Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-14T04:59:19.228Z Has data issue: false hasContentIssue false

9 - Single-Molecule Detection in the Study of Gene Expression

from Part IV - Single-Molecule Biology to Study Gene Expression

Published online by Cambridge University Press:  05 May 2022

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Raghu Kiran Appasani
Affiliation:
Psychiatrist, Neuroscientist, & Mental Health Advocate
Get access

Summary

Determining rules for gene expression regulation is an important step toward predicting how cells are decoding the genome sequence to create a wide variety of phenotypes. Recent advances in imaging technologies revealed the stochastic nature of gene expression, in which different numbers of mRNA and protein molecules can be created in cells that have the same genome sequence (Elowitz, 2002); Kaufmann and van Oudenaarden, 2007). An early research revealed that this stochasticity is yielded by two factors: intrinsic and extrinsic noise. While the former is due to instant random chemical reactions in gene expression process, the latter is caused by cell specific molecular states emerging from the integration of gene expression over a longer time (Elowitz, 2002); Kaufmann and van Oudenaarden 2007). This finding inspired studies to investigate how cells deterministically cause robust phenotypes under such stochasticity. In contrast, this also motivated investigations on how cells utilize this stochasticity to generate different kinds of phenotypes for processes such as neural development (Johnson et al., 2015), emergence of bacterial resistance (Sánchez-Romero and Casadesús, 2014), or cancer development (Marusyk et al., 2012; Junttila and de Sauvage, 2013).

