Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-16T16:13:40.351Z Has data issue: false hasContentIssue false

2 - New models for networked control in smart grid

from Part I - Communication architectures and models for smart grid

Published online by Cambridge University Press:  05 January 2013

Anna Scaglione
Affiliation:
University of California Davis, USA
Zhifang Wang
Affiliation:
University of California Davis, USA
Mahnoosh Alizadeh
Affiliation:
University of California Davis, USA
Ekram Hossain
Affiliation:
University of Manitoba, Canada
Zhu Han
Affiliation:
University of Houston
H. Vincent Poor
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

There is a growing communication and computation infrastructure in support of the transfer of electrical energy in both the high-voltage (HV) transmission network and the medium and low-voltage (MV/LV) distribution side. Rather than passively witnessing this trend, research efforts are ongoing to study systematically how information architectures can renew and advance power systems. They go under the umbrella of smart grid.

To advance this field, it is useful to understand why and in what form this information infrastructure has come about in the first place, and what challenges are intrinsic in the network design problem. Then, we can start questioning if new information networks can be a game changer in the energy sector, and can contribute, in more fundamental ways, to advance power-delivery systems. Can cheap information bits and computation flops make greener and cheaper joules flow in the system? That is the question. Some argue that a positive answer may amount to no less than ensuring prosperity for our species [1]. Clearly, the attention on bits and flops cannot replace other parallel investigations. But this research deserves some of the spotlight, along with carbon capture, nuclear fusion and other similarly motivated scientific quests centred around sustainable electrical energy systems.

The aim of this chapter is to envision what possible evolution of the power grid cyber-physical system can address the important issue of scaling up the generation capacity of the system, while relying increasingly on green energy and increasing the transmission efficiency.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×