Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T21:30:39.213Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2014

David Muir Wood
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, T. and Oka, F. (1982), ‘Constitutive equations for normally consolidated clays based on elasto-viscoplasticity’, Soils and Foundations 22(4), 57–70.CrossRefGoogle Scholar
Airey, D.W., Budhu, M, and Wood, D.M. (1985), ‘Some aspects of the behaviour of soils in simple shear’, in P.K., Banerjee and R., Butterfield (eds.), Developments in soil mechanics and geotechnical engineering - 2: Stress-strain modelling of soils (Elsevier), pp. 185–213.Google Scholar
Almagor, G. (1967), ‘Interpretation of strength and consolidation data from some bottom cores off Tel-Aviv, Polmakhim coast, Israel’, in A.F., Richards (ed.), Marine Geotechnique (Urbana: Univ. of Illinois Press), pp. 131–53.Google Scholar
Almeida, M.S.S. (1984), Stage constructed embankments on soft clays, Ph.D. thesis, Cambridge University.Google Scholar
Almeida, M.S.S., Britto, A.M. and Parry, R.H.G. (1986), ‘Numerical modelling of a centrifuged embankment on soft clay’, Canadian Geotechnical Journal 23, 103-14.CrossRefGoogle Scholar
Al-Tabbaa, A. (1987) Permeability and stress-strain response of speswhite kaolin, Ph.D. thesis, Cambridge University.Google Scholar
Al-Tabbaa, A. and Wood, D.M. (1987), ‘Some measurements of the permeability of kaolin’, Géotechnique 37(4), 499–503.CrossRefGoogle Scholar
Al-Tabbaa, A. and Wood, D.M. (1989), ‘An experimentally based ‘bubble’ model for clay’, in S., Pietruszczak and G.N., Pande (eds.), Numerical Models in Geomechanics NUMOG Hi (London: Elsevier), pp. 91–9.Google Scholar
Andresen, A., Berre, T., Kleven, A., and Lunne, T. (1979), ‘Procedures used to obtain soil parameters for foundation engineering in the North Sea’, Marine Geotechnology 3(3), 201–66.CrossRefGoogle Scholar
Atkinson, J.H. (1981), Foundations and slopes. An introduction to applications of critical state soil mechanics (Maidenhead: McGraw-Hill).Google Scholar
Atkinson, J.H. and Bransby, P.L. (1978), The mechanics of soils. An introduction to critical state soil mechanics (Maidenhead: McGraw-Hill).Google Scholar
Atkinson, J.H., Evans, J.S., and Ho, E.W.L. (1985), ‘Non-uniformity of triaxial samples due to consolidation with radial drainage’, Geotechnique 35(3), 353–5.CrossRefGoogle Scholar
Atterberg, A. (1911), ‘Lerornas forhållande till vatten, deras plasticitetsgränser och plasticitetsgrader’, Kungl. Lantbruks akademiens Handlingar och Tidskrift 50(2), 132–58.Google Scholar
Baguelin, F., Jézéquel, J.F., and Shields, D.H. (1978), The pressuremeter and foundation engineering (Clausthal: Trans Tech Publications, Series on Rock and Soil Mechanics).Google Scholar
Baker, J., and Heyman, J. (1969), Plastic design of frames. 1. Fundamentals (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Baran, P.A., and Sweezy, P.M. (1968), Monopoly capital: An essay on the American economic and social order (Harmondsworth: Penguin Books).Google Scholar
Barry, A.J., and Nicholls, R.A. (1982), ‘Discussion’, in Vertical drains (London: Thomas Telford), pp. 143–6.Google Scholar
Been, K., Crooks, J.H.A., Becker, D.E., and Jefferies, M.G. (1986), ‘The cone penetration test in sands: Part I, state parameter interpretation’, Géotechnique 36(2), 239–49.CrossRefGoogle Scholar
Been, K, and Jefferies, M.G. (1985), ‘A state parameter for sands’, Géotechnique 35(2), 99–112.CrossRefGoogle Scholar
Been, K., and Jefferies, M.G. (1986), ‘Discussion: A state parameter for sands’, Géotechnique 36(1), 127–32.CrossRefGoogle Scholar
Been, K., Jefferies, M.G., Crooks, J.H.A., and Rothenburg, L. (1987), ‘The cone penetrometer test in sands: Part II, general inference of state’, Géotechnique 37(3), 285–99.CrossRefGoogle Scholar
Bell, A.L. (1977), A geotechnical investigation of post-glacial estuarine deposits at Kinnegar, Belfast Lough, Ph.D. thesis, Queen's University, Belfast.Google Scholar
Berre, T. (1975), ‘Bruk av triaksial- og direkte skjærforsøk til løsning av geotekniske problemer’, in Proc. Geoteknikermøde i København (København: Polyteknisk Forlag), pp. 199–211.Google Scholar
Berre, T., and Bjerrum, L. (1973), ‘Shear strength of normally consolidated clays’, in Proc. 8th Int. Conf. on Soil Mechs and Foundation Eng., Moscow (Moscow: USSR National Society for Soil Mechanics and Foundation Engineering), vol. 1.1, 39–49.Google Scholar
Bishop, A.W. (1958), ‘Test requirements for measuring the coefficient of earth pressure at rest’, in Proc. Brussels Conf. 58 on Earth Pressure Problems (Brussels: Belgian Group of the International Society of Soil Mechanics and Foundation Engineering), vol. 1, pp. 2–14.Google Scholar
Bishop, A.W. (1959), ‘The principle of effective stress’, Teknisk Ukeblad, Oslo 39 (22 10), 859–63.Google Scholar
Bishop, A.W., and Henkel, D.J. (1957), The measurement of soil properties in the triaxial test (London: William Arnold).Google Scholar
Bjerrum, L. (1954), ‘Geotechnical properties of Norwegian marine clays’, Géotechnique 4(2) 49–69.CrossRefGoogle Scholar
Bjerrum, L. (1967), ‘Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings’, 7th Rankine Lecture, Géotechnique 17(2), 81–118.CrossRefGoogle Scholar
Bjerrum, L. (1972), ‘Embankments on soft ground’, in Proc. Specialty Conf. on Performance of Earth and Earth-Supported Structures, Purdue (New York: ASCE), vol. 2, pp. 1–54.Google Scholar
Bjerrum, L. (1973), ‘Problems of soil mechanics and construction of soft clays and structurally unstable soils’, in Proc. 8th Int. Conf. on Soil Mechs and Foundation Eng., Moscow (Moscow: USSR National Society for Soil Mechanics and Foundation Engineering), vol. 3, pp. 111–59.Google Scholar
