, 28(3), 755–62.Google Scholar
Julien, P. Y., Velleux, M. L., Ji, U. and Kim, J. (2014). Upland erosion modelling, Chap. 9. In Handbook of Environmental Engineering. New York, NY: Springer Science, 437–65.Google Scholar
Julien, P. Y. and Wargadalam, J. (1995). Alluvial channel geometry: theory and applications. J. Hyd. Eng., ASCE, 121(4), 312–25.Google Scholar
Jun, B. H., Lee, S. I., Seo, I. W. and Choi, G. W., eds. (2005). Abstracts of the 32rd IAHR Congress, COEX, Seoul, Korea, 1466 p.Google Scholar
Junid, S. (1992). Rivers of Malaysia. Selangor Darul Ehsan: Design Dimensions, 184 p.Google Scholar
Kalkwijk, J. P. and deVriend, H. J. (1980). Computations of the flow in shallow river bends. J. Hyd. Res., IAHR, 18, 327–42.Google Scholar
Kamphuis, J. W. (2010). Introduction to Coastal Engineering and Management. Hackensack, NJ: World Scientific, 525 p.Google Scholar
Kane, B. (2003). Specific degradation as a function of watershed characteristics and climatic parameters. Ph.D. dissertation, Civil Engineering, Colorado State University, 213 p.Google Scholar
Kane, B. and Julien, P. Y. (2007). Specific degradation of watersheds. Intl. J. Sed. Res., 22(2), 114–9.Google Scholar
Kang, D. H. (2005). Distributed snowmelt modeling with GIS and CASC2D at California Gulch, Colorado. M.S. thesis, Civil Engineering, Colorado State University, 208 p.Google Scholar
Katopodis, C. (1992). Introduction to fishway design. Freshwater Institute, Central and Arctic Region, Department of Fisheries and Oceans, Winnipeg, Canada, 71 p.Google Scholar
Kawai, S. and Julien, P. Y. (1996). Point bar deposits in narrow sharp bends. J. Hyd. Res., IAHR, 34(2), 205–18.Google Scholar
Keefer, T. N., McQuivey, R. S. and Simons, D. B. (1980). Interim report – stream channel degradation and aggradation: causes and consequences to highways. FHWA/RD-80/038, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Kellerhals, R. (1967). Stable channels with gravel-paved beds. J. Waterways Harbors Div., ASCE, 93, 6384.Google Scholar
Kellerhals, R. and Church, M. (1989). The morphology of large rivers: characterization and management. In Proc. Intl. Large River Symp. 1986, Dept. of Fisheries and Oceans, Ottawa, Canada, 3148.Google Scholar
Kennedy, R. G. (1895). The prevention of silting in irrigation canals. Minutes Proc. Inst. Civ. Eng., London, 119, 281–90.Google Scholar
Keown, M. P. (1983). Streambank Protection Guidelines for Landowners and Local Governments. Vicksburg, MS: USACE, Waterways Experiment Station.Google Scholar
Keulegan, G. H. (1938). Laws of turbulent flow in open channels. J. Res. Natl. Bur. Stand., 21, 707–41; see also USBR, Washington, DC, Research Paper 1151.Google Scholar
Kilinc, M. (1972). Mechanics of soil erosion from overland flow generated by simulated rainfall. Ph.D. dissertation, Civil Engineering, Colorado State University, Fort Collins, CO.Google Scholar
Kilinc, M. S. and Richardson, E. V. (1973). Mechanics of soil erosion from overland flow generated by simulated rainfall. Hydrol. Pap. 63, Colorado State University, 54 p.Google Scholar
Kim, H. S. (2006). Soil erosion modeling using RUSLE and GIS on the IMHA watershed, South Korea. M.S. thesis, Civil Engineering, Colorado State University, 118 p.Google Scholar
Kim, J. (2012). Hazard area mapping during extreme rainstorms in South Korean mountains. Ph.D. dissertation, Civil Engineering, Colorado State University, 146 p.Google Scholar
Kim, H. Y. (2016). Optimization of Sangju weir operations to mitigate sedimentation problems. Ph.D. dissertation, Civil Engineering, Colorado State University, Fort Collins, CO, 393 p.Google Scholar
Kim, H. S. and Julien, P. Y. (2006). Soil erosion modeling using RUSLE and GIS on the Imha Watershed, South Korea. Water Eng. Res. J., KWRA, 7(1), 2941.Google Scholar
Kim, J., Julien, P. Y., Ji, U. and Kang, J. (2011). Restoration modeling analysis of abandoned channels of the Mangyeong River. J. Env. Sci., 555–64.Google Scholar
Kim, Y., Shin, H. and Park, D. (2011). Variation of shear strength of unsaturated weathered granite soil with degree of saturation and disturbance at Dongrae, Inje and Yeonki sites. Korea Soc. Hazard Mitig., 11(4), 157–62.Google Scholar
Klaassen, G. J. (1990). On the scaling of Braided Sand-Bed rivers. In Mobile Bed Physical Models. Boston, MA: Kluwer Academic, 5671.Google Scholar
Klaassen, G. J. (1992). Experience from a physical model for a bridge across a braided river with fine sand as bed material. In Proc. 5th Intl. Symp. Karlsruhe: River Sed., 509–20.Google Scholar
Klaassen, G. J., Mosselman, E., Masselink, G., et al. (1993). Planform changes in large braided sand-bed rivers. Delft Hydraul. Pub. No. 480, Delft, The Netherlands.Google Scholar
Klaassen, G. J. R. and van der Zwaard, J. J. (1974). Roughness coefficients of vegetated flood plains. J. Hyd. Res., IAHR, 12, 4363.Google Scholar
Klaassen, G. J. R. and van Zarter, B. H. J. (1990). On cutoff ratios of curved channels. Delft Hydraul. Pub. No. 444, Delft, The Netherlands.Google Scholar
Klaassen, G. J. R. and Vermeer, K. (1988). Confluence scour in large braided rivers with fine bed material. In Proc. Intl. Conf. Fluvial Hydraulics. Budapest, Hungary.Google Scholar
Kleinhans, M. G. (2002). Sorting out sand and gravel: sediment transport and deposition in sand-gravel bed rivers, Netherlands Geographic Studies 293, Faculty of Geographic Science, Utrecht University, 317 p.Google Scholar
Kleitz, M. (1877). Note sur la théorie du movement non-permanent des liquides et sur l’application de la propagation des crues des rivières. Ann. Ponts Chaussées, 5(16), 133–96.Google Scholar
Klimek, K. E. (1997). Spherical particle velocities on rough dry surfaces. M.S. thesis, Civil Engineering, Colorado State University, 89 p.Google Scholar
Knauss, J., ed. (1987). Swirling Flow Problems at Intakes. Rotterdam: Balkema, 165 p.Google Scholar
Knighton, D. (1998). Fluvial Forms and Processes. Baltimore: Arnold, 383 p.Google Scholar
Knuuti, K. and McComas, D. (2003). Assessment of changes in channel morphology and bed elevation in Mad River, California, 1971–2000. ERDC/CHL TR-03-16, USACE, ERDC, Vicksburg, MS, 54 p.Google Scholar
Kobus, H., Leister, P. and Westrich, B. (1979). Flow field and scouring effects of steady and pulsating jets impinging on a movable bed. J. Hyd. Res., IAHR, 17, 175–92.Google Scholar
Koch, F. G. and Flokstra, C. (1980). Bed level computations for curved alluvial channels. In Proc. XIX Congress IAHR. Delft, The Netherlands, 2, 357.Google Scholar
Kositgittiwong, D., Chinnarasri, C. and Julien, P. Y. (2012a). Numerical simulation of flow velocity profiles along a stepped spillway. J. Process. Mech. Eng., 14, 19.Google Scholar
Kositgittiwong, D., Chinnarasri, C. and Julien, P. Y. (2012b). Two-phase flow over stepped and smooth spillways: numerical and physical models. Ovidius Univ. Ann. Ser.: Civ. Eng., 14, 147–54.Google Scholar
Koutsunis, N. A. (2015). Impact of climatic changes on downstream hydraulic geometry and its influence on flood hydrograph routing-applied to the Bluestone Dam watersheds. M.S. technical report, Civil Engineering, Colorado State University, 60 p.Google Scholar
KOWACO (2004). Water, Nature & People, Exploring Five Major Rivers in Korea. Daejon: Korea Water Resources Corporation, 172 p.Google Scholar
Kuhnle, R. A. (1993). Incipient motion of sand gravel sediment mixtures. J. Hyd. Eng., ASCE, 119, 1400–15.Google Scholar
Kuroiwa, J. M., Mansen, A. J., Romero, F. M., Castro, L. F. and Vega, R. (2011). Narrowing of the Rímac River due to anthropogenic causes – partial engineering solutions. In World Environmental and Water Resources Congress. Palm Springs, CA: ASCE – EWRI.Google Scholar
Lacey, G. (1929–30). Stable channels in alluvium. Proc. Inst. Civ. Eng., London, 229, 259–92.Google Scholar
Lagasse, P. F., Clopper, P. E., Zevenbergen, L. W. and Ruff, J. F. (2006). Riprap design criteria, recommended specifications, and quality control. NCHRP Rep. 568, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 226 p.Google Scholar
Lagasse, P. F., Schall, J. D., Johnson, F., Richardson, E. V. and Chang, F. M. (1995). Stream stability at highway structures. Hydraulic Engineering Circular No. 20, FHWA-IP-90-014, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Lagrange, J. L. de (1788). Mécanique analytique. 2-II(2), 192.Google Scholar
Lai, A. T. (1998). Bedforms in the Waal River, characterization and hydraulic roughness. M.Sc. thesis, The International Institute for Infrastructure, Hydraulic and Environment Engineering, IHE Delft, The Netherlands.Google Scholar
Lai, Y. G. (2008). SRH-2D version 2: theory and user’s manual sedimentation and river hydraulics – two-dimensional river flow modeling. US Department of Interior, USBR Technical Service Center, Denver, CO.Google Scholar
Lai, K. X. O. (2016). Impact of the Smart tunnel outflow on the hydraulics of the Kerayong River, Malaysia. M.S. technical report, Civil Engineering, Colorado State University, 139 p.Google Scholar
Lai, Y. G. and Yang, C. T. (2004). Development of a numerical model to predict erosion and sediment delivery to river systems, progress report no. 2: sub-model development and an expanded review. US Department of Interior, USBR Technical Service Center, Denver, CO.Google Scholar
