Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-29T14:17:54.465Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2016

John A. Colosi
Affiliation:
Naval Postgraduate School, Monterey, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., and Stegun, I.A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York.
Ainslie, M. 2010. Principles of Sonar Performance Modeling. Springer, London.
Alford, M.H., Lien, R.C., Simmons, H., Klymak, J., Ramp, S., Yang, Y.J., Tang, D., and Chang, M.H. 2010. Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40(6), 1338–1355.Google Scholar
Andrew, R., Howe, B., and Mercer, J. 2005. Transverse horizontal spatial coherence of deep arrivals at megameter ranges. J. Acoust. Soc. Am., 117, 1511–1526.Google Scholar
Andrews, L.C., and Phillips, R.L. 2005. Laser Beam Propagation through Random Media. Vol. 10. SPIE Press, Bellingham, WA.
Antonov, J.I., Locarnini, R.A., Boyer, T.P., Mishonov, A.V., and Garcia, H.E. 2006. World Ocean Atlas 2005. Salinity. edited by S., Levitus (U.S.Government Printing Office, Washington, DC), NOAA Atlas NESDIS62, 2, 182.
Apel, J., Badiey, M., Chiu, C.S., Finnette, S., Headrick, R., Kemp, J., Lynch, J., Newhall, A., Orr, M., Pasewark, B., Teilbuerger, D., Turgut, A., von der Heydt, K., and Wolf, S. 1997. An overview of the 1995 SWARM shallow water internal wave acoustic scattering experiment. IEEE J. Oceanic Eng., 22, 465–500.Google Scholar
Apel, J.R., Ostrovsky, L.A., Stepanyants, Y.A., and Lynch, J.F. 2007. Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am., 121, 695–722.Google Scholar
APL-UW. 2008. APL-UW High Frequency Ocean Environmental Acoustic Models Handbook. APL-UW TR9407, AEAS 9501, Applied Physics Laboratory, University of Washington.
Arnold, V.I. 1989. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York.
Baym, G. 1973. Lectures on Quantum Mechanics. Benjamin/Cummings, Menlo Park.
Bell, T.H. 1974. Processing vertical internal wave spectra. J. Phys. Oc., 4, 669–670.Google Scholar
Beron-Vera, F.J., and Brown, M.G. 2003. Ray stability in weakly range dependent sound channels. J. Acoust. Soc. Am., 114, 123–130.Google Scholar
Beron-Vera, F.J., and Brown, M.G. 2004. Travel time stability in weakly range-dependent sound channels. J. Acoust. Soc. Am., 115, 1068–1077.Google Scholar
Beron-Vera, F.J., and Brown, M.G. 2009. Underwater acoustic beam dynamics. J. Acoust. Soc. Am., 126, 80–91.Google Scholar
Beron-Vera, F.J., Brown, M.G., Colosi, J.A., Tomsovic, S., Virovlyansky, A.L., Wolfson, M.A., and Zaslavsky, G.M. 2003. Ray dynamics in a long-range acoustic propagation experiment. J. Acoust. Soc. Am., 114, 1226–1241.Google Scholar
Born, M., and Wolf, E. 1999. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edition Cambridge University Press, Cambridge.
Boyd, T.J., Luther, D.S., Knox, R.A., and Hendershott, M.C. 1993. High-frequency internal waves in the strongly sheared currents of the upper Equatorial Pacific: Observations and a simple spectral model. J. Geophys. Res., 98, 18089–18107.Google Scholar
Brekhovskikh, L.M., and Lysanov, Yu. 1991. Fundamentals of Ocean Acoustics, 2nd edition Springer-Verlag, Berlin.