Bjerrum, L., and Flodin, N. (1960), ‘The development of soil mechanics in Sweden, 1900-1925’, Géotechnique 10(1), 1–18.CrossRefGoogle Scholar
Bjerrum, L., and Landva, A. (1966), ‘Direct simple-shear tests on a Norwegian quick clay’, Géotechnique 16(1), 1–20.CrossRefGoogle Scholar
Bjerrum, L., and Simons, N.E. (1960), ‘Comparison of shear strength characteristics of normally consolidated clays’, in Proc. Research Conf. on Shear Strength of Cohesive Soils, Boulder, Colorado (New York: ASCE), pp. 711–26.Google Scholar
Bolton, M.D. (1979), A guide to soil mechanics, (London: Macmillan Press).CrossRefGoogle Scholar
Bolton, M.D. (1986), ‘The strength and dilatancy of sands’, Géotechnique 36(1), 65–78.CrossRefGoogle Scholar
Borsetto, M., Imperato, L., Nova, R., and Peano, A. (1983), ‘Effects of pressuremeters of finite length in soft clay’, in Proc. Int. Symp. on Soil and Rock Investigations by In Situ Testing. Paris (Organised by Comité Français de la Géologie de l'Ingénieur, Comité Français de la Mécanique des Sols, Comité Français de la Mécanique des Roches), vol. 2, pp. 211–15.Google Scholar
Brady, K.C. (1988), ‘Soil suction and the critical state’, Géotechnique 38(1), 117–20.CrossRefGoogle Scholar
Brand, E.W. (1981), ‘Some thoughts on rain-induced slope failures’, in Proc. 10th Int. Conf. on Soil Mechs. and Foundation Eng., Stockholm (Rotterdam: A.A. Balkema), vol. 3, pp. 373–6.Google Scholar
British Standards Institution (1975), Methods of Test for Soils for Civil Engineering Purposes, BS1377: 1975 (London: British Standards Institution).
Britto, A.M., and Gunn, M.J. (1987), Critical state soil mechanics via finite elements (Chichester: Ellis Horwood Ltd).Google Scholar
Brooker, E.W., and Ireland, H.O. (1965), ‘Earth pressures at rest related to stress history’, Canadian Geotechnical Journal 2(1), 1-15.CrossRefGoogle Scholar
Bryant, W.R., Cernock, P., and Morelock, J. (1967), ‘Shear strength and consolidation characteristics of marine sediments from the western Gulf of Mexico’, in A.F., Richards (ed.), Marine Géotechnique (Urbana: University of Illinois Press), pp. 41-62.Google Scholar
Burland, J.B. (1971), ‘A method of estimating the pore pressures and displacements beneath embankments on soft, natural clay deposits’, in R.H.G., Parry (ed.), Stress-strain behaviour of soils (Proc. Rescoe Memorial Symp., Cambridge). (Henley-on-Thames: G.T. Foulis & Co.), pp. 505–36.Google Scholar
Burland, J.B., and Hancock, R.J.R. (1977), ‘Underground car park at the House of Commons, London: geotechnical aspects’, The Structural Engineer 55(2), 87-100.Google Scholar
Calladine, C.R. (1963), ‘Correspondence: The yielding of clay’, Géotechnique 13(3), 250–5.CrossRefGoogle Scholar
Calladine, C.R. (1985), Plasticity for engineers (Chichester: Ellis Horwood Ltd).Google Scholar
Carter, J.P. (1982), ‘Predictions of the non-homogeneous behaviour of clay in the triaxial test’, Géotechnique 32(1), 55–8.CrossRefGoogle Scholar
Casagrande, A. (1932), ‘Research on the Atterberg limits of soils’, Public Roads 13(8) 121–30 and 136.Google Scholar
Casagrande, A. (1936), ‘Characteristics of cohesionless soils affecting the stability of slopes and earth fills’, J. Boston Soc. Civil Engineers 23(1), 13-32.Google Scholar
Casagrande, A. (1947), ‘Classification and identification soils’, Proc. ASCE 73(6) part 1, 783-810.Google Scholar
Clausen, C-J.F. (1972), Measurements of pore water pressure, settlements and lateral deformations at a test fill on soft clay brought to failure at Mastemyr, Oslo (Oslo: Norwegian Geotechnical Institute), Technical Report 11.Google Scholar
Clausen, C-J.F., Graham, J., and Wood, D.M. (1984), ‘Yielding in soft clay at Mastemyr, Norway’, Géotechnique 34(4), 581-600.CrossRefGoogle Scholar
Coleman, J.D. (1962), ‘Correspondence: Stress/strain relations for partly saturated soils’, Géotechnique 12(4), 348–50.CrossRefGoogle Scholar
Collin, A. (1846), Recherches expérimentales sur les glissements spontanés des terrains argileux (Paris: Carilian-Goeurley et Dalmont); English translation by W.R. Schriever (1956), Experimental investigation on sliding of clay slopes (Toronto: University of Toronto Press).Google Scholar
Collins, K., and McGown, A. (1974), ‘The form and function of microfabric features in a variety of natural soils’, Géotechnique 24(2), 223–54.CrossRefGoogle Scholar
Crewdson, B.J., Ormond, A.L., and Nedderman, R.M. (1977), ‘Air-impeded discharge of fine particles from a hopper’, Powder Technology 16, 197-207.CrossRefGoogle Scholar
D'Appolonia, D.J., Lambe, T.W., and Poulos, H.G. (1971), ‘Evaluation of pore pressures beneath an embankment’, Proc. ASCE J. Soil Mechs and Foundations Div. 97(SM6), 881–98.Google Scholar
Davis, E.H. (1968), ‘Theories of plasticity and the failure of soil masses’, in I.K., Lee (ed.), Soil mechanics – selected topics (London: Butterworths), pp. 341–80.Google Scholar
de Josselin de Jong, G. (1971), ‘Discussion, session 2’; in R.H.G., Parry (ed.), Stress-strain behaviour of soils (Proc. Roscoe Memorial Symp., Cambridge). (Henley-on-Thames: G.T. Foulis & Co.), pp. 258–61.Google Scholar
de Josselin de Jong, G. (1976), ‘Rowe's stress-dilatancy relation based on friction’, Géotechnique 26(3), 527–34.CrossRefGoogle Scholar
Donaghe, R.T., Chaney, R.C., and Silver, M.L. (eds.) (1988), Advanced triaxial testing of soil and rock, STP977 (Philadelphia: American Society for Testing and Materials).CrossRefGoogle Scholar
Drucker, D.C. (1954), ‘A definition of stable inelastic material’, J. Applied Mechanics, Trans. ASME 26, 101–6.Google Scholar
