Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-24T09:33:03.275Z Has data issue: false hasContentIssue false

5 - VSP → SSP convolution transform

Published online by Cambridge University Press:  15 October 2009

Gerard Thomas Schuster
Affiliation:
University of Utah
Get access

Summary

This chapter presents the VSP → SSP convolution transform that converts vertical seismic profile traces into virtual surface seismic profile data. Unlike the cross-correlation reciprocity equations, the convolution reciprocity equation employs the convolution of two causal Green's functions to predict virtual traces. Convolving two short-raypath primaries creates a virtual SSP multiple with a longer raypath, which is opposite to the shortening of raypaths by correlation. Elongating raypaths suggests that the convolution transform can be interpreted as redatuming the acquisition array to be further from the target, a seemingly undesirable operation. However, there are a number of practical uses, one of which is to integrate VSP and SSP data sets collected over the same area.

Introduction

Sometimes SSP and VSP data are both recorded over the same area, with the attendant task of integrating the two data sets. One possible integration strategy is to transform by correlation the SSP traces into virtual VSP data,which can be directly compared to the actual VSP data. The mathematics for this type of redatuming is described in Chapter 8. However, SSP → VSP redatuming can be time consuming because a typical 3D SSP data volume is huge compared to the relatively small VSP data set. Also, interpreters prefer interpreting SSP data because of its wide-area illumination of subsurface geology. An alternative is to redatum the VSP data so that the VSP receivers are virtually relocated to the surface. In this case the raypaths of the VSP reflections become longer after redatuming so traveltimes of events, in the frequency domain, must be added rather than subtracted. As illustrated in Figure 5.1, this means that the Green's function will be temporally convolved rather than correlated as in the previous chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×