Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T10:16:59.061Z Has data issue: false hasContentIssue false

4 - Steady flow in rivers

Published online by Cambridge University Press:  05 June 2012

Pierre Y. Julien
Affiliation:
Colorado State University
Get access

Summary

Steady flow refers to flow conditions that do not change with time. Steady flows can be either uniform when the conditions do not change with space or nonuniform when flow conditions change with space. Steady flow in rivers (Section 4.1) includes description of at-a-station hydraulic geometry, followed by a description of steady-uniform flow and resistance to flow. Steady-nonuniform flows (Section 4.2) include an analysis of the momentum equations followed by rapidly varied flow and gradually varied flow. Sediment transport in rivers (Section 4.3) includes a simple description for sediment transport in steadyuniform flow followed with calculations of aggradation and degradation in river reaches.

Steady river flow

Drainage networks have been studied by geomorphologists and topologists. In general, topologists search mathematical ranking and order among subwatersheds without specific reference to physical entities. The results of several years of experimental studies from the Rainfall Erosion Facility at Colorado State University by Schumm et al. (1987) attempted to relate basin morphology and sediment yield. Although considerable sediment-yield variability is assumed to result from climatic fluctuations and land-use changes, the experiments show that sediment yield is highly variable under steady rainfall conditions. The complex response of channel network evolution seems to be characterized by an exponential decrease in sediment yield as the channel network develops.

Rivers follow the low points along the watershed topographic profiles. With very few exceptions in arid areas, the lowest point of awatershed is located at the river outlet.

Type
Chapter
Information
River Mechanics , pp. 79 - 121
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×