Lambe, T. W. and Whitman, R. V. (1969). Soil Mechanics. New York, NY: Wiley, 553 p.Google Scholar
Lan, Y. (1990). Dynamic modeling of meandering alluvial channels. Ph.D. dissertation, Civil Engineering, Colorado State University, 248 p.Google Scholar
Lane, E. W. (1953). Progress report on studies on the design of stable channels of the Bureau of Reclamation. Proc. ASCE, 79(280).Google Scholar
Lane, E. W. (1955a). Design of stable channels. Trans. ASCE, 120, 1234–79.Google Scholar
Lane, E. W. (1955b). The importance of fluvial geomorphology in hydraulic engineering. Proc. ASCE, 81, 117.Google Scholar
Lane, E. W. (1957). A study of the shape of channels formed by natural streams flowing in erodible material. MRD No. 9, USACE, Missouri River Div., Omaha, Nebraska.Google Scholar
Langbein, W. B. and Schumm, S. A. (1958). Yield of sediment in relation to mean annual precipitation. Trans. AGU, 39, 1076–84.Google Scholar
Langbein, W. B. and Leopold, L. B. (1966). River meander – theory of minimum variance. USGS Prof. Paper 422-H, US Geol. Survey, Washington, DC.Google Scholar
Langhaar, H. L. (1956). Dimensional Analysis and Theory of Models. New York, NY: Wiley.Google Scholar
Larras, J. (1963). Profondeurs maximales d’érosion des fonds mobiles autour des piles en rivière. Ann. Ponts Chaussées, 133, 410–24.Google Scholar
Larsen, A. K. (2007). Hydraulic modeling analysis of the Middle Rio Grande – Escondida Reach, New Mexico. M.S. thesis, Civil Engineering, Colorado State University, 209 p.Google Scholar
Laursen, E. M. (1960). Scour at bridge crossings. Proc. ASCE, 86, 3954.Google Scholar
Laursen, E. M. (1963). An analysis of relief bridge scour. Proc. ASCE, 89, 93118.Google Scholar
Laursen, E. M. (1980). Predicting scour at bridge piers and abutments. Gen. Rep. No. 3, Arizona Department of Transportation, Phoenix, AZ.Google Scholar
Laursen, E. M. and Flick, M. W. (1983). Scour at sill structures. FHWA/AZ83/184, Arizona Department of Transportation, Arizona Transportation Traffic Institute, Tempe, AZ.Google Scholar
Lee, J. S. (2002). River Engineering. Seoul: Saeron, 591 p.Google Scholar
Lee, J. S. (2007). Hydrology. Seoul: Saeron, 484 p.Google Scholar
Lee, J. K. and Froehlich, D. C. (1989). Two dimensional finite element modeling of bridge crossings. FHWA-RD-88-149, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Lee, J. S. and Julien, P. Y. (2006a). Electromagnetic wave surface velocimeter. J. Hyd. Eng., ASCE, 132(2), 146–53.CrossRefGoogle Scholar
Lee, J. S. and Julien, P. Y. (2006b). Downstream hydraulic geometry of alluvial channels. J. Hyd. Eng., ASCE, 132(12), 1347–52.Google Scholar
Lee, J. S. and Julien, P. Y. (2012a). Resistance factors and relationships for measurements in fluvial rivers. J. Korea Contents Association, JKCA, 12(7), 445–52.Google Scholar
Lee, J. S. and Julien, P. Y. (2012b). Utilizing the concept of vegetation freeboard equivalence in river restoration. Intl. J. Contents, KCA, 8(3), 3441.Google Scholar
Lee, J. H. and Julien, P. Y. (2016a). ENSO impacts on temperature over South Korea. Intl. J. Climatology, Roy. Met. Soc., 13.Google Scholar
Lee, J. H. and Julien, P. Y. (2016b). Teleconnections of the ENSO and South Korean precipitation patterns. J. Hydrol., 534, 237–50.Google Scholar
Lee, J. H. and Julien, P. Y. (2017a). Influence of El Nino/Southern Oscillation on South Korean Streamflow Variability. J. Hydrol. Proc., 117.Google Scholar
Lee, J. S. and Julien, P. Y. (2017b). Composite Flow Resistance. J. Flood Eng., Vol. 8 No. 2, ISSN: 0976-6219. July–December 2017, pp. 5575.Google Scholar
Lee, J. S., Julien, P. Y., Kim, J. and Lee, T. W. (2012). Derivation of roughness coefficient relationships using field data in vegetated rivers. J. Kor. Wat. Res. Ass., 45, 137–49.Google Scholar
Lee, J. H. W. and Lam, K. M., eds. (2004). Environmental hydraulics and sustainable water management. Proc. 4th Intl. Symp. Env. Hyd. and 14th IAHR-APD Cong. Hong Kong, 2319 p.Google Scholar
Leliavsky, S. (1961). Précis d’Hydraulique Fluviale. Paris: Dunod, 256 p.Google Scholar
Leliavsky, S. (1966). An Introduction to Fluvial Hydraulics. New York, NY: Dover, 257 p.Google Scholar
Leon, C. (2003). Analysis of equivalent widths of alluvial channels and application for instream habitat in the Rio Grande. Ph.D. dissertation, Colorado State University, 283 p.Google Scholar
Leon, C., Julien, P. Y. and Baird, D. C. (2009). Case study: equivalent widths of the Middle Rio Grande, New Mexico. J. Hyd. Eng., ASCE, 135(4), 306–15.Google Scholar
Leon, C., Richard, G., Bauer, T. and Julien, P. Y. (1999). Middle Rio Grande Cochiti to Bernalillo Bridge, hydraulic geometry, discharge and sediment data base and report. Vols. I–III, Civil Engineering, Colorado State University Fort Collins, CO.Google Scholar
Leonard, B. P. (1979). A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comp. Meth. Appl. Mech. Eng., 19, 5998.Google Scholar
Leon Salazar, C. (1998). Morphology of the Middle Rio Grande from Bernalillo Bridge to the San Acacia Diversion Dam, New Mexico. M.S. thesis, Colorado State University, 209 p.Google Scholar
Leopold, L. B., Bagnold, R. A., Wolman, R. G. and Brush, L. M. (1960). Flow resistance in sinuous or irregular channels. USGS Prof. Paper 282-D, Washington, DC, 111–34.Google Scholar
Leopold, L. B. and Maddock, T. Jr. (1953). The hydraulic geometry of stream channels and some physiographic implications. USGS Prof. Paper 252, Washington, DC.Google Scholar
Leopold, L. B. and Maddock, T. (1954). The Flood Control Controversy. New York, NY: Ronald Press.Google Scholar
Leopold, L. B. and Wolman, M. G. (1957). River channel patterns: braided, meandering and straight. USGS Prof. Paper 282-B, Washington, DC.Google Scholar
Leopold, L. B. and Wolman, M. G. (1960). River meanders. Geol. Soc. Am. Bull., 71, 769–94.Google Scholar
Leopold, L. B., Wolman, M. G. and Miller, J. P. (1964). Fluvial Processes in Geomorphology. San Francisco: Freeman.Google Scholar
Li, R. M. and Shen, H. W. (1973). Effect of tall vegetation on flow and sediment. J. Hyd. Div., ASCE, 99(5), 793814.Google Scholar
Liggett, J. A. and Cunge, J. A. (1975). Numerical methods of solution of the unsteady flow equations. In Unsteady Flow in Open Channels. Fort Collins, CO: Water Resources Publication.Google Scholar
Liggett, J. A. and Woolhiser, D. A. (1967). Difference solutions of shallow-water equations. Proc. ASCE, 93, 3971.Google Scholar
Limerinos, J. T. (1970). Determination of the Manning’s coefficient for measured bed roughness in natural channels. USGS Water Supp. Pap. 1891-B, Washington, DC.Google Scholar
Lindley, E. S. (1919). Regime Channels. Punjab: Punjab Engineering Congress.Google Scholar
Liu, H. K., Chang, F. M. and Skinner, M. M. (1961). Effect of bridge construction on scour and backwater. Rep. CER60-HKL22, Civil Engineering, Colorado State University, Fort Collins, CO.Google Scholar
Lowe, J. III. and Binger, W. V. (1982). 2nd Annual USCOLD Lecture, Tarbela Dam Project, US Commission on Large Dams, Atlanta, GA, 103 p.Google Scholar
Lu, Y. and Allen, H. (2001). Partitioning of copper onto suspended particulate matter in river waters. Sci. Total Environ., 277(1–3), 119–32.Google Scholar
Lu, N. and Godt, J. W. (2013). Hillslope Hydrology and Stability. Cambridge: Cambridge University Press, 437 p.Google Scholar
MacCormack, R. W. (1969). The effect of viscosity in hypervelocity impact cratering. American Institute of Aeronautics and Astronautics, Paper 69–354.CrossRefGoogle Scholar
MacDonald, T. E. (1991). Inventory and analysis of stream meander problems in Minnesota. M.S. thesis, University of Minnesota, Minneapolis, MN.Google Scholar
Maddock, T. (1970). Indeterminate hydraulics of alluvial channels. J. Hyd. Div., ASCE, 96, 2309–23.Google Scholar
Mahoney, H. A., Andrews, E. D., Emmett, W. W., et al. (1976). Data for calibrating unsteady-flow sediment-transport models, East Fork River, Wyoming, 1975. USGS Open File Rep. 76-22, Washington, DC, 293 p.Google Scholar
Marcus, K. B. (1991). Two-dimensional finite element modeling of surface runoff from moving storms on small watersheds. Ph.D. dissertation, Colorado State University, 299 p.Google Scholar
Marinier, G., Chadwick, W. L. and Peck, R. B. (1981). 1st Annual USCOLD Lecture, James Bay Hydro Development, US Commission on Large Dams.Google Scholar
Martins, R., ed. (1989). Recent Advances in Hydraulic Physical Modelling. Dordrecht: Kluwer, 627 p.Google Scholar
Martin Vide, J. P. (2006). Ingenieria de Rios. ISBN 978-84-8301-900-9, Barcelona: Universidad Politecnica de Catalunya, 381 p.Google Scholar
Martyusheva, O. (2014). Smart water grid. M.S. technical report, Civil Engineering, Colorado State University, 80 p.Google Scholar
Mason, P. J. and Arumugam, K. (1985). Free jet scour below dams and flip buckets. J. Hyd. Eng., ASCE, 111, 220–35.Google Scholar
May, D. R. (1993). The space-time correlation structure of convective rainstorms in the Lagrangian reference frame. Ph.D. dissertation, Civil Engineering, Colorado State University, 206 p.Google Scholar