Type
Chapter
Information
Single-Molecule Science
From Super-Resolution Microscopy to DNA Mapping and Diagnostics
, pp. 127 - 141
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axelrod, D. (1981). Cell-Substrate Contacts Illuminated by Total Internal Reflection Fluorescence. Journal of Cell Biology, 89(1), 41145.Google ScholarPubMed
Bates, M., Huang, B., and Dempsey, G. T. (2007). Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes. Science, 317, 17491753.CrossRefGoogle ScholarPubMed
Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., and Long, R. M. (1998). Localization of ASH1 mRNA Particles in Living Yeast. Molecular Cell, 2, 437445.CrossRefGoogle ScholarPubMed
Bintu, L., Ishibashi, T., Dangkulwanich, M., Wu, Y-Y., Lubkowska, L., Kashlev, M., and Bustamante, C. (2012). Nucleosomal Elements That Control the Topography of the Barrier to Transcription. Cell, 151(4), 738749.Google Scholar
Block, S. M., Goldstein, L. S., and Schnapp, B. J. (1990). Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers. Nature, 348, 348352.Google Scholar
Brock, A., Krause, S., and Ingber, D. E. (2015). Control of Cancer Formation by Intrinsic Genetic Noise and Microenvironmental Cues. Nature Reviews Cancer, 15(8), 499509.Google Scholar
Brown, C. R., Mao, C., Falkovskaia, E., Jurica, M. S., and Boeger, H. (2013). Linking Stochastic Fluctuations in Chromatin Structure and Gene Expression. PLoS Biology, 11(8), e1001621.Google Scholar
Cai, L., Friedman, N., and Xie, X. S. (2006). Stochastic Protein Expression in Individual Cells at the Single Molecule Level. Nature, 440(7082), 358362.CrossRefGoogle ScholarPubMed
Chen, B.-C., Legant, W. R., Wang, K., et al. (2014). Lattice Light-Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution. Science, 346(6208), 1257998.CrossRefGoogle ScholarPubMed
Dey, S. S., Foley, J. E., Limsirichai, P., Schaffer, D. V., and Arkin, A. P. (2015). Orthogonal Control of Expression Mean and Variance by Epigenetic Features at Different Genomic Loci. Molecular Systems Biology, 11(5), 806.CrossRefGoogle ScholarPubMed
Duchi, D., Bauer, D. L. V., Fernandez, L., et al. (2016). RNA Polymerase Pausing during Initial Transcription. Molecular Cell, 63(6), 939950.Google Scholar
Eggeling, C., Widengren, J., Rigler, R., and Seidel, C. A. M. (1998). Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis. Analytical Chemistry, 70(13), 26512659.Google Scholar
Eid, J., Fehr, A., Gray, J., et al. (2009). Real-Time DNA Sequencing from Single Polymerase Molecules. Science, 323(5910), 133138.Google Scholar
Elowitz, M. B. (2002). Stochastic Gene Expression in a Single Cell. Science, 297(5584), 11831186.CrossRefGoogle Scholar
Fazal, F. M. and Block, S. M. (2011). Optical Tweezers Study Life under Tension. Nature Photonics, 5, 318321.Google Scholar
Femino, A. M., Fay, F. S., Fogarty, K., and Singer, R. H. (1998). Visualization of Single RNA Transcripts in Situ. Science, 280, 585590.Google Scholar
Friedman, N., Cai, L., and Xie, X. S. (2006). Linking Stochastic Dynamics to Population Distribution: An Analytical Framework of Gene Expression. Physical Review Letters, 97(16), 168302.Google Scholar
Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., and Yanagida, T. (1995). Imaging of Single Fluorescent Molecules and Individual ATP Turnovers by Single Myosin Molecules in Aqueous Solution. Nature, 374(6522), 555559.Google Scholar
Gai, H., Stayon, I., Liu, X., Lin, B., and Ma, Y. (2007). Visualizing Chemical Interactions in Life Sciences with Wide-Field Fluorescence Microscopy towards the Single-Molecule Level. Trends in Analytical Chemistry: TRAC, 26(10), 980992.Google Scholar
Gaspar, I. and Ephrussi, A. (2015). Strength in Numbers: Quantitative Single-Molecule RNA Detection Assays. Wiley Interdisciplinary Reviews in Developmental Biology, 4, 135150.CrossRefGoogle ScholarPubMed
Golding, I,. Paulsson, J., Zawilski, S. M., and Cox, E. C. (2005). Real-Time Kinetics of Gene Activity in Individual Bacteria. Cell, 123(6), 10251036.Google Scholar
Grimm, J. B., English, B. P., Chen, J., et al. (2015). A General Method to Improve Fluorophores for Live-Cell and Single-Molecule Microscopy. Nature Methods, 12(3), 244250, 3 p following 250.Google Scholar