Briscoe, M.G. 1975. Preliminary results from the tri-moored internal wave experiment IWEX. J. Geophys. Res., 80, 3877–3884.Google Scholar
Brown, M.G. 1982. Application of the WKBJ Green's function to acoustic propagation in horizontally stratified oceans. J. Acoust. Soc. Am., 71(6), 1427–1432.Google Scholar
Brown, M.G. 1994. AMaslov-Chapman wavefield representation for wide-angle one-way propagation. Geophys. J. Int., 116(3), 513–526.Google Scholar
Brown, M.G. 1998. Phase space structure and fractal trajectories in 1 1/2 degree of freedom Hamiltonian systems whose time dependence is quasi-periodic. Nonlin. Proc. Geophys., 5, 69–74.Google Scholar
Brown, M.G., Beron-Vera, F.J., Rypina, I., and Udovydchenkov, I.A. 2005. Rays, modes, wavefield structure and wavefield stability. J. Acoust. Soc. Am., 117, 1607–1610.Google Scholar
Brown, M.G., Colosi, J.A., Virovlyansky, A.L., Zaslavsky, G.M., Tomsovic, S., and Wolfson, M.A. 2003. Ray dynamics in ocean acoustics. J. Acoust. Soc. Am., 113, 2533–2547.Google Scholar
Brown, M.G., Tappert, T.F., and Goni, G. 1991. An investigation of sound ray dymanics in the ocean volume using an area-preserving map. Wave Motion, 14, 93–99.Google Scholar
Buckingham, M.J. 2005. Compressional and shear wave properties of marine sediments: Comparisons between theory and data. J. Acoust. Soc. Am., 117, 137–152.Google Scholar
Carey, W.M. 1998. The determination of signal coherence length based on signal coherence and gain measurements in deep and shallow water. J. Acoust. Soc. Am., 104, 831–837.Google Scholar
Casati, G., and Chirikov, B.V. 1995. Quantum Chaos: Between Order and Disorder: A Selection of Papers. Cambridge University Press, New York.
Chandrayadula, T.K., Colosi, J.A., Worcester, P.F., Dzieciuch, M.A., Mercer, J.A., Andrew, R.K., and Howe, B.M. 2013. Observations and transport theory analysis of low frequency, acoustic mode propagation in the Eastern North Pacific Ocean. J. Acoust. Soc. Am., 134, 3144–3160.Google Scholar
Chapman, C. 2004. Fundamentals of Seismic Wave Propagation. Cambridge University Press, Cambridge.
Chernov, L.A. 1975. Wave Propagation in Random Media. Nauka, Moscow (In Russian).
Chu, P.C., and Hsieh, C.-P. 2007. Change of multifractal thermal characteristics in the western Philippine Sea upper layer during internal wave-soliton propagation. J. of Oceangr., 63, 927–939.Google Scholar
Clay, C.S., and Medwin, H. 1977. Acoustical Oceanography: Principles and Applications. John Wiley & Sons, New York.
Clifford, S. 1978. The classical theory of wave propagation in a turbulent medium. In: Strohbehn, J.W. (ed), Laser Beam Propagation in the Atmosphere. Springer-Verlag, Berlin.
Codona, J., Creamer, D., Flatté, S.M., Frehlich, R., and Henyey, F. 1985. Average arrival time of wave pulses through continuous random media. Phys. Rev. Lett., 55, 9–12.Google Scholar
Codona, J., Creamer, D., Flatté, S.M., Frehlich, R., and Henyey, F. 1986a. Solution for the fourth moment of waves propagating in random media. Radio Sci., 21, 929–948.Google Scholar
Codona, J.L., Creamer, D.B., Flatté, S.M., Frehlich, R.G., and Henyey, F.S. 1986b. Moment-equation and path-integral techniques for wave propagation in random media. J. Math. Phys., 27(1), 171–177.Google Scholar
Colladon, J.D., and Sturm, J.C.F. 1827. Memoir on the compression of liquids. Ann. Chim. Phys., 2(36), 225–257.Google Scholar