May, D. R. and Julien, P. Y. (1998). Eulerian and Lagrangian correlation structures of convective rainstorms. Water Res. Res., AGU, 34(10), 2671–83.Google Scholar
Mayerle, R., Nalluri, C. and Novak, P. (1991). Sediment transport in rigid bed conveyances. J. Hyd. Res., IAHR, 29, 475–96.Google Scholar
Maynord, S. T. (1988). Stable riprap size for open channel flows. Tech. Rep. HL-88-4, USACE, Waterways Experiment Station, Vicksburg, MS.Google Scholar
Maynord, S. T. (1992). Riprap stability: studies in near-prototype size laboratory channel. Tech. Rep. HL-92-5, USACE, Waterways Experiment Station, Vicksburg, MS.Google Scholar
Maynord, S. T. (1995). Corps Riprap Design Guidance for Channel Protection in River, Coastal and Shoreline Protection/Erosion Control using Riprap and Armourstone. New York, NY: Wiley, 453.Google Scholar
McCain, J. F., Hoxit, L. R., Maddox, R. A., et al. (1979). Storm and flood of July 31–August 1, 1976, in the Big Thompson River and Cache la Poudre River basin, Larimer and Weld Counties, CO. USGS Professional Paper 1115, US Geological Survey, Washington, DC.Google Scholar
McCarley, R. W., Ingram, J. J., Brown, B. J. and Reese, A. J. (1990). Flood-control channel national inventory. Miscellaneous Paper HL-90-10, USACE, Waterways Experiment Station, Vicksburg, MS.Google Scholar
McCuen, R. H. (2016). Hydrologic Analysis and Design, 4th ed. Boston, CA: Pearson, 790 p.Google Scholar
McCuen, R. H., Johnson, P. A. and Ragan, R. M. (1995). Hydrologic design of highways. Hydraulic Design Series No. 2, Federal Highway Administration USDOT, Washington, DC.Google Scholar
McCullah, J. and Gray, D. (2005). Environmentally sensitive channel- and bank-protection measures. NCHRP Rep. 544, Transportation Research Board, Washington, DC, 59 p.Google Scholar
McKee, E. D. (1989). Sedimentary structures and textures of Rio Orinoco channel sands, Venezuela and Columbia, Water Supply Paper 2326, US Geological Survey, Washington, DC, 23 p.Google Scholar
Meade, R. H., ed. (1995). Contaminants in the Mississippi River 1987–92. Geol. Survey Circ. 1133, US Department of the Interior, Denver Federal Center, Denver, CO, 140 p.Google Scholar
Meade, R. H. and Moody, J. A. (2010). Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Proc., 24, 3549.Google Scholar
Meier, C. I. (1995). Transport velocities of single bed-load grains in hydraulically smooth open-channel flow. M.S. thesis, Civil Engineering, Colorado State University, 93 p.Google Scholar
Melone, A. M., Richardson, E. V. and Simons, D. B. (1975), Exclusion and ejection of sediment from canals. Unpublished Civil Engineering Report, Colorado State University, 192 p.Google Scholar
Melville, B. W. and Coleman, S. E. (2000). Bridge Scour. Highlands Ranch: Water Resources Publications, 550 p.Google Scholar
Melville, B. W. and Dongol, D. M. (1992). Bridge pier scour with debris accumulation. J. Hyd. Div., ASCE, 118.Google Scholar
Melville, B. W. and Sutherland, A. J. (1988). Design method for local scour at bridge piers. J. Hyd. Div., ASCE, 114.Google Scholar
Michel, B. (1971). Winter regime of rivers and lakes. CRREL Monog. III-B1a, Hanover, NH, 139 p.Google Scholar
Michel, B. (1978). Ice Mechanics. Québec: Presses Université Laval, 499 p.Google Scholar
Michel, B. and Drouin, M. (1981). Backwater curves under ice cover of the La Grande River. Can. J. Civ. Eng., 8(3), 351–63.Google Scholar
Michelot, J. L. (1995). Gestion patrimoniale des milieu naturels fluviaux. Guide technique, L’atelier Technique des Espaces Naturels, Montpellier, France, 67 p.Google Scholar
Middleton, G. V. (1965). Primary sedimentary structures and their hydrodynamic interpretation. Soc. Econ. Paleontol. Mineral. Spec. Pub., 12, 265.Google Scholar
Mihelcic, J. R. (1999). Fundamentals of Environmental Engineering. New York, NY: Wiley, 335 p.Google Scholar
Milliman, J. D. and Syvitski, J. P. M. (2017). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 100, 525–44.Google Scholar
Ministerio de Obras Publicas (1972). Mediciones en Rios Grandes, Direccion general de recursos hidraulicos, Caracas, Venezuela, 93 p.Google Scholar
Minor, H. E. and Hager, W. H., eds. (2004). River engineering in Switzerland. Soc. Art of Civil Eng., 6, 140.Google Scholar
Mirtskhoulava, Ts. Ye. (1988). Basic Physics and Mechanics of Channel Erosion. Leningrad: Gidrometeoizdat.Google Scholar
Mirtskhoulava, Ts. Ye. (1991). Scouring by flowing water of cohesive and noncohesive beds. J. Hyd. Res., IAHR, 29.Google Scholar
MOCT (2007a). Cheongmi-Cheon basic improvement plan. Vol. 4, Ministry of Construction Technical Report, Seoul Province Office, South Korea, 533 p.Google Scholar
MOCT (2007b). Cheongmi-Cheon basic improvement plan, pre-environmental impact report, Ministry of Construction Technical Report, Seoul Province Office, South Korea, 533 p.Google Scholar
Moglen, G. E. (1989). The effects of spatial variability of overland flow parameters on runoff hydrographs. M.S. thesis, Civil Engineering, Colorado State University, 157 p.Google Scholar
Molinas, A. (2000). User’s manual for BRI-STARS (BRIdge and Stream Tube model for Alluvial River Simulation). FHWA-RD-99-190, Transportation Research Board, NTIS, 238 p.Google Scholar
Molinas, A., Abdou, M. I., Noshi, H. M., et al. (1998). Effects of gradation and cohesion on bridge scour. Lab. Studies, Vol. 1 to 6, FHWA, Reston, VA, and Colorado State University, Fort Collins, CO.Google Scholar
Mollars, J. D. and Jones, J. R. (1984). Airphoto Interpretation and the Canadian Landscape. Ottawa: Deptartment of Energy, Mines and Resources.Google Scholar
Molnar, D. K. (1997). Grid size selection for 2-D hydrologic modeling of large watersheds. Ph.D. dissertation, Civil Engineering, Colorado State University, 201 p.Google Scholar
Molnar, D. K. and Julien, P. Y. (1998). Estimation of upland erosion using GIS. J. Comp. Geosci., 24(2), 183–92.Google Scholar
Molnar, D. K. and Julien, P. Y. (2000). Grid-size effects on surface runoff modeling. J. Hydrol. Eng., ASCE, 5(1), 816.Google Scholar
Montoya Monsalve, J. J. (2008). Desarrollo de un modelo conceptual de produccion, transporte y deposito de sedimentos. Ph.D. dissertation, University Politec. Valencia, Spain, 236 p.Google Scholar
Moody, J. A. (1995). Propagation and composition of the flood wave on the Upper Mississippi River, 1993. Geological Survey Circular 1120-F, US Department of the Interior, Washington, DC, 21 p.Google Scholar
Mooney, D. M., Holmquist-Johnson, C. L. and Broderick, S. (2007). Rock Ramps design guidelines, USBR, Technical Service Center, Denver, CO, 110 p.Google Scholar
Moriasi, D. N., Arnold, J. G., Van-Liew, M. W., et al. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. J. Am. Soc. Agric. Biol. Eng., ASABE, 50(3), 885900.Google Scholar
Mossa, M., Yasuda, Y. and Chanson, H., eds. (2004). Fluvial, Environmental and Coastal Developments in Hydraulic Engineering. London: Balkema, 235 p.Google Scholar
Mosselman, E. (1989). Theoretical investigation on discharge-induced river-bank erosion. Communications on Hydraulic and Geotechnical Engineering, 89-3, TUD, Delft University of Technology, 56 p.Google Scholar
Mosselman, E. (1992). Mathematical modelling of morphological processes in rivers with erodible cohesive banks. Communications on Hydraulic and Geotechnical Engineering, 92-3, TUD, Delft University of Technology, 134 p.Google Scholar
Muhammad, N. S. (2013). Probability structure and return period calculations for multi-day monsoon rainfall events at Subang, Malaysia. Ph.D. dissertation, Civil Engineering, Colorado State University, 177 p.Google Scholar
Muhammad, N. S., Julien, P. Y. and Salas, J. D. (2015). Probability structure and return period of multiday monsoon rainfall. J. Hydrol. Eng., ASCE, 11.Google Scholar
Murillo-Muñoz, R. E. (1998). Downstream fining of sediments in the Meuse River. M.Sc. thesis, International Institute of Infrastructure Hydraulic and Environment Engineering, Delft, The Netherlands.Google Scholar
Mussetter, R. A. (1989). Dynamics of mountain streams. Ph.D. dissertation, Civil Engineering, Colorado State University, 174 p.Google Scholar
Nanson, G. C. and Hickin, E. J. (1983). Channel migration and incision on the Beatton River. J. Hyd. Eng., ASCE, 109, 327–37.Google Scholar
Nanson, G. C. and Hickin, E. J. (1986). A statistical examination of bank erosion and channel migration in Western Canada. Bull. Geol. Soc. Am., 97, 497504.Google Scholar
Naudascher, E. and Rockwell, D., (1994). Flow-Induced Vibrations: An Engineering Guide. Rotterdam: Balkema, 413 p.Google Scholar
NCASI (1999). Scale considerations and the detectability of sedimentary cumulative watershed effects. Tech. Bull. 776, National Council for Air and Stream Improvement, Research Triangle Park, NC, 327 p.Google Scholar
Ndolo Goy, P. (2015). GIS-based soil erosion modeling and sediment yield of the N’Djili River basin, Democratic Republic of Congo. M.S. thesis, Civil Engineering, Colorado State University, 220 p.Google Scholar
Neill, C. R., ed. (1973). Guide to Bridge Hydraulics. Roads and Transportation Association of Canada, University of Toronto Press, Canada.Google Scholar