Drucker, D.C. (1966), ‘Concepts of path independence and material stability for soils’, in J., Kravtchenko and P.M., Sirieys (eds.), Proc. IUTAM Symp. on Rheology and Soil Mechanics, Grenoble (Berlin: Springer-Verlag), pp. 23-46.Google Scholar
Dumbleton, M.J., and West, G. (1970), The suction and strength of remoulded soils as affected by composition (Crowthorne: Road Research Laboratory), LR306.Google Scholar
El-Sohby, M.A. (1969), ‘Deformation of sands under constant stress ratios’, in Proc. 7th Int. Conf. on Soil Mechs and Foundation Eng., Mexico (Mexico City: Sociedad Mexicana de Mecánica de Suelos), vol. 1, pp. 111–19.Google Scholar
Fredlund, D.G. (1979), ‘Appropriate concepts and technology for unsaturated soils’, Canadian Geotechnical Journal 16(1), 121–39.CrossRefGoogle Scholar
Gens, A. (1982), Stress-strain and strength characteristics of a low plasticity clay, Ph.D. thesis, London University.Google Scholar
Ghionna, V., Jamiolkowski, M., Laçasse, S., Ladd, C.C., Lancellotta, R., and Lunne, T. (1983), ‘Evaluation of self-boring pressuremeter, in Proc. Int. Symp. on Soil and Rock Investigation by In Situ Testing, Paris (Organised by Comité Français de la Géologie de l'Ingénieur, Comité Français de la Mécanique des Sols, Comité Français de la Mécanique des Roches), vol. 2, pp. 293-301.Google Scholar
Gibson, R.E., and Henkel, D.J. (1954), ‘Influence of duration of tests at constant rate of strain on measured “drained” strength’, Géotechnique 4(1), 6–15.CrossRefGoogle Scholar
Gibson, R.E., Knight, K., and Taylor, P.W. (1963), ‘A critical experiment to examine theories of three-dimensional consolidation’, in Proc. European Conf. on Soil Mechs and Foundation Eng., Wiesbaden (Essen: Deutsche Gesellschaft fiir Erd und Grundbau e.V.), vol. 1, pp. 69-76.Google Scholar
Graham, J., Crooks, J.H.A., and Bell, A.L. (1983), ‘Time effects on the stress-strain behaviour of natural soft clays’, Géotechnique 33(3), 327–40.CrossRefGoogle Scholar
Graham, J., and Houlsby, G.T. (1983), ‘Elastic anisotropy of a natural clay’, Géotechnique 33(2), 165–80.CrossRefGoogle Scholar
Graham, J., Noonan, M.L., and Lew, K.V., (1983), ‘Yield states and stress-strain relationships in a natural plastic clay’, Canadian Geotechnical Journal 20(3), 502–16.CrossRefGoogle Scholar
Hansbo, S. (1957), A new approach to the determination of the shear strength of clay by the fall-cone test (Stockholm: Royal Swedish Geotechnical Institute), Proceedings14.Google Scholar
Harr, M.E. (1966), Foundations of theoretical soil mechanics. (New York: McGraw-Hill).Google Scholar
Henkel, D.J. (1956), ‘Discussion: Earth movement affecting LTE railway in deep cutting east of Uxbridge’, in Proc. ICE, Part II, 5, 320–3.Google Scholar
Henkel, D.J. (1959), ‘The relationships between the strength, pore-water pressure, and volume-change characteristics of saturated clays’, Géotechnique 9(2), 119–35.CrossRefGoogle Scholar
Henkel, D.J., and Skempton, A.W. (1955), ‘A landslide at Jackfield, Shropshire, in a heavily overconsolidated clay’, Géotechnique 5(2), 131–7.CrossRefGoogle Scholar
Heyman, J. (1972), Coulomb's memoir on statics: an essay in the history of civil engineering (Cambridge: Cambridge University Press).Google Scholar
Heyman, J. (1982), Elements of stress analysis, (Cambridge: Cambridge University Press).Google Scholar
Hill, R. (1950), The mathematical theory of plasticity (Oxford: Clarendon Press).Google Scholar
Hird, CC, and Hassona, F. (1986), ‘Discussion: A state parameter for sands’, Géotechnique 36(1), 124–7.Google Scholar
Höeg, K., Andersland, O.B., and Rolfsen, E.N. (1969), ‘Undrained behaviour of quick clay under load tests at Åsrum’, Géotechnique 19(1), 101–15.CrossRefGoogle Scholar
Höeg, K., Christian, J.T., and Whitman, R.V., (1968), ‘Settlement of strip load on elastic-plastic soil’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 94(SM2), 431–45.Google Scholar
Hooke, R. (1675), A description of helioscopes, and some other instruments. (London).Google Scholar
Horswill, P., and Horton, A. (1976), ‘Cambering and valley bulging in the Gwash valley at Empingham, Rutland’, Phil. Trans Roy. Soc. London A283, 427–51.CrossRefGoogle Scholar
Houlsby, G.T. (1979), ‘The work input to a granular material’, Géotechnique 29(3), 354–8.CrossRefGoogle Scholar
Houlsby, G.T. (1982), ‘Theoretical analysis of the fall cone test’, Géotechnique 32(2), 111–18.CrossRefGoogle Scholar
Hvorslev, M.J. (1937), Über die Festigkeitseigenschaften gestörter bindiger Böden (København: Danmarks Naturvidenskabelige Samfund) Ingeniørvidenskabelige Skrifter A 45. English translation (1969), Physical properties of remoulded cohesive soils (Vicksburg, Miss.: U.S. Waterways Experimental Station), no 69-5.Google Scholar
Iwan, W.D. (1967), ‘On a class of models for the yielding behavior of continuous and composite systems’, Trans. ASME J. Appl. Mech. 34(E3), 612–17.CrossRefGoogle Scholar
Jâky, J. (1944), ‘A nyugalmi nyomâs tényezöje’ (‘The coefficient of earth pressure at rest’), Magyar Mérnök és Epitész-Egylet Közlönye (J. of the Union of Hungarian Engineers and Architects), 355-8.Google Scholar
Jamiolkowski, M., Ladd, C.C., Germaine, J.T., and Lancellotta, R. (1985), ‘New developments in field and laboratory testing of soils’, in Proc. 11th Int. Conf. on Soil Mechs and Foundation Eng., San Francisco (Rotterdam: A.A. Balkema), vol. 1, pp. 57-153.Google Scholar
Jardine, R.J., Potts, D.M., Fourie, A.B., and Burland, J.B. (1986), ‘Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction’, Géotechnique 36(3), 377–96.CrossRefGoogle Scholar
Jardine, R.J., Symes, M.J., and Burland, J.B. (1984), ‘The measurement of soil stiffness in the triaxial apparatus’, Géotechnique 34(3), 323–40.CrossRefGoogle Scholar
