Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T13:51:10.085Z Has data issue: false hasContentIssue false

7 - Neuroimaging of grasping

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

The last 10 years have seen major advances in the functional magnetic resonance imaging (fMRI) of the brain's role in grasping. A number of technical problems related to artefacts produced by arm movements and the registration of movements and fingertip forces have been solved. Reproducible activation of key areas involved in grasping, such as the ventral premotor cortex and the anterior part of the intraparietal sulcus, has been reported. More than that, fMRI seems to be capable of detecting biologically relevant activity in all the cortical and subcortical structures involved in the control of reaching, grasping and manipulation. Importantly, imaging has also been able to identify how activity in these areas supports key sensorimotor control mechanisms used in human dexterous manipulation. In particular, the anticipatory and reactive control of grip forces during object manipulation has been associated with specific neuronal responses in motor, parietal and cerebellar areas. Particularly interesting new lines of research include the use of effective connectivity analyses to characterize the neural interactions between the nodes in the frontoparietal circuits, and the combination of computational neuroscience approaches and functional imaging.

Functional magnetic resonance imaging is one of the most important techniques available to cognitive neuroscientists. It is a non-invasive, relatively inexpensive, whole-brain imaging modality that can be used to investigate the brain basis of perception, action and cognition with an anatomical resolution of 2–3 mm. In this chapter we will describe the contribution of this method to the understanding of human grasping and object manipulation.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 84 - 98
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Begliomini, C., Wall, M. B., Smith, A. T. & Castiello, U. (2007a). Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur J Neurosci, 25, 1245–1252.CrossRefGoogle ScholarPubMed
Begliomini, C., Caria, A., Grodd, W. & Castiello, U. (2007b). Comparing natural and constrained movements: new insights into the visuomotor control of grasping. PLoS ONE, 2, e1108.CrossRefGoogle ScholarPubMed
Binkofski, F., Dohle, C., Posse, S.et al. (1998). Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology, 50, 1253–1259.CrossRefGoogle ScholarPubMed
Binkofski, F., Buccino, G., Posse, S.et al. (1999). A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci, 11, 3276–3286.CrossRefGoogle ScholarPubMed
Boecker, H., Lee, A., Muhlau, M.et al. (2005). Force level independent representations of predictive grip force-load force coupling: a PET activation study. Neuroimage, 25, 243–252.CrossRefGoogle ScholarPubMed
Bursztyn, L. L., Ganesh, G., Imamizu, H., Kawato, M. & Flanagan, J. R. (2006). Neural correlates of internal-model loading. Curr Biol, 16, 2440–2445.CrossRefGoogle ScholarPubMed
Castiello, U. (2005). The neuroscience of grasping. Nat Rev Neurosci, 6, 726–736.CrossRefGoogle ScholarPubMed
Castiello, U. & Begliomini, C. (2008). The cortical control of visually guided grasping. Neuroscientist, 14, 157–170.CrossRefGoogle ScholarPubMed
Cavina-Pratesi, C., Goodale, M. A. & Culham, J. C. (2007). FMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. PLoS ONE, 2, e424.CrossRefGoogle ScholarPubMed
Clower, D. M., West, R. A., Lynch, J. C. & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci, 21, 6283–6291.CrossRefGoogle ScholarPubMed
Clower, D. M., Dum, R. P. & Strick, P. L. (2005). Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex, 15, 913–920.CrossRefGoogle Scholar
Culham, J. C. & Valyear, K. F. (2006). Human parietal cortex in action. Curr Opin Neurobiol, 16, 205–212.CrossRefGoogle ScholarPubMed
Culham, J. C., Danckert, S. L., DeSouza, J. F.et al. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res, 153, 180–189.CrossRefGoogle Scholar
Culham, J. C., Cavina-Pratesi, C. & Singhal, A. (2006). The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia, 44, 2668–2684.CrossRefGoogle ScholarPubMed
Durand, J. B., Nelissen, K., Joly, O.et al. (2007). Anterior regions of monkey parietal cortex process visual 3D shape. Neuron, 55, 493–505.CrossRefGoogle ScholarPubMed
Ehrsson, H. H. (2001). Neural correlates of skilled movement: functional mapping of the human brain with fMRI and PET. PhD thesis at Department of Woman and Child Health. Stockholm: Karolinska University Press.
Ehrsson, H. H., Fagergren, A., Jonsson, T.et al. (2000). Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol, 83, 528–536.CrossRefGoogle Scholar
Ehrsson, H. H., Fagergren, E. & Forssberg, H. (2001). Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol, 85, 2613–2623.CrossRefGoogle Scholar
Ehrsson, H. H., Fagergren, A., Johansson, R. S. & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol, 90, 2978–2986.CrossRefGoogle ScholarPubMed
Ehrsson, H. H., Fagergren, A., Ehrsson, G. O. & Forssberg, H. (2007). Holding an object: neural activity associated with fingertip force adjustments to external perturbations. J Neurophysiol, 97, 1342–1352.CrossRefGoogle Scholar
Fink, G. R., Frackowiak, R. S., Pietrzyk, U. & Passingham, R. E. (1997). Multiple nonprimary motor areas in the human cortex. J Neurophysiol, 77, 2164–2174.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Burstedt, M. K. & Johansson, R. S. (1999). Control of fingertip forces in multidigit manipulation. J Neurophysiol, 81, 1706–1717.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Bowman, M. C. & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Curr Opin Neurobiol, 16, 650–659.CrossRefGoogle ScholarPubMed
Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. (1996a). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res, 112, 103–111.CrossRefGoogle ScholarPubMed
Grafton, S. T., Fagg, A. H., Woods, R. P. & Arbib, M. A. (1996b). Functional anatomy of pointing and grasping in humans. Cereb Cortex, 6, 226–237.CrossRefGoogle ScholarPubMed
Grol, M. J., Majdandzic, J., Stephan, K. E.et al. (2007). Parieto-frontal connectivity during visually guided grasping. J Neurosci, 27, 11877–11887.CrossRefGoogle ScholarPubMed
Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci, 18, 314–320.CrossRefGoogle ScholarPubMed
Jenmalm, P., Schmitz, C., Forssberg, H. & Ehrsson, H. H. (2006). Lighter or heavier than predicted: neural correlates of corrective mechanisms during erroneously programmed lifts. J Neurosci, 26, 9015–9021.CrossRefGoogle ScholarPubMed
Johansson, R. S. (1996). Sensory control of dexterous manipulation. In Wing, A. M., Haggard, P. & Flanagan, J. R. (Eds.), Hand and Brain: The Neurophysiology and Psychology of Hand Movements (pp. 381–412). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 56, 550–564.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol, 2, 815–823.CrossRefGoogle ScholarPubMed
Kawato, M. & Wolpert, D. (1998). Internal models for motor control. Novartis Found Symp, 218, 291–304; discussion 304–297.Google ScholarPubMed
Kawato, M., Kuroda, T., Imamizu, H.et al. (2003). Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res, 142, 171–188.CrossRefGoogle ScholarPubMed
Kinoshita, H., Oku, N., Hashikawa, K. & Nishimura, T. (2000). Functional brain areas used for the lifting of objects using a precision grip: a PET study. Brain Res, 857, 119–130.CrossRefGoogle ScholarPubMed
Kuhtz-Buschbeck, J. P., Ehrsson, H. H. & Forssberg, H. (2001). Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci, 14, 382–390.CrossRefGoogle Scholar
Kwong, K. K., Belliveau, J. W., Chesler, D. A.et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA, 89, 5675–5679.CrossRefGoogle ScholarPubMed
Lauritzen, M. & Gold, L. (2003). Brain function and neurophysiological correlates of signals used in functional neuroimaging. J Neurosci, 23, 3972–3980.CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2003). The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci, 23, 3963–3971.CrossRefGoogle ScholarPubMed
Logothetis, N. K. & Wandell, B. A. (2004). Interpreting the BOLD signal. Annu Rev Physiol, 66, 735–769.CrossRefGoogle ScholarPubMed
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.CrossRefGoogle ScholarPubMed
Matsumura, M., Kawashima, R., Naito, E.et al. (1996). Changes in rCBF during grasping in humans examined by PET. Neuroreport, 7, 749–752.CrossRefGoogle ScholarPubMed
Murata, A., Fadiga, L., Fogassi, L.et al. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol, 78, 2226–2230.CrossRefGoogle ScholarPubMed
Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol, 83, 2580–2601.CrossRefGoogle ScholarPubMed
Napier, J. R. J. (1956). The prehensile movements of the human hand. J Bone Joint Surg, 38B, 902–913.CrossRefGoogle Scholar
O'Doherty, J. P., Dayan, P., Friston, K., Critchley, H. & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38, 329–337.CrossRefGoogle ScholarPubMed
Ogawa, S., Tank, D. W., Menon, R.et al. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA, 89, 5951–5955.CrossRefGoogle ScholarPubMed
Orban, G. A., Essen, D. & Vanduffel, W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci, 8, 315–324.CrossRefGoogle ScholarPubMed
Rasch, M. J., Gretton, A., Murayama, Y., Maass, W. & Logothetis, N. K. (2008). Inferring spike trains from local field potentials. J Neurophysiol, 99, 1461–1476.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Camarda, R., Fogassi, L.et al. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res, 71, 491–507.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Matelli, M.et al. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res, 111, 246–252.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L. & Gallese, V. (2002). Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol, 12, 149–154.CrossRefGoogle ScholarPubMed
Roland, E. & Larsen, B. (1976). Focal increase of cerebral blood flow during stereognostic testing in man. Arch Neurol, 33, 551–558.CrossRefGoogle ScholarPubMed
Roland, P. E. & Zilles, K. (1996). Functions and structures of the motor cortices in humans. Curr Opin Neurobiol, 6, 773–781.CrossRefGoogle ScholarPubMed
Sakata, H., Taira, M., Murata, A. & Mine, S. (1995). Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex, 5, 429–438.CrossRefGoogle ScholarPubMed
Schmitz, C., Jenmalm, P., Ehrsson, H. H. & Forssberg, H. (2005). Brain activity during predictable and unpredictable weight changes when lifting objects. J Neurophysiol, 93, 1498–1509.CrossRefGoogle ScholarPubMed
Taira, M., Mine, S., Georgopoulos, A. P., Murata, A. & Sakata, H. (1990). Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res, 83, 29–36.CrossRefGoogle ScholarPubMed
Tsao, D. Y., Freiwald, W. A., Tootell, R. B. & Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science, 311, 670–674.CrossRefGoogle ScholarPubMed
Wilke, M., Logothetis, N. K. & Leopold, D. A. (2006). Local field potential reflects perceptual suppression in monkey visual cortex. Proc Natl Acad Sci USA, 103, 17507–17512.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nat Neurosci, 3 Suppl., 1212–1217.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×