Neill, C., Hotopp, D. and Hunter, B. (2013). Some hydrotechnical features of Padma River, Bangladesh. In Proc. 21st Can. Hydrotech. Conf. CSCE, Banff, 11 p.Google Scholar
Neill, C. R. and Yaremko, E. K. (1988). Regime aspects of flood control channelization. In Proc. Intl. Conf. River Regime. New York, NY: Wiley.Google Scholar
Nelson, P. A., Brew, A. K. and Morgan, J. A. (2015). Morphodynamic response of a variable-width channel to changes in sediment supply. Wat. Res. Res., AGU, 51, 18.Google Scholar
Nelson, J. M., McDonald, R. R. and Kinzel, P. J. (2006). Morphologic evolution in the USGS surface-water modeling system. In Proc. 8th Fed. Interagency Sed. Conf. Reno, 8 p.Google Scholar
Nelson, P. A., McDonald, R. R., Nelson, J. M. and Dietrich, W. E. (2015). Coevolution of bed surface patchiness and channel morphology: 1. Mechanisms of forced patch formation, and 2. Numerical experiments. J. Geophys. Res. Earth Surf., AGU, 37.Google Scholar
Nelson, P. A. and Seminara, G. (2011). Modeling the evolution of bedrock channel shape with erosion from saltating bed load. Geophys. Res. Lett., AGU, 38, 5.Google Scholar
Nelson, J. M. and Smith, J. D. (1989). Flow in meandering channels with natural topography. In River Meandering. Washington, DC: AGU Water Resource Monitor, 69102.Google Scholar
Nezu, I. and Nakagawa, H. (1993). Turbulence in Open-Channel Flows. Rotterdam: Balkema.Google Scholar
Nicollet, G. (1975). Affouillement au pied des piles de pont en milieu cohésif. In Proc. 16th Cong. IAHR, Brazil, Paper B60, 478–84.Google Scholar
Nordin, C. F. Jr. (1964). Aspects of low resistance and sediment transport Rio Grande near Bernalillo, New Mexico. USGS Water Supp. Paper 1498-H, Washington, DC.Google Scholar
Nordin, C. F. Jr. (1977). Graphical aids for determining scour depth in long contractions. In USGS Open File Rep. 77-837, Denver, CO, 12 p.Google Scholar
Nordin, C. F. and Perez-Hernandez, D. (1989). Sand waves, bars, and wind-blown sands of the Rio Orinoco, Venezuela and Colombia. USGS Water Supply Paper 2326-A, 74 p.Google Scholar
Nordin, C. F. and Sabol, G. V. (1974). Empirical data on longitudinal dispersion in rivers. USGS Wat. Res Invest. 20-74, Denver Fed. Center, Lakewood, CO, 332 p.Google Scholar
Novak, S. J. (2006). Hydraulic modeling analysis of the Middle Rio Grande from Cochiti Dam to Galisteo Creek, New Mexico. M.S. thesis, Civil Engineering, Colorado State University, 158 p.Google Scholar
Novak, P., Moffat, A. I. B., Nalluri, C. and Narayanan, R. (2001). Hydraulic Structures, 3rd ed. London: Spon Press, 666 p.Google Scholar
Novotny, V. (2003). Water Quality – Diffuse Pollution and Watershed Management, 2nd ed. Hoboken, NJ: Wiley, 864 p.Google Scholar
NRCS (2007). Stream restoration design. In National Engineering Handbook, Part 654. Washington, DC: USDA.Google Scholar
Nunnally, N. R. and Shields, F. D. (1985). Incorporation of environmental features in flood control channel projects. Tech. Rep. E-85-3, USACE, Waterways Experiment Station, Vicksburg, MS.Google Scholar
O’Brien, J. S. and Julien, P. Y. (1985). Laboratory analysis of mudflow properties. J. Hyd. Eng., ASCE, 114(8), 877–87.Google Scholar
O’Brien, J. S., Julien, P. Y. and Fullerton, W. T. (1993). Two-dimensional water flood and mud flow simulation. J. Hyd. Eng., ASCE, 119(2), 244–61.Google Scholar
O’Connor, D. J. and Dobbins, W. E. (1958). Mechanism of reaeration of natural streams. Trans. ASCE, 123, 641–66.Google Scholar
Odgaard, A. J. (1981). Transverse slope in alluvial channel bends. J. Hyd. Eng., ASCE, 107, 1677–94.Google Scholar
Odgaard, A. J. (1982). Bed characteristics in alluvial channel bends. J. Hyd. Div., ASCE, 108, 1268–81.Google Scholar
Ogden, F. L. (1992). Two-dimensional runoff modeling with weather radar data. Ph.D. dissertation, Civil Engineering, Colorado State University, 211 p.Google Scholar
Ogden, F. L. and Julien, P. Y. (1993). Runoff sensitivity to temporal and spatial rainfall variability at runoff plane and small basin scales. Wat. Res. Res., AGU, 29(8), 2589–97.Google Scholar
Ogden, F. L. and Julien, P. Y. (1994). Runoff model sensitivity to radar rainfall resolution. J. Hydrol., 158, 118.Google Scholar
Ogden, F. L., Richardson, J. R. and Julien, P. Y. (1995). Similarity in catchment response 2. Moving rainstorms. Wat. Res. Res., AGU, 31(6), 1543–7.Google Scholar
Olsen, N. R. B. (1991). A three-dimensional numerical model for simulation of sediment movements in water intakes. Ph.D. dissertation, Norwegian Institute of Technology, University of Trondheim, Norway, 106 p.Google Scholar
Orechwa, A. (2015). Soil contaminant mapping and prediction of sediment yield at an abandoned uranium mine. M.S. technical report, Civil Engineering, Colorado State University, 75 p.Google Scholar
Osman, A. M. and Thorne, C. R. (1988). Riverbank stability analysis I: theory. J. Hyd. Eng., ASCE, 114, 134–50.Google Scholar
Ouellet, Y. (1972). Compléments d’Hydraulique. Québec: Presses de l’Univ. Laval, 236 p.Google Scholar
Owen, T. E. (2012). Geomorphic analysis of the Middle Rio Grande – Elephant Butte Reach, New Mexico. M.S. thesis, Civil Engineering, Colorado State University, 186 p.Google Scholar
Pagliara, S., Radecki-Pawlik, A., Palermo, M. and Plesenski, K. (2016). Block ramps in curved rivers: morphology analysis and prototype data supported design criteria for mild bed slopes. River Res. Appl., DOI: 10.1002/rra.3083, 11.Google Scholar
Parilkova, J. and Vesely, J. (2009). Laboratory of water management research of the department of water structures, ISBN 978-82-214-3889-7, Brno University of Technology, Brno: VITIUM, 92 p.Google Scholar
Park, K. (2013). Mechanics of sediment plug formation in the Middle Rio Grande, New Mexico. Ph.D. dissertation, Civil Engineering, Colorado State University, 199 p.Google Scholar
Park, S. K., Julien, P. Y., Ji, U. and Ruff, J. F. (2008). Case-study: retrofitting large bridge piers on the Nakdong River, South Korea. J. Hyd. Eng., ASCE, 134(11), 1639–50.Google Scholar
Parker, G. (1976). On the cause and characteristic scales of meandering and braiding in rivers. J. Fluid Mech., CUP, 76, 457–80.Google Scholar
Parker, G. and Andrews, E. D. (1985). Sorting of bedload sediments by flow in meander bends. Wat. Res. Res., AGU, 21, 1361–73.Google Scholar
Parker, G. and Garcia, M. H., eds. (2005). River, Coastal and Estuarine Morphodynamics. In Proc. 4th RCEM Symp. London: Taylor & Francis, 1246 p.Google Scholar
Pemberton, E. L. and Lara, J. M. (1984). Computing degradation and local scour. In Technical Guidelines for Bureau of Reclamation. Denver, CO: USBR, Eng. Res. Center.Google Scholar
Pemberton, E. L. and Strand, R. I. (2005). Whitney M. Borland and the Bureau of Reclamation, 1930–1972. J. Hyd. Eng., ASCE, 131(5), 339–46.Google Scholar
Perry, C. A. (1994). Effect of reservoirs on flood discharges in the Kansas and the Missouri River basins, 1993. Geological Survey Circular 1120-E, US Department of the Interior, 20 p.Google Scholar
Peters, J. J. (1988). Etudes récentes de la navigabilité. In Proc. Symp. L’accès maritime du Zaire. Acad. Royale Sc. Outre-Mer, Bruxelles, Belgium, 89110.Google Scholar
Peters, J. J. (1993). Problèmes de navigation fluviale dans les bassins de l’Amazone et de l’Orénoque dans les pays andins. Bull. Séanc. Acad. r. Sci. Outre-Mer, 38, 505–24.Google Scholar
Peters, J. J. (1994). Manejo de Rios en la Cuenca de Pirai. Santa Cruz: SEARPI, 141 p.Google Scholar
Peters, J. J. (1998). Amélioration du transport fluvial en amazonie bolivienne. Bull. Séanc. Acad. r. Sci. Outre-Mer, 44, 463–82.Google Scholar
Petersen, M. S. (1986). River Engineering. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
PIANC (1992). Guidelines for the design and construction of flexible revetments incorporating geotextiles in marine environment. Suppl. PIANC Bull. 78/79, Brussels, Belgium.Google Scholar
Pilarczyk, K. W. (1995). Design Tools Related to Revetments Including Riprap, River, Coastal and Shoreline Protection: Erosion Control Using Riprap and Armour Stone. New York, NY: Wiley.Google Scholar
Pilarczyk, K. W. and Zeidler, R. B. (1996). Offshore Breakwaters and Shore Evolution Control. Rotterdam: Balkema.Google Scholar
Pitlick, J. C. (1985). The effect of a major sediment influx on Fall River, Colorado. M.S. thesis, Earth Res., Colorado State University, Fort Collins, CO.Google Scholar
Platania, S. P. and Altenbach, C. S. (1998). Reproductive strategies and egg types of seven Rio Grande basin cyprinids. Copeia, 3, 559–69.Google Scholar
Portland Cement Association (1984). Soil-cement slope protection for embankments: planning and design. PCA Pub. IS173.02W, Skokie, IL.Google Scholar
Ports, M. A., ed. (1989). Hydraulic engineering. In Proc. Natl. Conf. Hyd. Eng. New York, NY: ASCE.Google Scholar
Posada Garcia, L. (1995). Transport of sands in deep rivers. Ph.D. dissertation, Civil Engineering, Colorado State University, Fort Collins, CO, 158 p.Google Scholar
Preissmann, A. (1961). Propagation des intumescences dans les canaux et rivières. Congress of the French Assoc. for Computation, France.Google Scholar