Karlsson, R. (1977), Consistency limits. A manual for the performance and interpretation of laboratory investigations, part 6 (Stockholm: Statens råd för byggnadsforskning).Google Scholar
Kolbuszewski, J.J. (1948), ‘An experimental study of the maximum and minimum porosities of sands’, in Proc. 2nd Int. Conf. on Soil Mechs and Foundation Eng., Rotterdam 1, 158–65.Google Scholar
Kong, F.K., and Evans, R.H. (1975), Reinforced and prestressed concrete. (Walton-on-Thames: Nelson).CrossRefGoogle Scholar
Ladd, C.C (1965), ‘Stress-strain behaviour of anisotropically consolidated clays during undrained shear’, in Proc. 6th Int. Conf. on Soil Mechs and Foundation Eng., Montreal (Toronto: University of Toronto Press), vol. 1, pp. 282–90.Google Scholar
Ladd, C.C. (1981), ‘Discussion on laboratory shear devices’, in R.N., Yong and F.L., Townsend (eds.), Laboratory shear strength of soil, STP740 (Philadelphia: American Society for Testing and Materials), pp. 643–52.CrossRefGoogle Scholar
Ladd, C.C, and Edgers, L. (1972), Consolidated-undrained direct-simple shear tests on saturated clays (Cambridge: Massachusetts Institute of Technology), Dept. of Civil Eng. research report R72-82.Google Scholar
Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F., and Poulos, H.G. (1977), ‘Stress-deformation and strength characteristics’, in Proc. 9th Int. Conf. on Soil Mechs and Foundation Eng., Tokyo (Tokyo: Japanese Society of Soil Mechanics and Foundation Engineering), vol. 2, pp. 421–94.Google Scholar
Lade, P.V. (1977), ‘Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces’, Int. J. Solids and Structures 13(11), 1019–35.CrossRefGoogle Scholar
Lambe, T.W. (1964), ‘Methods of estimating settlement’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 90(SM5), 43-67.Google Scholar
Lambe, T.W. (1967), ‘Stress path method’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 93(SM6), 309–31.Google Scholar
Larsson, R. (1980), ‘Undrained shear strength in stability calculation of embankments and foundations on soft clays’, Canadian Geotechnical Journal 17(4), 591-602.CrossRefGoogle Scholar
Larsson, R. (1981), Drained behaviour of Swedish clays (Linköping: Swedish Geotechnical Institute), Report 12.Google Scholar
Lee, K.L. and Seed, H.B., (1967), ‘Drained strength characteristics of sands’, in Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 93(SM6), 117–41.Google Scholar
Leonards, G.A., and Ramiah, B.K. (1960), ‘Time effects in the consolidation of clays’, in Papers on soils, 1959 meetings; Symp. on Time Rates of Loading in Soil Testing, STP254 (Philadelphia: American Society for Testing and Materials), pp. 116–30.Google Scholar
Leroueil, S., Kabbaj, M., Tavenas, F., and Bouchard, R. (1985), ‘Stress-strain-strain rate relation for the compressibility of sensitive natural clays’. Géotechnique 35(2), 159–80.CrossRefGoogle Scholar
Leroueil, S., Magnan, J-P., and Tavenas, F. (1985), Remblais sur argiles molles (Paris: Technique et Documentation, Lavoisier) English translation by D.M. Wood (1990) Embankments on soft clays (Chichester: Ellis Horwood Ltd.).Google Scholar
Leroueil, S., and Tavenas, F. (1981), ‘Pitfalls of back-analyses’, in Proc. 10th Int. Conf. on Soil Mechs and Foundation Eng., Stockholm (Rotterdam: A.A. Balkema), vol. 1, pp. 185–90.Google Scholar
Levadoux, J-N., and Baligh, M.M. (1980), Pore pressures during cone penetration in clays (Cambridge: Massachusetts Institute of Technology), Dept. of Civil Eng. research report R80-15.Google Scholar
Lewin, P.I. (1973), ‘The influence of stress history on the plastic potential’, in A.C., Palmer (ed.), Proc. Symp. on Role of Plasticity in Soil Mechanics (Cambridge: Cambridge University Engineering Department), pp. 96-105.Google Scholar
Livesley, R.K. (1983), Finite elements: an introduction for engineers (Cambridge: Cambridge University Press).Google Scholar
Love, A.E.H. (1927), A treatise on the mathematical theory of elasticity, 4th ed. (Cambridge: Cambridge University Press).Google Scholar
Luong, M.P. (1979), ‘Les phénomènes cycliques dans les sables’, Journée de Rhéologie: Cycles dans les sols – rupture – instabilités. (Vaulx-en-Velin: École Nationale des Travaux Publics de l'État), Publication 2.Google Scholar
Lupini, J.F., Skinner, A.E., and Vaughan, P.R. (1981), ‘The drained residual strength of cohesive soils’, Géotechnique 31(2), 181-213.CrossRefGoogle Scholar
McClelland, B. (1967), ‘Progress of consolidation in delta front and prodelta clays of the Mississippi River’, in A.F., Richards (ed.), Marine Géotechnique (Urbana: University of Illinois Press), pp. 22-40.Google Scholar
Magnan, J-P., Mieussens, C, and Queyroi, D. (1983), Etude d'un remblai sur sols compressibles: Le remblai B du site expérimental de Cubzac-les-Ponts (Paris: Laboratoire Central des Ponts et Chaussées), Rapport de recherche LPC 127.Google Scholar
Mair, R.J., and Wood, D.M. (1987), Pressuremeter testing: Methods and interpretation, CIRIA Ground Engineering Report: In-situ testing (London and Sevenoaks: CIRIA and Butterworths).Google Scholar
Marachi, N.D., Chan, C.K., and Seed, H.B. (1972), ‘Evaluation of properties of rockfill materials’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 98(SM1), 95-114.Google Scholar
Mayne, P.W. (1980), ‘Cam-clay predictions of undrained strength’, Proc. ASCE, Journal of the Geotechnical Engineering Division 106(GT11), 1219–42.Google Scholar
Mayne, P.W., and Swanson, P.G. (1981), The critical-state pore pressure parameter from consolidated-undrained shear tests, in R.N., Yong and F.C., Townsend (eds.), Laboratory shear strength of soil, STP740 (Philadelphia: American Society for Testing and Materials), 410–30.CrossRefGoogle Scholar