Colosi, J.A. 1999. A review of recent results on ocean acoustic wave propagation in random media: Basin scales. IEEE J. Oc. Eng., 24, 138–155.Google Scholar
Colosi, J.A. 2001. A scintillating problem: Basin scale acoustic propagation through a fluctuating ocean. Proc. Inst. Acoust., 23, 37–53.Google Scholar
Colosi, J.A. 2006. Geometric sound propagation through an inhomogeneous and moving ocean: Scattering by small scale internal wave currents. J. Acoust. Soc. Am., 119, 705–708.Google Scholar
Colosi, J.A. 2008. Acoustic mode coupling induced by shallow water nonlinear internal waves: Sensitivity to environmental conditions and space-time scales of internal waves. J. Acoust. Soc. Am., 124, 1452–1464.Google Scholar
Colosi, J.A. 2013. On horizontal coherence estimates from path integral theory for sound propagation through random ocean sound-speed perturbations. J. Acoust. Soc. Am., 134, 3116–3118.Google Scholar
Colosi, J.A. 2015. A reformulation of the Λ - Φ diagram for the prediction of ocean acoustic fluctuation regimes. J. Acoust. Soc. Am., 137, 2485–2494.Google Scholar
Colosi, J.A., and Baggeroer, A.B. 2004. On the kinematics of broadband multipath scintillation and the approach to saturation. J. Acoust. Soc. Am., 116, 3515–3522.Google Scholar
Colosi, J.A., Baggeroer, A.B., Cornuelle, B.D., Dzieciuch, M.A., Munk, W.H., Worcester, P.F., Dushaw, B.D., Howe, B.M., Mercer, J.A., Spindel, R.C., Birdsall, T.G., Metzger, K., and Forbes, A.M.G. 2005. Analysis of multipath acoustic field variability and coherence for the finale of broadband basin-scale transmissions in the North Pacific Ocean. J. Acoust. Soc. Am., 117, 1538–1564.Google Scholar
Colosi, J.A., and Brown, M.G. 1998. Efficient numerical simulation of stochastic internal wave induced sound speed perturbation fields. J. Acoust. Soc. Am., 103, 2232–2235.Google Scholar
Colosi, J.A., Chandrayadula, T., Voronovich, A.G., and Ostashev, V.E. 2013a. Coupled mode transport theory for sound propagation through an ocean with random sound-speed perturbations: Coherence in deep water environments. J. Acoust. Soc. Am., 134, 3119–3133.Google Scholar
Colosi, J.A., Duda, T.F., Lin, T.T., Lynch, J., Newhall, A., and Cornuelle, B.C. 2012. Observations of sound speed fluctuations on the New Jersey continental shelf in the summer of 2006. J. Acoust. Soc. Am., 131, 1733–1748.Google Scholar
Colosi, J.A., Duda, T.F., and Morozov, A.K. 2011. Statistics of low-frequency normal-mode amplitudes in an ocean with random sound-speed perturbations: Shallow-water environments. J. Acoust. Soc. Am., 131, 1749–1761.Google Scholar
Colosi, J.A., and Flatté, S.M. 1996. Mode coupling by internal waves for multimegameter acoustic propagation in the ocean. J. Acoust. Soc. Am., 100, 3607–3620.Google Scholar
Colosi, J.A., Flatté, S.M., and Bracher, C. 1994. Internal wave effects on 1000-km oceanic acoustic pulse propagation: Simulation and comparison to experiment. J. Acoust. Soc. Am., 96, 452–468.Google Scholar
Colosi, J.A., and Morozov, A.K. 2009. Coupled mode theory for the mean intensity of sound propagation through a random waveguide. J. Acoust. Soc. Am,, 126, 1026–1035.Google Scholar
Colosi, J.A., Scheer, E.K., Flatté, S.M., Cornuelle, B.D., Dzieciuch, M.A., Munk, W.H., Worcester, P.F., Howe, B.M., Mercer, J.A., Spindel, R.C., Metzger, K., Birdsall, T., and Baggeroer, A. 1999. Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern North Pacific Ocean. J. Acoust. Soc. Am., 105, 3202–3218.Google Scholar