Preissmann, A. (1971). Modèles pour le calcul de la propagation des crues. La Houille Blanche, 26, 219–24.Google Scholar
Preissmann, A. and Cunge, J. A. (1961). Calcul du mascaret sur machine électronique. La Houille Blanche, 5, 588–96.Google Scholar
Przedwojski, B., Blazejewski, R. and Pilarczyk, K. W. (1995). River Training Techniques: Fundamentals, Design, and Applications. Rotterdam: Balkema.Google Scholar
Queen, S. (1994). Changes in bed material along the Lower Mississippi, 1932–89. M.S. thesis, Civil Engineering, Colorado State University, 84 p.Google Scholar
Rainwater, J. (2013). Review of sediment plug factors, Middle Rio Grande, NM. M.S. technical report, Civil Engineering, Colorado State University, 55 p.Google Scholar
Rajaratnam, N. (1981). Erosion by plane turbulent jets. J. Hyd. Res., IAHR, 19, 339–58.Google Scholar
Rajaratnam, N. (1982). Erosion by unsubmerged plane water jets. In Applying Research to Hydraulic Practice. New York, NY: ASCE, 280–8.Google Scholar
Rajaratnam, N. and MacDougall, R. K. (1983). Erosion by plane wall jets with minimum tailwater. J. Hyd. Eng., ASCE, 109, 1061–4.CrossRefGoogle Scholar
Rajaratnam, N. and Nwachukwu, B. A. (1983). Erosion near groyne-like structures. J. Hyd. Res., IAHR, 21, 277–87.Google Scholar
Raslan, Y. M. (1994). Resistance to flow in the upper regime plane bed. Ph.D. dissertation, Civil Engineering, Colorado State University, 125 p.Google Scholar
Raslan, Y. M. (2000). Geometrical properties of dunes. M.S. thesis, Civil Engineering, Colorado State University, 127 p.Google Scholar
Raudkivi, A. J. (1976). Loose Boundary Hydraulics, 2nd ed. Oxford: Pergamon.Google Scholar
Raudkivi, A. J. (1986). Functional trends of scour at bridge piers. J. Hyd. Div., ASCE, 112(1), 113.Google Scholar
Raudkivi, A. J. (1993). Sedimentation: Exclusion and Removal of Sediment from Diverted Water. Rotterdam: Balkema.Google Scholar
Raudkivi, A. J. and Ettema, R. (1985). Scour at cylindrical bridge piers in armoured beds. J. Hyd. Eng., ASCE, 111, 713–31.Google Scholar
Rawls, W. J., Brakensiek, D. J. and Miller, N. (1983). Green–Ampt infiltration parameters from soils data. J. Hyd. Eng., ASCE, 109, 6270.Google Scholar
Reclamation (1974). Design of Small Canal Structures. Washington, DC: US Department of the Interior.Google Scholar
Reclamation (1976). Design of Gravity Dams. Washington, DC: US Department of Interior.Google Scholar
Reclamation (1977). Design of Small Dams. Washington, DC: US Department of Interior.Google Scholar
Reclamation (2007). Rock Ramp Design Guidelines. Denver, CO: US Department of Interior, USBR Technical Service Center, 110 p.Google Scholar
Reclamation (2015). Bank Stabilization Design Guidelines. Rep. SRH 2015-25, US Department of the Interior, USBR Technical Service Center, Denver, CO.Google Scholar
Reclamation and USACE (2015). Large wood national manual: assessment, planning, design, and maintenance of large wood in fluvial ecosystems: restoring process, function, and structure. US Government, Washington, DC, 628 pages + App.Google Scholar
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. and Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In Agricultural Handbook No. 703. Washington, DC: USDA, 407.Google Scholar
Renard, K. G. and Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor of the revised USLE. J. Hydrol., 157, 287306.Google Scholar
Richard, G. A. (2001). Quantification and prediction of lateral channel adjustments downstream from Cochiti Dam, Rio Grande, NM. Ph.D. dissertation, Civil Engineering, Colorado State University, 276 p.Google Scholar
Richard, G. A. and Julien, P. Y. (2003). Dam impacts and restoration of an alluvial river – Rio Grande, New Mexico. Intl. J. Sed. Res., 18(2), 8996.Google Scholar
Richard, G. A., Julien, P. Y. and Baird, D. C. (2005a). Case study: modeling the lateral mobility of the Rio Grande below Cochiti Dam, New Mexico. J. Hyd. Eng., ASCE, 131(11), 931–41.Google Scholar
Richard, G. A., Julien, P. Y. and Baird, D. C. (2005b). Statistical analysis of lateral migration of the Rio Grande. Geomorphology, 71, 139–55.Google Scholar
Richard, G., Leon, C. and Julien, P. Y. (2000). Bernardo Reach geomorphic analysis – Middle Rio Grande, New Mexico. Civil Engineering, Colorado State University Report for USBR, Albuquerque, NM.Google Scholar
Richardson, J. R. (2003). The effect of moving rainstorms on overland flow using one-dimensional finite elements. Ph.D. dissertation, Civil Engineering, Colorado State University, 238 p.Google Scholar
Richardson, E. V. and Davis, S. R. (2001). Evaluating scour at bridges, 4th ed. Hydraulic Engineering Circle 18, RFHWA NHI 01-001, Federal Highway Administration, USDOT, Washington, DC.Google Scholar
Richardson, J. R. and Julien, P. Y. (1994). Suitability of simplified overland flow equations. Wat. Res. Res., AGU, 30(3), 665–71.Google Scholar
Richardson, E. V. and Lagasse, P. F. (1996). Stream stability and scour at highway bridges. Water Intl., 21, 108–18.Google Scholar
Richardson, E. V. and Lagasse, P. F., eds. (1999). Stream stability and scour at highway bridges: compendium of papers ASCE water resources engineering conferences 1991–98. ASCE, ISBN 0-7844-0407-0, 1040 p.Google Scholar
Richardson, E. V. and Simons, D. B. (1984). Use of spurs and guidebanks for highway crossings. TRB Record 950, 2nd Bridge Eng. Conf., Vol. 2, Transportation Research Board, Washington, DC.Google Scholar
RIZA (1999). Twice a river, Rhine and Meuse in the Netherlands. Arnhem: RIZA 99.003. ISBN 90 369 52 239. 127 p.Google Scholar
Roberson, J. A., Cassidy, J. J. and Chaudhry, M. H. (1997). Hydraulic Engineering, 2nd ed. New York, NY: Wiley, 653 p.Google Scholar
Rojas, R., Julien, P. Y., Velleux, M. and Johnson, B. E. (2008). Grid size effect on watershed soil erosion models. J. Hydrol. Eng., ASCE, 134(9), 793802.Google Scholar
Rojas Sanchez, R. (2002). GIS-based upland erosion modeling, geovisualization and grid size effects on erosion simulations with CASC2D-SED. Ph.D. dissertation, Civil Engineering, Colorado State University, 140 p.Google Scholar
Rosgen, D. (1996). Applied River Morphology. Pagosa Springs: Wildland Hydrology.Google Scholar
Rousar, L., Zachoval, Z. and Julien, P. (2016). Incipient motion of coarse uniform gravel. J. Hyd. Res, IAHR, 17.Google Scholar
Rousseau, C. (1979). Analyse des caractéristiques hydrologiques d’une couverture nivale. M.S. thesis, Civil Engineering, Laval University, Québec, Canada.Google Scholar
Rozovskii, I. L. (1957). Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR., Institute of Hydrology and Hydraulic Engineering, Kiev., Transl. by Y. Prushansky, 1961 Israel Prog. Scient. Transl., S. Monson, Jerusalem, PST Cat. 363.Google Scholar
Ruff, J. F., Abt, S. R., Mendoza, C., Shaikh, A. and Kloberdanz, R. (1982). Scour at culvert outlets in mixed bed materials. FHWA/RD-82/011, Washington, DC.Google Scholar
Ruff, J. F., Shaikh, A., Abt, S. R. and Richardson, E. V. (1987). Riprap stability in side-sloped channels. Civil Engineering, Unpublished Report, 34 p.Google Scholar
Saghafian, B. (1992). Hydrologic analysis of watershed response to spatially varied infiltration. Ph.D. dissertation, Civil Engineering, Colorado State University, 215 p.Google Scholar
Saghafian, B. and Julien, P. Y. (1995). Time to equilibrium for spatially variable watersheds. J. Hydrol., 172, 231–45.Google Scholar
Saghafian, B., Julien, P. Y. and Ogden, F. L. (1995). Similarity in catchment response 1. Stationary storms. Wat. Res. Res., AGU, 31(6), 1533–41.Google Scholar
Saghafian, B., Julien, P. Y. and Rajae, H. (2002). Runoff hydrograph simulation based on time variable isochrone technique. J. Hydrol., 261, 193203.Google Scholar
Sahaar, A. S. (2013). Erosion mapping and sediment yield of the Kabul River basin, Afghanistan. M.S. thesis, Civil Engineering, Colorado State University, 151 p.Google Scholar
Saint-Venant, J. C. B. (1870). Démonstration élémentaire de la formule de propagation d’une onde ou d’une intumescence dans un canal prismatique, et remarques sur les propagations du son et de la lumière, sur les ressauts, ainsi que sur la distinction des rivières et des torrents. C. R. Acad. Sci., Paris, 71, 186–95.Google Scholar
Saint-Venant, J. C. B. (1871). Théorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci., Paris, 73(148–54), 237–40.Google Scholar
Salas, J. D., Gavilan, G., Salas, F. R., Julien, P. Y. and Abdullah, J. (2014). Uncertainty of the PMP and PMF, Chap. 28. In Handbook of Engineering Hydrology, Modeling Climate Change and Variability. Hoboken, NJ: Taylor & Francis, 575603.Google Scholar
Santoro, V. C. (1989). Experimental study on scour and velocity field around bridge piers. M.S. thesis, Civil Engineering, Colorado State University, 142 p.Google Scholar
Santoro, V. C., Julien, P. Y., Richardson, E. V. and Abt, S. R. (1991). Velocity profiles and scour depth measurements around bridge piers. Proc. Ann. Meeting Transp. Res. Board. FHWA, paper # 910874.Google Scholar
Sasal, M. (1992). Hydraulic design of channel constrictions, CER92-93MS100, Civil Engineering, Colorado State University, Fort Collins, CO, 83 p.Google Scholar
Sauveé, S. F., Hendershot, W. and Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol., 34(7), 112531.Google Scholar