Meigh, A.C. (1987), Cone penetration testing: Methods and interpretation, CIRIA Ground Engineering Report: In-situ testing (London and Sevenoaks: CIRIA and Butterworths).Google Scholar
Mesri, G. (1975), ‘Discussion: New design procedure for stability of soft clays’, Proc. ASCE, Journal of the Geotechnical Engineering Division 101(GT4), 409–12.Google Scholar
Mesri, G., and Godlewski, P.M. (1977), ‘Time- and stress-compressibility interrelationship’, Proc. ASCE, Journal of the Geotechnical Engineering Division 103(GT5), 417–30.Google Scholar
Meyerhof, G.G. (1976), ‘Bearing capacity and settlement of pile foundations’, 11th Terzaghi Lecture, Proc. ASCE, Journal of the Geotechnical Engineering Division 102(GT3), 197-228.Google Scholar
Mises, R. von (1913), ‘Mechanik der festen Körper im plastisch-deformablen Zustand’, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 582–92.Google Scholar
Mitchell, J.K. (1976), Fundamentals of soil behaviour (New York: John Wiley & Sons).Google Scholar
Miura, N., Murata, H., and Yasufuku, N. (1984), ‘Stress-strain characteristics of sand in a particle crushing region’, Soils and Foundations 24(1), 77-89.CrossRefGoogle Scholar
Mouratidis, A., and Magnan, J-P. (1983), Modéle élastoplastique anisotrope avecécrouissage pour le calcul des ouvrages sur sols compressibles (Paris: Laboratoire Central des Ponts et Chaussées), Rapport de recherche LPC 121.Google Scholar
Mróz, Z. (1967), ‘On the description of anisotropic work hardening’, J. Mech. Phys. Solids 15, 163–75.CrossRefGoogle Scholar
Mróz, Z., Norris, V.A., and Zienkiewicz, O.C. (1979), ‘Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils’, Géotechnique 29(1), 1-34.CrossRefGoogle Scholar
Murayama, S. (ed.) (1985), Constitutive laws of soil, Report of ISSMFE Subcommittee on Constitutive laws of soils and Proc. discussion session 1A, 11th Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco (Tokyo: Japanese Society of Soil Mechanics and Foundation Engineering).Google Scholar
Nadarajah, V. (1973), Stress-strain properties of lightly overconsolidated clays, Ph.D. thesis, Cambridge University.Google Scholar
Namy, D.L. (1970), An investigation of certain aspects of stress-strain relationships for clay soils, Ph.D. thesis, Cornell University, Ithaca.Google Scholar
Norwegian Geotechnical Institute (1969), Results of direct shear, oedometer and triaxial tests on quick clay from Mastemyr (Oslo: Norwegian Geotechnical Institute), internal report F 372-3.
Oda, M., Konishi, J., and Nemat-Nasser, S. (1980), ‘Some experimentally based fundamental results on the mechanical behaviour of granular materials’, Géotechnique 30(4), 479–95.CrossRefGoogle Scholar
Olsson, J. (1921), ‘Metod för undersökning av lerors hållfasthetsegenskaper, tillämpad vid de geotekniska undersökningarna vid Statens Järnvägar’, Geologiska Förening Stockholm, Förhandlingar 43(5), 502–7.Google Scholar
Olszak, W., and Perzyna, P. (1966), ‘On elastic/visco-plastic soils’, in J., Kravtchenko and P.M., Sirieys (eds.) Proc. IUTAM Symp. on Rheology and Soil Mechanics, Grenoble (Berlin: Springer-Verlag), pp. 47-57.Google Scholar
Parry, R.H.G. (1956), Strength and deformation of clay, Ph.D. thesis, London University.Google Scholar
Parry, R.H.G. (1958), ‘Correspondence: On the yielding of soils’, Géotechnique 8(4), 183–6.CrossRefGoogle Scholar
Parry, R.H.G. (1970), ‘Overconsolidation in soft clay deposits’, Géotechnique 20(4), 442–6.CrossRefGoogle Scholar
Parry, R.H.G., and Wroth, CP. (1981), ‘Shear stress-strain properties of soft clay’, in E.W., Brand and R.P., Brenner (eds.), Soft clay engineering (Amsterdam: Elsevier), pp. 309–64.CrossRefGoogle Scholar
Perzyna, P. (1963), ‘The constitutive equations for rate sensitive plastic materials’, Quarterly of Applied Maths 20(4), 321–32.CrossRefGoogle Scholar
Poorooshasb, H.B., Holubec, I., and Sherbourne, A.N. (1966), ‘Yielding and flow of sand in triaxial compression: Parti’, Canadian Geotechnical Journal 3(4), 179–90.CrossRefGoogle Scholar
Poorooshasb, H.B., Holubec, I., and Sherbourne, A.N. (1967), ‘Yielding and flow of sand in triaxial compression: Parts II and III’, Canadian Geotechnical Journal 4(4), 376–97.CrossRefGoogle Scholar
Poulos, H.G., and Davis, E.H. (1974), Elastic solutions for soil and rock mechanics (New York: John Wiley & Sons).Google Scholar
Prévost, J-H. (1979), ‘Undrained shear tests on clays’, Proc. ASCE, Journal of the Geotechnical Engineering Division 105(GT1), 49-64.Google Scholar
Quigley, R.M., and Thompson, C.D. (1966), ‘The fabric of anisotropically consolidated sensitive marine clay’, Canadian Geotechnical Journal 3(2), 61-73.CrossRefGoogle Scholar
Ramanatha Iyer, T.S. (1975), ‘The behaviour of Drammen plastic clay under low effective stresses’, Canadian Geotechnical Journal 12(1), 70-83.Google Scholar
Randolph, M.F., Carter, J.P., and Wroth, C.P. (1979), ‘Driven piles in clay - the effects of installation and subsequent consolidation’, Géotechnique 29(4), 361–93.CrossRefGoogle Scholar
Randolph, M.F., and Wroth, C.P. (1981), ‘Application of the failure state in undrained simple shear to the shaft capacity of driven piles’, Géotechnique 31(1), 143–57.CrossRefGoogle Scholar
Reynolds, O. (1885), ‘On the dilatancy of media composed of rigid particles in contact, with experimental illustrations’, Phil. Mag. 20, 469–81.CrossRefGoogle Scholar
Reynolds, O. (1886), ‘Experiments showing dilatancy, a property of granular material, possibly connected with gravitation’, Proc. Royal Inst, of Great Britain 11, 354–63.Google Scholar