Colosi, J.A., Tappert, F.D., and Dzieciuch, M.A. 2001. Further analysis of intensity fluctuations from a 3252-km acoustic propagation experiment in the eastern North Pacific Ocean. J. Acoust. Soc. Am., 110, 163–169.Google Scholar
Colosi, J.A., Uffelen, L.J. Van, Cornuelle, B.D., Dzieciuch, M.A., Worcester, P.F., Dushaw, B.D., and Ramp, S.R. 2013b. Observations of sound speed fluctuations in the western Philippine Sea in the spring of 2009. J. Acoust. Soc. Am., 134, 3185–3200.Google Scholar
Colosi, J.A., Xu, J., Cornuelle, B.D., Dzieciuch, M.A., Munk, W.H., Worcester, P.F., Howe, B.M., and Mercer, J.A. 2009. Intensity fluctuations and spectra for low frequency, short range sound transmission in the Eastern North Pacific Ocean: Comparisons to weak fluctuation theory. J. Acoust. Soc. Am., 126, 1069–1083.Google Scholar
Cornuelle, B.D., and Howe, B.M. 1987. High spatial resolution in vertical slice ocean acoustic tomography. J. Geophys. Res., 92, 11680–11692.Google Scholar
Creamer, D. 1996. Scintillating shallow water waveguides. J. Acoust. Soc. Am., 99, 2825–2838.Google Scholar
da Vinci, Leonardo. 1483. Manuscript B, Institut de France, Folio 6 recto.
D'Asaro, E.A. 1984. Wind forced internal waves in the North Pacific and Sargasso Sea. J. Phys. Oceanogr., 14, 781–794.Google Scholar
D'Asaro, E.A., and Morehead, M.D. 1991. Internal waves and velocity fine structure in the Arctic Ocean. J. Geophys. Res., 96, 12725–12738.Google Scholar
Dashen, R. 1979. Path integrals for waves in random media. J. Math. Phys., 20(5), 894–920.Google Scholar
Dashen, R., Flatté, S.M., and Reynolds, S. 1985. Path-integral treatment of acoustic mutual coherence functions for rays in a sound channel. J. Acoust. Soc. Am., 77, 1716–1722.Google Scholar
DelGrosso, V.A. 1974. New equation for the speed of sound in natural waters. J. Acoust. Soc. Am., 56, 1084–1091.Google Scholar
Desaubies, Y.J.F. 1978. On the scattering of sound by internal waves in the ocean. J. Acoust. Soc. Am., 64(5), 1460–1469.Google Scholar
Dozier, L.B. 1983. A coupled mode model for spatial coherence of bottom-interacting energy. In: Spofford, C.W., and Haynes, J.M. (eds), Proceedings of the Stochastic Modeling Workshop. ARL-University of Texas, Austin, TX.Google Scholar
Dozier, L.B., and Tappert, F.D. 1978a. Statistics of normal-mode amplitudes in a random ocean. I. Theory. J. Acoust. Soc. Am., 63, 353–365.Google Scholar
Dozier, L.B., and Tappert, F.D. 1978b. Statistics of normal-mode amplitudes in a random ocean. II. Computations. J. Acoust. Soc. Am., 64, 353–365.Google Scholar
Duda, T.F. 2005. Ocean sound channel ray path perturbations from internal wave shear and strain. J. Acoust. Soc. Am., 118, 2899–2903.Google Scholar
Duda, T.F., and Bowlin, J.B. 1994. Ray-acoustic caustic formation and timing effects from ocean sound speed relative curvature. J. Acoust. Soc. Am., 96, 1033–1046.Google Scholar
Duda, T.F., Collis, J.M., Lin, Y.T., Newhall, A.E., Lynch, J.F., and DeFerrari, H.A. 2012. Horizontal coherence of low-frequency fixed-path sound in a continental shelf region with internal-wave activity. J. Acoust. Soc. Am., 131, 1782–1797.Google Scholar
Duda, T.F., and Cox, C.S. 1989. Vertical wave number spectra of velocity and shear at small internal wave scales. J. Geophys. Res., 94, 939–950.Google Scholar
Duda, T.F., and Farmer, D.M. 1999. The 1998 WHOI/IOS/ONR Internal Solitary Wave Workshop: Contributed Papers. Woods Hole Oceanographic Institution Technical Report.