Sauveé, S. F., Manna, S., Turmel, M. C., Roy, A. G. and Courchesne, F. (2003). Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ. Sci. Technol., 37(22), 5191–6.Google Scholar
Schumm, S. A. (1963). Sinuosity of alluvial rivers on the Great Plains. Bull. Geol. Soc. Am., 74, 1089–100.Google Scholar
Schumm, S. (1969). River metamorphosis. J. Hyd. Eng., ASCE, 95, 255–73.Google Scholar
Schumm, S. A. (1972). River Morphology. Benchmark Papers in Geology, Colorado State University. Fort Collins, CO: Dowden, Hutchinson & Ross, 429 p.Google Scholar
Schumm, S. A. (1977). The Fluvial System. New York, NY: Wiley.Google Scholar
Schumm, S. A. (1991). To Interpret the Earth, Ten Ways to be Wrong. Cambridge: Cambridge University Press.Google Scholar
Schumm, S. A., Harvey, M. D. and Watson, C. C. (1984). Incised Channels: Morphology, Dynamics and Control. Littleton, CO: Water Resources Publication.Google Scholar
Schumm, S. A., Mosley, M. P. and Weaver, W. E. (1987). Experimental Fluvial Geomorphology. New York, NY: Wiley.Google Scholar
Schumm, S. A., Watson, C. C. and Burnett, A. W. (1982). Investigation of neotectonic activity within the Lower Mississippi Valley Division. USACE Lower Miss. Valley Div. Potamology program (P-I), 2, 158.Google Scholar
Schumm, S. A. and Winkley, B. R., eds. (1994). The Variability of Large Alluvial Rivers. New York, NY: ASCE, 469 p.Google Scholar
Schwab, G. O., Frevert, R. K., Edminster, T. W. and Barnes, K. K. (1981). Soil Water Conservation Engineering, 3rd ed. New York, NY: Wiley.Google Scholar
Scruton, D. A. and Gibson, R. J. (1993). The development of habitat suitability curves for juvenile Atlantic salmon (Salmo salar) in riverine habitat insular Newfoundland. Canada, 149–61.Google Scholar
Seddon, J. A. (1900). River Hydraulics. Trans. ASCE, 43, 179229.Google Scholar
Shafie, A. (2009). Extreme flood event: a case study on floods of 2006 and 2007 in Johor, Malaysia. M.S. technical report, Civil Engineering, Colorado State University, 82 p.Google Scholar
Shah, S. C. (2006). Variability in total sediment load using BORAMEP on the Rio Grande Low Flow Conveyance Channel. M.S. thesis, Civil Engineering, Colorado State University, 195 p.Google Scholar
Shah-Fairbank, S. C. (2009). Series expansion of the modified Einstein procedure. Ph.D. dissertation, Civil Engineering, Colorado State University, 238 p.Google Scholar
Shah-Fairbank, S. C. and Julien, P. Y. (2015). Sediment load calculations from point measurements in sand-bed rivers. Intl. J. Sed. Res., 30, 112.Google Scholar
Shah-Fairbank, S., Julien, P. Y. and Baird, D. C. (2011). Total sediment load from SEMEP using depth-integrated concentration measurements. J. Hyd. Eng., ASCE, 137(12), 1606–14.Google Scholar
Sharma, A. (2000). Two-dimensional subsurface flow modeling for watersheds under spatially and temporally variable rainfall. PhD dissertation, Civil Engineering, Colorado State University, Fort Collins, CO, 154 p.Google Scholar
Sharp, J. J. (1981). Hydraulic Modelling. Boston, MA: Butterworths, 242 p.Google Scholar
Shen, H. W., ed. (1971a). River Mechanics, Vols. I and II. P.O. Box 606, Fort Collins, CO.Google Scholar
Shen, H. W. (1971b). Scour near piers. In River Mechanics. Fort Collins, CO: Colorado State University, Vol. II, 23, 125.Google Scholar
Shen, H. W. and Julien, P. Y. (1992). Erosion and sediment transport, Chap. 12. In Handbook of Hydrology. New York, NY: McGraw-Hill.Google Scholar
Shen, H. W., Schneider, V. R. and Karaki, S. S. (1969). Local scour around bridge piers. Proc. ASCE, 95, 1919–40.Google Scholar
Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, Mitteilungen der preussischen Versuchanstalt für Wasserbau und Schiffbau, Berlin.Google Scholar
Shields, F. D. Jr., Pezeshki, S. R., Wilson, G. V., Wu, W. and Dabney, S. M. (2008). Rehabilitation of an incised stream with plant materials: the dominance of geomorphic processes. Ecology and Society 13(2), 54.Google Scholar
Shih, H. M. (2007). Estimating overland flow soil transport capacity and surface erosion rate using unit stream power. Ph.D. dissertation, Civil Engineering, Colorado State University, 172 p.Google Scholar
Shimizu, Y., Schmeeckle, M. W. and Nelson, J. M. (2000). Three-dimensional calculation of flow over two-dimensional dunes. Ann. J. Hyd. Eng., Japan Soc. Civ. Eng., 43, 623–8.Google Scholar
Shin, Y. H. (2007). Channel changes downstream of the Hapcheon re-regulation Dam in South Korea. Ph.D. dissertation, Civil Engineering, Colorado State University, 217 p.Google Scholar
Shin, Y. H. and Julien, P. Y. (2010). Changes in hydraulic geometry of the Hwang River below the Hapcheon re-regulation Dam, South Korea. Intl. J. Riv. Basin Manag., IAHR, 8(2), 139–50.Google Scholar
Shin, Y. H. and Julien, P. Y. (2011). Effect of flow pulses on degradation downstream of Hapcheon Dam, South Korea. J. Hyd. Eng., ASCE, 137(1), 100–11.Google Scholar
Siddique, M. (1991). A non-equilibrium model for reservoir sedimentation. Ph.D. dissertation, Civil Engineering, Colorado State University, 330 p.Google Scholar
Sieben, J. (1997). Modelling of hydraulics and morphology in mountain rivers. Communications on Hydraulic and Geotechnical Engineering, ISSN 0169-6548, TUD, Delft University of Technology, 222 p.Google Scholar
Simons, D. B. (1957). Theory and design of stable channels in alluvial material. Ph.D. dissertation, Civil Engineering, Colorado State University, Fort Collins, CO.Google Scholar
Simons, D. B. and Albertson, M. L. (1963). Uniform water conveyance channels in alluvial material. Trans. ASCE, 128, 65167.Google Scholar
Simons, L. and Assoc. and Louis Berger Intl. (1984). Geomorphic Analysis of the Niger River Basin. Report prepared for the Niger Basin Authority, 240 p. + App.Google Scholar
Simons, D. B., Chen, Y. H. and Swenson, L. J. (1984). Hydraulic test to develop design criteria for the use of Reno mattresses, Simons and Li, Fort Collins, CO: Colorado State University.Google Scholar
Simons, D. B. and Julien, P. Y. (1983). Engineering analysis of river meandering. In River Meandering, Proc. Conf. Rivers ’83. New York, NY: ASCE, 530–44.Google Scholar
Simons, D. B. and Sentürk, F. (1992). Sediment Transport Technology, Water and Sediment Dynamics. Littleton, CO: Water Resources Pub.Google Scholar
Sin, K. S. (2010). Methodology for calculating shear stress in a meandering channel. M.S. thesis, Civil Engineering, Colorado State University, Fort Collins, CO.Google Scholar
Sin, K. S. (2014). Three-dimensional computational modeling of curved channel flow. Ph.D. dissertation, Civil Engineering, Colorado State University, 112 p.Google Scholar
Sistermans, P. G. J. (2002). Graded sediment transport by non-breaking waves and a current. Communications on Hydraulic and Geotechnical Engineering, Report 02-2, ISSN 0169-6548, TUD, Delft University of Technology, 205 p.Google Scholar
Sixta, M. J. (2000). Hydraulic modeling and meander migration of the Middle Rio Grande, New Mexico. M.S. thesis, Civil Engineering, Colorado State University, 260 p.Google Scholar
Skempton, A. W. (1964). Long-term stability of clay slopes. Geotech., 14(2), 77101.Google Scholar
Skinner, M. M. and Stone, M. D. (1983). Identification of instream hazards to trout habitat quality in Wyoming, FWS/OBS-83/13, US Department of Interior, Fish and Wildlife Services, 69 p.Google Scholar
Sloff, C. J. (1994). Modelling turbidity currents in reservoirs. Communications on Hydraulic and Geotechnical Engineering, ISSN 0169-6548, TUD, Delft University of Technology, 141 p.Google Scholar
Smith, M. (1988). Plan morphology and channel alignment of Rio Apure, Venezuela. M.S. thesis, Civil Engineering, Colorado State University, Fort Collins, CO, 149 p.Google Scholar
Smith, J. A. (1992). Precipitation, Chap. 3. In Handbook of Hydrology. New York, NY: McGraw-Hill, 47 p.Google Scholar
Smith, C. E. (1998). Modeling high sinuosity meanders in a small flume. Geomorphology, 25, 1930.Google Scholar
Smith, M. E. and Nordin, C. F. (1988). Alignment characteristics of Rio Apure, Rep. CER99-89MES-CFN3, Civil Engineering, Colorado State University, 137 p.Google Scholar
Soar, P. J. and Thorne, C. R. (2001). Channel restoration design for meandering rivers. Rep. ERDC/CHL CR-01-1, USACE, ERDC, Vicksburg, MS, 437 p.Google Scholar
Sotir, R. B. and Fischenich, J. C. (2001). Live and inert fascine streambank erosion control. EMRRP Tech. Notes Coll., ERDC TN-EMRRP-SR-31, USACE, ERDC, Vicksburg, MS, 8 p.Google Scholar
Spah, J. A. (2000). Rainfall runoff and the effects of initial soil moisture associated with the Little Washita River Watershed, Oklahoma. M.S. thesis, Civil Engineering, Colorado State University, 140 p.Google Scholar
Stedinger, J. R., Vogel, R. M. and Foufoula-Georgiou, E. (1992). Frequency analysis of extreme events, Chap. 18. In Handbook of Hydrology. New York, NY: McGraw-Hill, 66 p.Google Scholar
Stedinger, J. R., Heath, D. C. and Thompson, K. (1996). Risk analysis for dam safety evaluation: hydrologic risk. IWR Rep. 96-R-13, Cornell University, 81 p.Google Scholar