Richardson, A.M., and Whitman, R.V. (1963), ‘Effect of strain-rate upon drained shear resistance of a saturated remoulded fat clay’, Géotechnique 13(4), 310–24.CrossRefGoogle Scholar
Roscoe, K.H. (1953), ‘An apparatus for the application of simple shear to soil samples’, Proc. 3rd Int. Conf. on Soil Mechs and Foundation Eng., Zurich (Zurich: Organising committee ICOSOMEF), vol. 1, pp. 186–91.Google Scholar
Roscoe, K.H., and Burland, J.B. (1968), ‘On the generalised stress-strain behaviour of ‘wet’ clay’, in J., Heyman and F.A., Leckie (eds.), Engineering plasticity (Cambridge: Cambridge University Press), pp. 535-609.Google Scholar
Roscoe, K.H., and Schofield, A.N. (1963), ‘Mechanical behaviour of an idealised ‘wet’ clay’, Proc. European Conf. on Soil Mechanics and Foundation Engineering, Wiesbaden (Essen: Deutsche Gesellschaft fur Erd- und Grundbau e.V.), vol. 1, pp. 47-54.Google Scholar
Roscoe, K.H., Schofield, A.N., and Thurairajah, A. (1963), ‘Yielding of clays in states wetter than critical’, Géotechnique 13(3), 211–40.CrossRefGoogle Scholar
Roscoe, K.H., Schofield, A.N., and Wroth, C.P. (1958), ‘On the yielding of soils’, Géotechnique 8(1), 22-52.CrossRefGoogle Scholar
Rowe, P.W., (1962), ‘The stress-dilatancy relation for static equilibrium of an assembly of particles in contact’, Proc. Roy. Soc. London A269, 500–27.CrossRefGoogle Scholar
Rowe, P.W. (1971), ‘Theoretical meaning and observed values of deformation parameters for soil’, in R.H.G., Parry (ed.), Stress-strain behaviour of soils (Proc. Roscoe Memorial Symp., Cambridge) (Henley-on-Thames: G.T. Foulis & Co.), pp. 143–94.Google Scholar
Rowe, P.W., and Barden, L. (1964), ‘Importance of free ends in triaxial testing’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 90(SM1), 1-27.Google Scholar
Saada, A.S., and Bianchini, G.F. (1975), ‘Strength of one-dimensionally consolidated clays’, Proc. ASCE, Journal of the Geotechnical Engineering Division 101(GTH), 1151–64.Google Scholar
St. John, H.D. (1975), Field and theoretical studies of the behaviour of ground around deep excavations in London clay, Ph.D. thesis, Cambridge University.Google Scholar
Sangrey, D.A., Pollard, W.S., and Egan, J.A. (1978), ‘Errors associated with rate of undrained cyclic testing of clay soils’, Dynamic geotechnical testing, STP654 (Philadelphia: American Society for Testing and Materials), 280–94.CrossRefGoogle Scholar
Schmertmann, J.H. (1955), ‘The undisturbed consolidation behaviour of clay’, Trans. ASCE 120, 1201–33.Google Scholar
Schmidt, B. (1966), ‘Discussion: Earth pressures at rest related to stress history’, Canadian Geotechnical Journal 3(4), 239–42.CrossRefGoogle Scholar
Schofield, A.N. (1980), ‘Cambridge Geotechnical Centrifuge operations’, 20th Rankine Lecture, Géotechnique 30(3), 227–68.CrossRefGoogle Scholar
Schofield, A.N., and Wroth, C.P. (1968), Critical state soil mechanics (London: McGraw-Hill).Google Scholar
Shahanguian, S. (1981), Détermination expérimentale des courbes d'état limite de l'argile organique de Cubzac-les-Ponts. (Paris: Laboratoire Central des Ponts et Chaussées), Rapport de recherche LPC 106.Google Scholar
Sherwood, P.T., and Ryley, M.D. (1970), ‘An investigation of a cone-penetrometer method for the determination of the liquid limit’, Géotechnique 20(2), 203–8.CrossRefGoogle Scholar
Shibata, T. (1963), ‘On the volume changes of normally-consolidated clays’ (in Japanese), Disaster Prevention Research Institute Annuals, Kyoto University 6, 128–34.Google Scholar
Simpson, B., O'Riordan, N.J., and Croft, D.D. (1979), ‘A computer model for the analysis of ground movements in London clay’, Géotechnique 29(2), 149–75.CrossRefGoogle Scholar
Skempton, A.W. (1944), ‘Notes on the compressibility of clays’, Quarterly J. Geological Soc. of London 100 (C parts 1 & 2), 119–35.CrossRefGoogle Scholar
Skempton, A.W. (1953), ‘The colloidal ‘activity’ of clays’, in Proc. 3rd Int. Conf. on Soil Mechs and Foundation Eng., Zurich (Zurich: Organising Committee ICOSOMEF), vol. 1, pp. 57-61.Google Scholar
Skempton, A.W. (1954a), ‘The pore pressure coefficients A and BGéotechnique 4(4), 143–47.CrossRefGoogle Scholar
Skempton, A.W. (1954b), ‘Discussion of the structure of inorganic soil’, Proc. ASCE, Soil Mechanics and Foundations Division 80 (Separate 478), 19-22.Google Scholar
Skempton, A.W. (1957), ‘Discussion: The planning and design of the new Hong Kong airport’, Proc. ICE 7, 305–7.Google Scholar
Skempton, A.W. (1970a), ‘The consolidation of clays by gravitational compaction’, Quarterly J. Geological Soc. of London 125(3), 373-411.Google Scholar
Skempton, A.W. (1970b), ‘First-time slides in over-consolidated clays’, Géotechnique 20(3), 320–4.CrossRefGoogle Scholar
Skempton, A.W. (1985), ‘Residual strength of clays in landslides, folded strata and the laboratory,’ Géotechnique 35(1), 3-18.CrossRefGoogle Scholar
Skempton, A.W., and Bjerrum, L. (1957), ‘A contribution to the settlement analysis of foundations on clay’, Géotechnique 7(4), 168–78.CrossRefGoogle Scholar
Skempton, A.W., and Henkel, D.J. (1957), ‘Tests on London clay from deep borings at Paddington, Victoria and the South Bank’, in Proc. 4th Int. Conf. on Soil Mechs and Foundation Eng., London (London: Butterworths Scientific Publications), vol. 1, pp. 100–6.Google Scholar
Skempton, A.W., and Northey, R.D. (1953), ‘The sensitivity of clays’, Géotechnique 3(1), 30-53.Google Scholar
Spencer, A.J.M. (1980), Continuum mechanics (London: Longman).Google Scholar
Statens Järnvägars Geotekniska Kommission 1914-1922 (1922), Slutbetänkande avgivet till Kungl. Järnvägsstyrelsen (Stockholm: Statens Järnvägar), Geotekniska Meddelanden 2.