Duda, T.F., Flatté, S.M., Colosi, J.A., Cornuelle, B.D., Hildebrand, J.A., Hodgkiss, W.S., Worcester, P.F., Howe, B.M., Mercer, J.A., and Spindel, R.C. 1992. Measured wave-front fluctuations in 1000-km pulse propagation in the Pacific Ocean. J. Acoust. Soc. Am., 92, 939–955.Google Scholar
Duda, T.F., Lynch, J.F., Newhall, A.E., Wu, L., and Chiu, C.S. 2004. Fluctuations of 400 Hz sound intensity in the 2001 ASIAEX South China Sea experiment. IEEE J. Oceanic Eng., 29, 1264–1280.Google Scholar
Dushaw, B.D. 2008. Another look at the 1960 Perth to Bermuda long-range acoustic propagation experiment. Geophys. Res. Lett., 35(8), L08601.Google Scholar
Dushaw, B.D., Howe, B.M., Mercer, J.A., and Spindel, R.C. 1999. Multi-megameter range acoustic data obtained by bottom mounted hydrophone arrays for measurement of ocean temperature. IEEE J. Oceanic Eng., 24, 203–215.Google Scholar
Dushaw, B.D., and Worcester, P.F. 1998. Resonant diurnal internal tides in the North Atlantic. Geophys. Res. Lett., 25, 2189–2193.Google Scholar
Dushaw, B.D., Worcester, P.F., Cornuelle, B.D., Howe, B.M., and Luther, D.S. 1995. Baroclinic and barotropic tides in the central North-Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25, 631–647.Google Scholar
Dushaw, B.D., Worcester, P.F., and Dzieciuch, M.A. 2011. On the predictability of mode-1 internal tides. Deep-Sea Res., 58, 677–698.Google Scholar
Dyer, I. 1970. Statistics of sound propagation in the ocean. J. Acoust. Soc. Am., 48, 337–345.Google Scholar
Dyson, F.J. 1949. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev., 75(3), 486–502.Google Scholar
Dyson, F., Munk, W., and Zetler, B. 1976. Interpretation of multi path scintillations Eleuthera to Bermuda in terms of internal waves and tides. J. Acoust. Soc. Am., 59, 1121–1133.Google Scholar
Dzieciuch, M.A. 2014. Signal processing and tracking of arrivals in ocean acoustic tomography. J. Acoust. Soc. Am., 136(5), 2512–2522.Google Scholar
Dzieciuch, M.A., Munk, W.H., and Rudnick, D. 2004. Propagation of sound through a spicy ocean, the sofar overture. J. Acoust. Soc. Am., 116, 1447–1462.Google Scholar
Dzieciuch, M.A., and Vera, M.D. 2006. Horizontal coherence of tracked arrivals in the North Pacific Acoustic Laboratory98 (NPAL98). J. Acoust. Soc. Am., 120, 3022.Google Scholar
Dzieciuch, M.A., Worcester, P.F., and Munk, W.H. 2001. Turning point filters: Analysis of sound propagation on a gyre-scale. J. Acoust. Soc. Am., 110, 135–149.Google Scholar
Eckart, C. 1960. Hydrodynamics of Oceans and Atmospheres. Pergamon Press, Oxford.
Eckart, C., and Carhart, R.R. 1950. Fluctuation of sound in the sea. In Basic Problems in Underwater Acoustics (pp. 63–122). Committee on Undersea Warfare, National Research Council.