Hammar, P,. Leroy, P,. Mahmutovic, A., Marklund, E. G., Berg, O. G., and Elf, J. (2012). The Lac Repressor Displays Facilitated Diffusion in Living Cells. Science, 336(6088), 15951598.Google Scholar
Horvathova, I., Voigt, F., Kotrys, A. V., et al. (2017). The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells. Molecular Cell, 68(3), 615625.e9.Google Scholar
Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., and Stelzer, E. H. (2004). Optical Sectioning Deep inside Live Embryos by Selective Plane Illumination Microscopy. Science, 305, 10071009.CrossRefGoogle ScholarPubMed
Iino, R., Koyama, I., and Kusumi, A. (2001). Single Molecule Imaging of Green Fluorescent Proteins in Living Cells: E-Cadherin Forms Oligomers on the Free Cell Surface. Biophysical Journal, 80, 26672677.Google Scholar
Izeddin, I., Récamier, V., Bosanac, L., and Cissé, I. I. (2014). Single-Molecule Tracking in Live Cells Reveals Distinct Target-Search Strategies of Transcription Factors in the Nucleus. eLife, 3, e02230.CrossRefGoogle ScholarPubMed
Johnson, M. B., Wang, P. P., Atabay, K. D., et al. (2015). Single-Cell Analysis Reveals Transcriptional Heterogeneity of Neural Progenitors in Human Cortex. Nature Neuroscience, 18(5), 637646.CrossRefGoogle ScholarPubMed
Junttila, M. R. and de Sauvage, F. J. (2013). Influence of Tumour Micro-Environment Heterogeneity on Therapeutic Response. Nature, 501(7467), 346354.CrossRefGoogle ScholarPubMed
Kaufmann, B. B. and van Oudenaarden, A. (2007). Stochastic Gene Expression: From Single Molecules to the Proteome. Current Opinion in Genetics & Development, 17(2), 107112.CrossRefGoogle Scholar
Kodera, N., Yamamoto, D., Ishikawa, R., and Ando, T. (2010). Video Imaging of Walking Myosin V by High-Speed Atomic Force Microscopy. Nature, 468(7320), 7276.Google Scholar
Komorowski, M., Miekisz, J., and Kierzek, A. M. (2009). Translational Repression Contributes Greater Noise to Gene Expression Than Transcriptional Repression. Biophysical Journal, 96(2), 372384.Google Scholar
Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A., and Singer, R. H. (2011). Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science, 332(6028), 475478.Google Scholar
Larson, M. H., Mooney, R. A., Peters, J. M., et al. (2014). A Pause Sequence Enriched at Translation Start Sites Drives Transcription Dynamics in Vivo. Science, 344(6187), 10421047.Google Scholar
Lillacci, G. and Khammash, M. (2013). The Signal within the Noise: Efficient Inference of Stochastic Gene Regulation Models Using Fluorescence Histograms and Stochastic Simulations. Bioinformatics , 29(18), 23112319.Google Scholar
Lim, F., Downey, T. P., and Peabody, D. S. (2001). Translational Repression and Specific RNA Binding by the Coat Protein of the Pseudomonas Phage PP7. Journal of Biological Chemistry, 276, 2250722513.CrossRefGoogle ScholarPubMed
Liu, T., et al. (2014). Direct Measurement of the Mechanical Work during Translocation by the Ribosome. eLife, 3, e03406.CrossRefGoogle ScholarPubMed
Liu, Z., Lavis, L. D., and Betzig, E. (2015). Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level. Molecular Cell, 58(4), 644659.Google Scholar
Lu, Y., Kaplan, A., Alexander, L., et al. (2015). Substrate Degradation by the Proteasome: A Single-Molecule Kinetic Analysis. Science, 348(6231), 1250834.Google Scholar
Luo, Y., North, J. A., Rose, S. D., and Poirier, M. G. (2014). Nucleosomes Accelerate Transcription Factor Dissociation. Nucleic Acids Research, 42(5), 30173027.Google Scholar
Marcon, E., Jain, H., Bhattacharya, A., et al. (2015). Assessment of a Method to Characterize Antibody Selectivity and Specificity for Use in Immunoprecipitation. Nature Methods, 12(8), 725731.Google Scholar
Martin, R. M., Rino, J., Carvalho, C., Kirchhausen, T., and Carmo-Fonseca, M. (2013). Live-Cell Visualization of Pre-mRNA Splicing with Single-Molecule Sensitivity. Cell Reports, 4(6), 11441155.Google Scholar
Marusyk, A., Almendro, V., and Polyak, K. (2012). Intra-Tumour Heterogeneity: A Looking Glass for Cancer? Nature Reviews Cancer, 12(5), 323334.CrossRefGoogle ScholarPubMed
Moerner, W. E. and Fromm, D. P. (2003). Methods of Single-Molecule Fluorescence Spectroscopy and Microscopy. Review of Scientific Instruments, 74(8), 35973619.Google Scholar
Munsky, B., Fox, Z., and Neuert, G. (2015). Integrating Single-Molecule Experiments and Discrete Stochastic Models to Understand Heterogeneous Gene Transcription Dynamics. Methods , 85, 1221.Google Scholar