Stroud, M.A. (1971), The behaviour of sand at low stress levels in the simple shear apparatus, Ph.D. thesis, Cambridge University.Google Scholar
Tabor, D. (1951), The hardness of metals (Oxford: Clarendon Press).Google Scholar
Tatsuoka, F. (1972), Shear tests in a triaxial apparatus - a fundamental study of the deformation of sand (in Japanese), Ph.D. thesis, Tokyo University.Google Scholar
Tatsuoka, F. (1987). ‘Discussion: The strength and dilatancy of sands’, Géotechnique 37(2), 219–25.Google Scholar
Tatsuoka, F., and Ishihara, K. (1974a), ‘Yielding of sand in triaxial compression’, Soils and Foundations 14(2), 63-76.CrossRefGoogle Scholar
Tatsuoka, F., and Ishihara, K. (1974b), ‘Drained deformation of sand under cyclic stresses reversing direction’, Soils and Foundations 14(3), 51-65.CrossRefGoogle Scholar
Tavenas, F., des Rosiers, J-P., Leroueil, S., LaRochelle, P., and Roy, M. (1979), ‘The use of strain energy as a yield and creep criterion for lightly overconsolidated clays’, Géotechnique 29(3), 285-303.CrossRefGoogle Scholar
Tavenas, F., and Leroueil, S. (1980), ‘The behaviour of embankments on clay foundations’, Canadian Geotechnical Journal 17(2), 236–60.CrossRefGoogle Scholar
Tavenas, F., Leroueil, S., LaRochelle, P., and Roy, M. (1978), ‘Creep behaviour of an undisturbed lightly overconsolidated clay’, Canadian Geotechnical Journal 15(3), 402–23.CrossRefGoogle Scholar
Taylor, D.W. (1948), Fundamentals of soil mechanics (New York: John Wiley).Google Scholar
Taylor, G.I., and Quinney, H. (1931), ‘The plastic distortion of metals’, Phil. Trans. Roy. Soc. A230, 323–62.Google Scholar
Terzaghi, K. von (1923), ‘Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen’, Akademie der Wissenschaften in Wien, Sitzungsberichte, Mathematisch-naturwissenschaftliche Klasse, Part Ha 132(3/4), 125–38.Google Scholar
Terzaghi, K. von (1936), ‘Stability of slopes of natural clay’, in Proc. 1st Int. Conf. on Soil Mechs and Foundation Eng., Harvard (Cambridge, Mass: Harvard University Graduate School of Engineering), vol. 1, pp. 161–5.Google Scholar
Terzaghi, K., and Peck, R.B. (1948), Soil mechanics in engineering practice (New York: John Wiley).Google Scholar
Timoshenko, S. (1934), Theory of elasticity (New York: McGraw-Hill).Google Scholar
Trak, B., LaRochelle, P., Tavenas, F., Leroueil, S., and Roy, M. (1980), ‘A new approach to the stability analysis of embankments on sensitive clays’, Canadian Geotechnical Journal 17(4), 526–44.CrossRefGoogle Scholar
Tresca, H. (1869), ‘Mémoire sur le poinçonnage et la théorie mécanique de la déformation des métaux’, Comptes rendus hebdomadaires des Séances de l'Académie des Sciences, Paris 68, 1197–201.Google Scholar
United States Department of the Navy (1971), Design manual. Soil mechanics, foundations, and earth structures, NAVFAC DM-7 (Alexandria: Department of the Navy, Naval Facilities Engineering Command).