Stein, O. R. (1990). Mechanics of headcut migration in rills. Ph.D. dissertation, Civil Engineering, Colorado State University, 215 p.Google Scholar
Stein, O. R. and Julien, P. Y. (1993). Criterion delineating the mode of headcut migration. J. Hyd. Eng., ASCE, 119(1), 3750.Google Scholar
Stein, O. R. and Julien, P. Y. (1994). Sediment concentration below free overfall. J. Hyd. Eng., ASCE, 120(9), 1043–59.Google Scholar
Stein, O. R., Julien, P. Y. and Alonso, C. V. (1993). Mechanics of jet scour downstream of a headcut. J. Hyd. Res., IAHR, 31(6), 723–38.Google Scholar
Steininger, A. (2014). Dam overtopping and flood routing with the TREX watershed model. M.S. thesis, Civil Engineering, Colorado State University, Fort Collins, CO, 82 p.Google Scholar
Sternberg, H. (1875). Untersuchungen über das Lagen-und Querprofil geschiebeführender Flüsse. Z. Bauwesen, 25, 483506.Google Scholar
Stevens, M. A. and Nordin, C. F. Jr. (1987). Critique of the regime theory for alluvial channels. J. Hyd. Eng., ASCE, 113, 1359–80.Google Scholar
Stevens, M. A. and Simons, D. B. (1971). Stability analysis for course granular material on slopes, Chap. 17. In River Mechanics. Fort Collins, CO: Water Resource Publication.Google Scholar
Stevens, M. A. and Simons, D. B. (1976). Safety factors for riprap protection. J. Hyd. Div., ASCE, 102, 637–55.Google Scholar
Storage (2004). First International Conference on Service Reservoirs. Geneva: Services Industriels de Genève, 229 p.Google Scholar
Straub, T. D. (2007). Erosion dynamic of a stepwise small dam removal, Brewster Creek Dam at St. Charles, Illinois. Ph.D. dissertation, Civil Engineering, Colorado State University, 174 p.Google Scholar
Strickler, A. (1923). Beiträge zur Frage der Geschwindichkeit – Formel und der Rauhigkeitszahlen für Ströme, Kanäle un Geschlossene Leitungen. Mitteilungen des Eidgenössischen Amtes für Wasserwirstschaft, Bern, Switzerland, 16g.Google Scholar
Struiksma, N., Olesen, K. W., Flokstra, C. and de Vriend, H. J. (1985). Bed deformation in curved alluvial channels. J. Hyd. Res., IAHR, 21, 5779.Google Scholar
Sundborg, A. (1956). The river Klaralven: a study of fluvial processes. Geografis. Ann. Stockholm, XXXVIII, 127316.Google Scholar
Swain, R. E., England, J. F. Jr., Bullard, K. L. and Raff, D. A. (2006). Guidelines for evaluating hydrologic hazards, US Department of the Interior, USBR, Denver, CO, 83 p.Google Scholar
Sylte, T. L. and Fishenich, J. C. (2000). Rootwad composites for streambank stabilization and habitat enhancement. EMRRP Tech. Notes Coll., ERDC TN-EMRRP-SR-21, USACE, ERDC, Vicksburg, MS.Google Scholar
Talmon, A. M., van Mierlo, M. C. L. M. and Struiksma, N. (1995). Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. J. Hyd. Res., IAHR, 22, 495517.Google Scholar
Teh, S. H. (2011). Soil erosion modeling using RUSLE and GIS on Cameron Highlands, Malaysia for hydropower development. M.S. thesis, School Renew. Energy Sc., Akureyri, Iceland, 76 p.Google Scholar
Teh, S. H., Mohd Sidek, L., Julien, P. Y. and Luis, J. (2014). GIS-based upland erosion mapping, Chap. 16. In Handbook of Engineering Hydrology. New York, NY: Taylor & Francis, 18 p.Google Scholar
ten Brinke, W. (2005). The Dutch Rhine a Restrained River. Veen magazines, B.V., Diemen, The Netherlands, 228 p.Google Scholar
Thomas, W. A. and McAnally, W. H. (1985). Users manual for the generalized computer program system: open channel flow and sedimentation, TABS-2. USACE, Waterways Experiment Station, Vicksburg, MS.Google Scholar
Thorne, C. R., Bathurst, J. C. and Hey, R. D., eds. (1987). Sediment Transport in Gravel-Bed Rivers. New York, NY: Wiley.Google Scholar
Thorne, C. R. and Osman, A. M. (1988). Riverbank stability analysis II: applications. J. Hyd. Eng., ASCE, 114, 151–72.Google Scholar
Thorne, C. R., Rais, S., Zevenbergen, L. W., Bradley, J. B. and Julien, P. Y. (1983). Measurements of bend flow hydraulics on the Fall River at low stage. Rep. WRFSL 83-9p, Civil Engineering, Colorado State University, 48 p.Google Scholar
Tsai, C. W. and Yen, B. C. (2004). Shallow water wave propagation in convectively accelerating open-channel flow induced by the tailwater effect. J. Eng. Mech., ASCE, 130(3), 320–36.CrossRefGoogle Scholar
Turner, T. M. (1996). Fundamentals of Hydraulic Dredging, 2nd ed. ISBN 0-7844-0147-0. Reston: ASCE, 258 p.Google Scholar
USACE and USBR (2015). Best practices in Dam and Levee safety risk – Part IX – risk assessment/management. Version 4.0, Document prepared for internal use in support of performing risk analysis for dam and levee safety projects.Google Scholar
US Army Corps of Engineers (1981). The streambank erosion control evaluation and demonstration act of 1974, Final Report to Congress, Executive Summary and Conclusions, Washington, DC.Google Scholar
US Army Corps of Engineers (1983). Dredging and Dredged Material Disposal. EM 1110-2-502. Washington, DC: US Government Printing Office.Google Scholar
US Army Corps of Engineers (1987). Land cover and aquatic habitat maps of the Mississippi River, Cairo Illinois to head of Passes, Louisiana, Mississippi River Commission, 58 maps.Google Scholar
US Army Corps of Engineers (1988). Flood control and navigation maps of the Mississippi River, Cairo Illinois to Gulf of Mexico, 56th ed. Lower Miss. Valley Div. 68 maps.Google Scholar
US Army Corps of Engineers (1991). Hydraulic design of flood control channels. EM 1110-2-1601, US Government Printing Office, Washington, DC.Google Scholar
US Army Corps of Engineers (1994a). Channel stability assessment for flood control projects. Engineer Manual EM 1110-2-1218, US Government Printing Office, Washington, DC.Google Scholar
US Army Corps of Engineers (1994b). Design of development of bendway weirs for the Dogtooth Bend reach, Mississippi River. HL-94-10, US Government Printing Office, Washington, DC.Google Scholar
US Army Corps of Engineers (1995). River analysis system, HEC-RAS User’s Manual Version 1.0. Hydrologic Engineering Center, Davis, CA.Google Scholar
US Army Corps of Engineers (1999). Lower Mississippi River sediment study. Two compact discs with report and data files.Google Scholar
US Bureau of Reclamation (1976). Design of Gravity Dams. US Department of the Interior, Washington, DC: US Government Printing Office, 553 p.Google Scholar
US Bureau of Reclamation (1977). Design of Small Dams, 2nd ed. US Department of the Interior, Washington, DC: US Government Printing Office, 816 p.Google Scholar
US Bureau of Reclamation (1983). Design of Small Canal Structures. US Department of the Interior, Washington, DC: US Government Printing Office, 435 p.Google Scholar
US Bureau of Reclamation (1997). Water Measurement Manual, 3rd ed. US Department of the Interior, Washington, DC: US Government Printing Office.Google Scholar
US Bureau of Reclamation (2006). Fish protection at water diversions – a guide for planning and designing fish exclusion facilities, US Department of Interior, Denver, CO, 480 p.Google Scholar
USBR and USACE (2015). Large Wood National Manual, assessment, planning, design and maintenance of large wood in fluvial ecosystems: restoring process, function and structure, www.usbr.gov/pn/, 628 p.Google Scholar
US Department of Agriculture (2007). Stream restoration design, Part 654 National Engineering Handbook, Washington, DC, 660 p.Google Scholar
US Department of Transportation, Federal Highway Administration (1988a). Scour at bridges. Tech. Advisory T5140.20, updated by Technical Advisory T514.23, 1991, Evaluating scour at bridges, Washington, DC.Google Scholar
US Department of Transportation, Federal Highway Administration (1988b). Interim procedures for evaluating scour at bridges, Off. Eng. Bridge Div., Washington, DC.Google Scholar
US Fish and Wildlife Service (2007). Rio Grande Silvery Minnow (Hybognathus amarus) Recovery Plan. Albuquerque, NM, xiii + 175 p.Google Scholar
Vaill, J. E. (1995). Application of a sediment-transport model to estimate bridge scour at selected sites in Colorado, 1991–93. Wat. Res. Invest. Rep. 95-4179, US Geological Survey, Denver, 37 p.Google Scholar
van Ledden, M. (2003). Sand-mud segregation in estuaries and tidal basins. Communications on Hydraulic and Geotechnical Engineering, Rep. 03-2, ISSN 0169-6548,TUD, Delft University of Technology, 218 p.Google Scholar
van Rijn, L. C. (1984). Sediment transport, part II, suspended load transport. J. Hyd. Div., ASCE, 110, 1613–41.Google Scholar
van Rijn, L. C. (1993). Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Amsterdam: Aqua Publications.Google Scholar
van Vuren, S. (2005). Stochastic modelling of river morphodynamics. Communications on Hydraulic and Geotechnical Engineering, Rep. 05-2, ISSN 0169-6548,TUD, Delft University of Technology, 275 p.Google Scholar
Vanoni, V. A. (1946). Transportation of suspended sediment by water. Trans. ASCE, 3, pap. 2267, 67133.Google Scholar
Velleux, M. (2005). Spatially distributed model to assess watershed contaminant transport and fate. Ph.D. dissertation, Civil Engineering, Colorado State University, 261 p.Google Scholar
Velleux, M., England, J. and Julien, P. Y. (2008). TREX: Spatially distributed model to assess watershed contaminant transport and fate. Sci. Total Environ., 404(1), 113–28.Google Scholar