Eckert, E.G., and Foster, T.D. 1990. Upper Ocean internal waves in the marginal ice zone of the northeastern Greenland Sea. J. Geophys. Res., 95, 9569–9574.Google Scholar
Ehrenfest, P. 1927. Bemerkung ber die angenŁherte Gltigkeit der klassischen Mechanik innerhalb der Quantenmechanic. Zeitschrift Physik, 45, 455–457.Google Scholar
Eriksen, C.C. 1978. Measurements and models of fine structure, internal gravity waves, and wave breaking in the deep ocean. J. Geophys. Res., 83, 2989–2310.Google Scholar
Eriksen, C.C. 1980. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean. J. Geophys. Res., 85, 3285–3303.Google Scholar
Eriksen, C.C. 1985. Some characteristics of internal gravity waves in the Equatorial Pacific. J. Geophys. Res., 90, 7243–7255.Google Scholar
Eriksen, C.C. 1998. Internal wave reflection and mixing at Fieberling Guyot. J. Geophys. Res., 103, 2977–2994.Google Scholar
Esswein, R., and Flatté, S.M. 1980. Calculation of strength and diffraction parameters in oceanic sound transmission. J. Acoust. Soc. Am., 67, 1523–1531.Google Scholar
Esswein, R., and Flatté, S.M. 1981. Calculation of the phase structure function density from oceanic internal waves. J. Acoust. Soc. Am., 70, 1387–1396.Google Scholar
Ewart, T.E. 1976. Acoustic fluctuations in the open ocean – A measurement using a fixed refracted path. J. Acoust. Soc. Am., 60, 46–60.Google Scholar
Ewart, T.E. 1989. A model of the intensity probability distribution for wave propagation in random media. J. Acoust. Soc. Am., 86, 1490–1498.Google Scholar
Ewart, T.E., and Percival, D.B. 1986. Forward scattered waves in random media – The probability distribution of intensity. J. Acoust. Soc. Am., 60, 1745–1753.Google Scholar
Ewart, T.E., and Reynolds, S.A. 1984. The mid-ocean acoustic transmission experiment – MATE. J. Acoust. Soc. Am., 75, 785–802.Google Scholar
Ewart, T.E., and Reynolds, S.A. 1990. Instrumentation to measure the depth/time fluctuations in acoustic pulses propagated through Arctic internal waves. J. Atmos. Ocean Tech., 7, 129–140.Google Scholar
Ewart, T.E., and Reynolds, S.A. 1993. Ocean acoustic propagation measurements and wave propagation in random media. In: Ishimaru, A., and Zavorotny, V.U. (eds), Wave Propagation in Random Media (Scintillation). SPIE Press, Bellingham, WA.
Ewart, T.E., Reynolds, S.A., and Rouseff, D. 1998. Determining an ocean internal wave model using acoustic log-amplitude and phase: A Rytov inverse. J. Acoust. Soc. Am., 104, 146–156.Google Scholar
Ewing, M., and Worzel, J.L. 1948. Long-range sound transmission. Geol. Soc. Am. Mem., 27, 1–32.Google Scholar
Ferarri, R., and Rudnick, D.L. 2000. Thermohaline variability in the upper ocean. J. Geophys. Res., 105, 16857–16883.Google Scholar
Feynman, R., and Hibbs, A. 1965. Quantum Mechanics and Path Integrals.McGraw-Hill, New York.
Fisher, F.H., and Simmons, V.P. 1977. Sound absorption in sea water. J. Acoust. Soc. Am., 62, 558–564.Google Scholar
Flatté, S.M. 1983a. Principles of acoustic tomography of internal waves. Proc. Oceans '83, 29, 372–377.Google Scholar
Flatté, S.M. 1983b. Wave propagation through random media: Contributions from ocean acoustics. Proc. IEEE, 71, 1267–1294.Google Scholar
Flatté, S.M. 1986. The Schrödinger equation in classical physics. Am. J. Phys., 54, 1088–1095.Google Scholar
Flatté, S.M., Bernstein, D., and Dashen, R. 1983. Intensity moments by path integral techniques for wave propagation through random media, with application to sound in the ocean. Phys. Fluids, 26, 1701–1713.Google Scholar
Flatté, S.M., Bracher, C., and Wang, G. 1994. Probability density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation. J. Opt. Soc. Am., 11, 2080–2092.Google Scholar
Flatté, S.M., and Colosi, J.A. 2008. Anisotropy of the wavefront distortion for acoustic pulse propagation through ocean sound speed fluctuations: A ray perspective. IEEE J. Oceanic Eng., 6, 477–488.Google Scholar
Flatté, S.M., Dashen, R., Munk, W., Watson, K., and Zachariasen, F. 1979. Sound Transmission through a Fluctuating Ocean. Cambridge University Press, Cambridge.