Vaid, Y.P., and Campanella, R.G. (1974), ‘Triaxial and plane strain behaviour of natural clay’, Proc. ASCE, Journal of the Geotechnical Engineering Division 100(GT3), 207–24.Google Scholar
Vardoulakis, I. (1978), ‘Equilibrium bifurcation of granular earth bodies’, in Advances in analysis of geotechnical instabilities (Waterloo, Ontario: University of Waterloo Press), SM study 13, Paper 3, pp. 65-119.Google Scholar
Vermeer, P. A. (1980), Formulation and analysis of sand deformation problems (Delft: Geotechnical Laboratory, Delft University of Technology), Report 195.Google Scholar
Vermeer, P.A. (1982), ‘A simple shear-band analysis using compliances’, in P.A., Vermeer and H.J., Luger (eds.), Proc. IUTAM Symp. on Deformation and Failure of Granular Materials, Delft (Rotterdam: A.A. Balkema), pp. 493–9.Google Scholar
Vermeer, P.A. (1984), ‘A five-constant model unifying well-established concepts’, in G., Gudehus, F., Darve, and I., Vardoulakis (eds.), Constitutive relations for soils (Rotterdam: A.A. Balkema), pp. 175–97.Google Scholar
Vermeer, P.A., and Borst, R. de (1984), ‘Non-associated plasticity for soils, concrete and rock’, HERON 29(3), 1-64.Google Scholar
Vesic, A.S., and Clough, G.W. (1968), ‘Behaviour of granular materials under high stresses’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 94(SM3), 661–88.Google Scholar
Ward, W.H., and Burland, J.B. (1973), ‘The use of ground strain measurements in civil engineering’, Phil. Trans. Roy. Soc. A274, 421–8.CrossRefGoogle Scholar
Watson, J.D. (1956), ‘Earth movement affecting LTE railway in deep cutting east of Uxbridge’, Proc. ICE, Part II 5, 302–31.Google Scholar
Winterkorn, H.F., and Fang, H-Y. (1975), Foundation engineering handbook (New York: Van Nostrand-Reinhold).Google Scholar
Wong, P.K.K., and Mitchell, R.J. (1975), ‘Yielding and plastic flow of sensitive cemented clay’, Géotechnique 25(4), 763–82.CrossRefGoogle Scholar
Wood, D.M. (1974), Some aspects of the mechanical behaviour of kaolin under truly triaxial conditions of stress and strain, Ph.D. thesis, Cambridge University.Google Scholar
Wood, D.M. (1982), ‘Laboratory investigations of the behaviour of soils under cyclic loading: a review’, in G.N., Pande and O.C., Zienkiewicz (eds.), Soil mechanics - transient and cyclic loads (Chichester: John Wiley), pp. 513–82.Google Scholar
Wood, D.M. (1984a), ‘Choice of models for geotechnical predictions’, in C.S., Desai and R.H., Gallagher (eds.) Mechanics of engineering materials (Chichester: John Wiley & Sons), pp. 633–54.Google Scholar
Wood, D.M. (1984b), ‘On stress parameters’, Géotechnique 34(2), 282–7.CrossRefGoogle Scholar
Wood, D.M. (1985a), ‘Some fall-cone tests’, Géotechnique 35(1), 64–8.CrossRefGoogle Scholar
Wood, D.M. (1985b), ‘Index properties and consolidation history’, Proc. Uth Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco (Rotterdam: A.A. Balkema), vol. 2, pp. 703–6.Google Scholar
Wood, D.M., and Budhu, M. (1980), ‘The behaviour of Leighton Buzzard sand in cyclic simple shear tests’, in G.N., Pande and O.C., Zienkiewicz (eds.), Proc. Int. Symp. on Soils under Cyclic and Transient Loading, Swansea (Rotterdam: A.A. Balkema), vol. 1, pp. 9-21.Google Scholar
Wood, D.M., Drescher, A., and Budhu, M. (1979), ‘On the determination of the stress state in the simple shear apparatus’, Geotechnical Testing Journal, American Society for Testing and Materials 2(4), 211–22.Google Scholar
Wood, D.M., and Wroth, C.P. (1978), ‘The use of the cone penetrometer to determine the plastic limit of soils’, Ground Engineering 11(3), 37.Google Scholar
Wright, P.J.F. (1955), ‘Comments on an indirect tensile test on concrete cylinders’, Magazine of Concrete Research 7(20), 87-96.CrossRefGoogle Scholar
Wroth, C.P. (1958), ‘Soil behaviour during shear - existence of critical voids ratios’, Engineering 186, 409–13.Google Scholar
Wroth, C.P. (1972), ‘General theories of earth pressure and deformation’, in Proc. 5th European Conf. on Soil Mechs and Foundation Eng., Madrid (Madrid: Sociedad Espanola de Mecanica del Sueloy Cimentaciones), vol. 2, pp. 33-52.Google Scholar
Wroth, C.P. (1975), ‘In-situ measurement of initial stresses and deformation characteristics’, in Proc. Specialty Conf. on In-Situ Measurement of Soil Properties, Raleigh, North Carolina (New York: ASCE), vol. 2, pp. 181-230.Google Scholar
Wroth, C.P. (1979), ‘Correlations of some engineering properties of soils’, in Proc. 2nd Int. Conf. on Behaviour of Off-Shore Structures, London (Cranfield: BHRA Fluid Engineering), vol. 1, pp. 121–32.Google Scholar
Wroth, C.P. (1984), ‘The interpretation of in situ soil tests’, 24th Rankine Lecture, Géotechnique 34(4), 449–89.CrossRefGoogle Scholar
Wroth, C.P., and Houlsby, G.T., (1985), ‘Soil mechanics - property characterisation and analysis procedures’, in Proc. 11th Int. Conf. on Soil Mechs and Foundation Eng., San Francisco (Rotterdam: A.A. Balkema), vol. 1, pp. 1-55.Google Scholar
Youssef, M.S., el Ramli, A.H., and el Demery, M. (1965), ‘Relationships between shear strength, consolidation, liquid limit, and plastic limit for remoulded clays’, in Proc. 6th Int. Conf. on Soil Mechs and Foundation Eng., Montreal (Toronto: Toronto University Press), vol. 1, pp. 126–9.Google Scholar
Yudhbir (1973), ‘Field compressibility of soft sensitive normally consolidated clays’, Geotechnical Engineering 4(1), 31-40.
Yudhbir, (1982), ‘Collapsing behaviour of residual soils’, in I., McFeat-Smith and P., Lumb (eds.), Proc. 7th SE Asian Geotechnical Conf, Hong Kong (Hong Kong: Hong Kong Institution of Engineers and Southeast Asian Geotechnical Society), vol. 1, pp. 915–30.Google Scholar
Zienkiewicz, O.C. (1977), The finite element method (3rd ed.) (Maidenhead: McGraw-Hill).Google Scholar
Zytynski, M., Randolph, M.F., Nova, R., and Wroth, C.P. (1978), ‘On modelling the unloading-reloading behaviour of soils’, Int. J. for Numerical and Analytical Methods in Geomechanics 2, 87-94.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David Muir Wood, University of Glasgow
  • Book: Soil Behaviour and Critical State Soil Mechanics
  • Online publication: 05 October 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878272.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David Muir Wood, University of Glasgow
  • Book: Soil Behaviour and Critical State Soil Mechanics
  • Online publication: 05 October 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878272.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David Muir Wood, University of Glasgow
  • Book: Soil Behaviour and Critical State Soil Mechanics
  • Online publication: 05 October 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878272.014
Available formats
×