Velleux, M., Julien, P. Y., Rojas-Sanchez, R., Clements, W. and England, J. (2006). Simulation of metals transport and toxicity at a mine-impacted watershed: California Gulch, Colorado. Env. Sci. Technol., 40(22), 69967004.Google Scholar
Velleux, M., Redman, A., Paquin, P., et al. (2012). Exposure assessment for potential risks from antimicrobial copper in urbanized areas. Env. Sci. Technol., 46, 6723–32.Google Scholar
Velleux, M., Westenbroek, S., Ruppel, J., Settles, M. and Endicott, D. (2001). A user's guide to IPX, the in-place pollutant export water quality modeling framework. V. 2.7.4., EPA/600/R-01/079, US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Grosse Ile, Michigan. 179 p.Google Scholar
Vensel, C. W. (2005). Review of sedimentation issues on the Mississippi River. M.S. technical report, Civil Engineering, Colorado State University, 62 p.Google Scholar
Vischer, D. and Hager, W. H. (1992). Hochwasser-rueckhaltebecken. Verlag der Fachvereine Zurich, Schweitzerische Hochschule und Technik AG, Zurich, Switzerland, 211 p.Google Scholar
Vischer, D. and Hager, W. H., eds. (1995). Energy Dissipators. Rotterdam: Balkema, 201 p.Google Scholar
Vischer, D. and Sinniger, R. (1999). Hydropower in Switzerland. Soc. Art Civil Eng., 4, 131.Google Scholar
Visser, P. J. (1995). Application of sediment transport formulae to sand-dike breach erosion. Communications on Hydraulic and Geotechnical Engineering, ISSN 0169-6548, TUD, Delft University of Technology, 78 p.Google Scholar
Voicu, R., Banaduc, D., Kay, E., Schneider-Binder, E. and Curtean-Banaduc, A. (2017). Improvement of lateral connectivity in a sector of River Hartibaciu (Olt/Danube basin). Transylv. Rev. Syst. Res., 19(2), 5368.Google Scholar
Vreugdenhill, C. G. (1972). Mathematical methods for flood waves. DHL Res. Rep. 89-IV, Delft Hydraulics, Delft, The Netherlands.Google Scholar
Wargadalam, J. (1993). Hydraulic geometry equations of alluvial channels. Ph.D. dissertation, Civil Engineering, Colorado State University, Fort Collins, CO, 203 p.Google Scholar
Warren, S. D., Mitasova, H., Jourdan, M. R., et al. (2000). Digital terrain modeling and distributed soil erosion simulation/measurement for minimizing environmental impacts of military training (CS-752). CEMML TPS 00-2, Forest Sc., Colorado State University, 65 p.Google Scholar
Water Environment Federation (WEF) (2001). Natural Systems for Wastewater Treatment, 2nd ed. Alexandria, VA: Task force of the WEF, 326 p.Google Scholar
Water Resources Council, Hydrology Committee (1981). Guidelines for Determining Flood Frequency. Bull. 17B, U.S. Washington, DC: Water Resources Council.Google Scholar
Watson, C. C., Biedenharn, D. S. and Scott, S. H. (1999). Channel Rehabilitation: Processes, Design, and Implementation. Vicksburg, MS: USACE, ERDC, 312 p.Google Scholar
Watson, C. C., Harvey, M. D., Biedenharn, D. S. and Combs, P. (1988). Geotechnical and hydraulic stability numbers for channel rehabilitation: Part I, the approach, and Part II, Application. In Proc. Hyd. Div. Natl. Conf. Colorado Springs, CO: ASCE, 120–31.Google Scholar
Weinhold, M. R. (2001). Application of a site-calibrated Parker-Klingeman bedload transport model, Little Granite Creek, Wyoming. M.S. thesis, Colorado State University, 79 p.Google Scholar
Wemelsfelder, P. (1947). Hoogwatergolf doorbrak moehnetalsperre. Het Ingenieur, 42, 103–5.Google Scholar
White, W. R., ed. (1987). Topics in fluvial hydraulics. XXII IAHR Cong., Lausanne, 385 p.Google Scholar
White, W. R., ed. (1988). International Conference of River Regime. Wallingford: Wiley.Google Scholar
White, W. R., Bettess, R. and Paris, E. (1982). Analytical approach to river regime. J. Hyd. Div., ASCE, 108, 1179–93.Google Scholar
Whiting, P. J. and Dietrich, W. E. (1990). Boundary shear stress and roughness over mobile alluvial beds. J. Hyd. Div., ASCE, 116, 1495–511.Google Scholar
Wiberg, P. and Smith, J. D. (1987). Calculations of the critical shear stress for motion of uniform and heterogeneous sediment. Wat. Res. Res., AGU, 23, 1471–80.Google Scholar
Williams, D. T. (1995). Selection and predictability of sand transport relations based upon a numerical index. Ph.D. dissertation, Civil Engineering, Colorado State University, 152 p.Google Scholar
Williams, G. P. (1978). Bank-full discharge of rivers. Wat. Res. Res., AGU, 14, 1141–54.Google Scholar
Williamsm, D. T. and Julien, P. Y. (1989). On the selection of sediment transport equations. J. Hyd. Eng., ASCE, 115(11), 1578–81.Google Scholar
Williams, G. P. and Wolman, M. G. (1984). Downstream effects of dams on alluvial rivers. USGS Prof. Paper 1286, US Government Printing Office, Washington, DC.Google Scholar
Winkley, B. (1977). Man-made cutoffs on the Lower Mississippi River, conception, construction, and river response. Potamology Invest. Rep. 300-2, USACE, Vicksburg District, MS, 209 p.Google Scholar
Winkley, B. (1989). The Lower Mississippi River and the Coriolis force. In Proc. Natl. Conf. Hyd. Eng. New York, NY: ASCE, 1114–19.Google Scholar
Wischmeier, W. H. and Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. In USDA Agriculture Handbook 53–7, Washington, DC.Google Scholar
Wohl, E. (2000). Mountain Rivers. Water Res. Monog. 14, AGU, Washington, DC.Google Scholar
Wolman, M. G. and Leopold, L. B. (1957). River floodplains: some observations on their formation. USGS Prof. Paper 282-C, US Geological Survey, Washington, DC.Google Scholar
Woo, H. S. (2002). River Hydraulics, 1st ed. Seoul: Cheong Mun Gak, South Korea, 844 p.Google Scholar
Woo, H. S., ed. (2006). River Restoration Casebook. River Restoration Comm., Paju, Geonggi Do: Cheong Mun Gak, South Korea, 227 p.Google Scholar
Woo, H. S. and Julien, P. Y. (1990). Turbulent shear stress in heterogeneous sediment-laden flows. J. Hyd. Eng., ASCE, 116(11), 1416–21.Google Scholar
Woo, H. S., Julien, P. Y. and Richardson, E. V. (1986). Washload and fine sediment load. J. Hyd. Eng., ASCE, 112(6), 541–5.Google Scholar
Woo, H. S., Julien, P. Y. and Richardson, E. V. (1987). Transport of bed sediment in clay suspensions. J. Hyd. Eng., ASCE, 113(8), 1061–6.Google Scholar
Woo, H. S., Julien, P. Y. and Richardson, E. V. (1988). Suspension of large concentrations of sands. J. Hyd. Eng., ASCE, 114, 888–98.Google Scholar
Woo, H. S., Kim, W. and Ji, U. (2015). River Hydraulics, 2nd ed. Paju, Geonggi Do: Cheong Mun Gak, South Korea, 688 p.Google Scholar
Woolhiser, C. A. (1975). Simulation of unsteady overland flow, Chap. 12. In Unsteady Flow in Open Channels, Washington, DC: Water Resource Publications, 485507.Google Scholar
World Meteorological Organization (1986). Manual for estimation of probable maximum precipitation, 2nd ed. Oper. Hydrol. Rep. 1, WMO 332, Geneva, 252.Google Scholar
World Meteorological Organization (2010). Manual on stream gauging, Vol. I Fieldwork. And Vol. 2, WMO1044, Geneva, Switzerland.Google Scholar
Wu, B., Molinas, A. and Julien, P. Y. (2004). Bed-material load computations for nonuniform sediments. J. Hyd. Eng., ASCE, 130(10), 1002–12.Google Scholar
Wu, B., Wang, Z. Y., Wang, G., et al., eds. (2002). Flood Defence ’2002. Beijing: Science Press, 1733 p.Google Scholar
Yalin, M. S. (1971). Theory of Hydraulic Models. London: Macmillan.Google Scholar
Yalin, M. S. (1992). River Mechanics. New York, NY: Pergamon, 220 p.Google Scholar
Yalin, M. S. and Karahan, E. (1979). Inception of sediment transport. J. Hyd. Div., ASCE, 105, 1433–43.Google Scholar
Yang, C. T. (1976). Minimum unit stream power and fluvial hydraulics. J. Hyd. Div., ASCE, 102, 919–34.Google Scholar
Yang, C. T. and Simoes, F. (2000). User’s manual for GSTARS 2.1. USBR, Technical Service Center, Denver, CO, 94 p.Google Scholar
Yanmaz, A. M. and Altinbilek, H. D. (1991). Study of time-dependent local scour around bridge piers. J. Hyd. Eng., ASCE, 117, 1247–68.Google Scholar
Yen, C. L. (1970). Bed topography effect on flow in a meander. J. Hyd. Div., ASCE, 96, 5773.Google Scholar
Yen, C. L. and Lee, K. T. (1995). Bed topography and sediment sorting in channel bend with unsteady flow. J. Hyd. Eng., ASCE, 121, 591–9.Google Scholar
Yu, B. and Rosewell, C. J. (1996). A robust estimator of the R-Factor for the Universal Soil Loss Equation. Trans. ASAE, 39, 559–61.Google Scholar
Zeller, J. (1967a). Flussmorphologische Studie zum Mäanderproblem. Geogr. Helv., 22(2), 5795.Google Scholar
Zeller, J. (1967b). Meandering channels in Switzerland. In Proc. Symp. River Morph. IAHR.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Pierre Y. Julien, Colorado State University
  • Book: River Mechanics
  • Online publication: 21 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781316107072.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Pierre Y. Julien, Colorado State University
  • Book: River Mechanics
  • Online publication: 21 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781316107072.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Pierre Y. Julien, Colorado State University
  • Book: River Mechanics
  • Online publication: 21 March 2018
  • Chapter DOI: https://doi.org/10.1017/9781316107072.017
Available formats
×