Neher, E. and Sakmann, B. (1976). Single-Channel Currents Recorded from Membrane of Denervated Frog Muscle Fibres. Nature, 260(5554), 799802.Google Scholar
Newman, J. R. S., Ghaemmaghami, S., Ihmels, J., et al. (2006). Single-Cell Proteomic Analysis of S. Cerevisiae Reveals the Architecture of Biological Noise. Nature, 441(7095), 840846.Google Scholar
Paulsson, J. (2005). Models of Stochastic Gene Expression. Physics of Life Reviews, 2(2), 157175.Google Scholar
Pawley, J. (2012). Handbook of Biological Confocal Microscopy. Springer Science & Business Media, New York, NY.Google Scholar
Presman, D. M., Ball, D. A., Paakinaho, V., et al. (2017). Quantifying Transcription Factor Binding Dynamics at the Single-Molecule Level in Live Cells. Methods , 123, 7688.Google Scholar
Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., and Tyagi, S. (2006). Stochastic mRNA Synthesis in Mammalian Cells. PLoS Biology, 4(10), e309.Google Scholar
Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A., and Tyagi, S. (2008). Imaging Individual mRNA Molecules Using Multiple Singly Labeled Probes. Nature Methods, 10, 877879.CrossRefGoogle Scholar
Raj, A. and van Oudenaarden, A. (2009). Single-Molecule Approaches to Stochastic Gene Expression. Annual Review of Biophysics, 38, 255270.CrossRefGoogle ScholarPubMed
Ritter, J. G., Veith, R., Veenendaal, A., Siebrasse, J. P., andKubitscheck, U. (2010). Light Sheet Microscopy for Single Molecule Tracking in Living Tissue. PLoS ONE, 5, e11639.Google Scholar
Revyakin, A., Zhang, Z., Coleman, R.A., et al. (2012). Transcription Initiation by Human RNA Polymerase II Visualized at Single-Molecule Resolution. Genes & Development, 26(15), 16911702.Google Scholar
Sánchez-Romero, M. A. and Casadesús, J. (2014). Contribution of Phenotypic Heterogeneity to Adaptive Antibiotic Resistance. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 355360.CrossRefGoogle ScholarPubMed
Svoboda, K. and Block, S. M. (1994). Force and Velocity Measured for Single Kinesin Molecules. Cell, 77(5), 773784.Google Scholar
Svoboda, K., Schmidt, C. F., Schnapp, B. J., and Block, S. M. (1993). Direct Observation of Kinesin Stepping by Optical Trapping Interferometry. Nature, 365, 721727.Google Scholar
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., and Vale, R. D. (2014). A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging. Cell, 159, 635646.Google Scholar
Taniguchi, Y., Choi, P. J., Li, G.-W., et al. (2010). Quantifying E. Coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells. Science, 329(5991), 533538.Google Scholar
Urh, M. and Rosenberg, M. (2012). HaloTag, a Platform Technology for Protein Analysis. Current Topics in Chemistry and Genomics, 6, 7278.Google Scholar
Wang, F., Redding, S., Finkelstein, I. J., Gorman, J., Reichman, D. R., and Greene, E. C. (2013). The Promoter-Search Mechanism of Escherichia Coli RNA Polymerase Is Dominated by Three-Dimensional Diffusion. Nature Structural and Molecular Biology, 20(2), 174181.Google Scholar
Wang, M. D. (1998). Force and Velocity Measured for Single Molecules of RNA Polymerase. Science, 282(5390), 902907.CrossRefGoogle ScholarPubMed
Werfel, J., Krause, S., Bischof, A. G., et al. (2013). How Changes in Extracellular Matrix Mechanics and Gene Expression Variability Might Combine to Drive Cancer Progression. PloS One, 8(10), e76122.CrossRefGoogle ScholarPubMed
Wu, W. (2018). MicroRNA, Noise, and Gene Expression Regulation. In Wu, W., ed., MicroRNA and Cancer. Methods in Molecular Biology. Springer, New York, NY: 9196.Google Scholar
Yan, X., Hoek, T. A., Vale, R. D., and Tanenbaum, M. E. (2016). Dynamics of Translation of Single mRNA Molecules in Vivo. Cell, 165(4), 976989.Google Scholar
Yu, J., Xiao, J., Ren, X., Lao, K., and Xie, X.S. (2006). Probing Gene Expression in Live Cells, One Protein Molecule at a Time. Science, 311(5767), 16001603.CrossRefGoogle ScholarPubMed
Zhen, C. Y., Tatavosian, R., Huynh, T. N., et al. (2016). Live-Cell Single-Molecule Tracking Reveals Co-Recognition of H3K27me3 and DNA Targets Polycomb Cbx7-PRC1 to Chromatin. eLife, 5. Available at http://dx.doi.org/10.7554/eLife.17667.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×