Flatté, S.M., Leung, R., and Lee, S.Y. 1980. Frequency spectra of acoustic fluctuations caused by oceanic internal waves and other fine structure. J. Acoust. Soc. Am., 68, 1773–1780.Google Scholar
Flatté, S.M., Reynolds, S.A., and Dashen, R. 1987a. Path-integral treatment of intensity behavior for rays in a sound channel. J. Acoust. Soc. Am., 82, 967–972.Google Scholar
Flatté, S.M., Reynolds, S., Dashen, R., Buehler, B., and Maciejewski, P. 1987b. AFAR measurements of intensity and intensity moments. J. Acoust. Soc. Am., 82, 973–981.Google Scholar
Flatté, S.M., and Rovner, G. 2000. Calculation of internal-wave induced fluctuations in ocean acoustic propagation. J. Acoust. Soc. Am., 108, 526–534.Google Scholar
Flatté, S.M., and Stoughton, R. 1988. Predictions of internal wave effects on ocean acoustic coherence, travel time variance, and intensity moments for very long range propagation. J. Acoust. Soc. Am., 84, 1414–1424.Google Scholar
Flatté, S.M., and Stoughton, R.B. 1986. Theory of acoustic measurement of internal wave strength as a function of depth, horizontal position, and time. J. Geophys. Res-Oceans (1978–2012), 91(C6), 7709–7720.Google Scholar
Flatté, S.M., and Tappert, F.D. 1975. Calculation of the effects of internal waves on oceanic sound transmission. J. Acoust. Soc. Am., 58, 1151–1159.Google Scholar
Flatté, S.M., and Vera, M. 2003. Comparison between ocean acoustic fluctuations in parabolic equation simulations and estimates from integral approximations. J. Acoust. Soc. Am., 114, 697–706.Google Scholar
Fredricks, A., Colosi, J.A., Lynch, J.F., Gawarkiewicz, G., Chiu, C.S., and Abbot, P. 2005. Analysis of multi path scintillations from long range acoustic transmissions on the New England continental slope and shelf. J. Acoust. Soc. Am., 117, 1038–1057.Google Scholar
Frisk, G.V. 1994. Ocean and Seabed Acoustics. Prentice Hall, Englewood Cliffs, NJ.
Garrett, C.J., and Kunze, E. 2007. Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 57–87.Google Scholar
Garrett, C.J., and Munk, W.H. 1972. Space-time scales of internal waves. Geophys. Fluid Dyn., 2, 255–264.Google Scholar
Garrett, C.J., and Munk, W.H. 1975. Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291–297.Google Scholar
Garrett, C.J.R. 1979. Mixing in the ocean interior. Dyn. Atmos. Oceans, 3, 239–265.Google Scholar
Giannoni, M.J., Voros, A., and Zinn-Justin, J. 1991. Chaos and Quantum Physics:Les Houches Session LII, 1989. Elsevier Science, Amsterdam.
Gill, A.E. 1982. Atmosphere-Ocean Dynamics. Vol. 30. Academic Press, San Diego.
Godin, O.A. 2007. Restless rays, steady wave fronts. J. Acoust. Soc. Am., 122, 3353–3363.Google Scholar
Goldstein, H. 1980. Classical Mechanics. Addison-Wesley, Reading, MA.
Gould, W.J., Schmitz, W.J., and Wunsch, C. 1974. Preliminary field results for a mid-ocean dynamics experiment (MODE-0). In: Deep Sea Research and Oceanographic Abstracts, Vol. 21 (pp. 911–931). Elsevier, Amsterdam.
Gregg, M.C. 1977. A comparison of fine structure spectra in the main thermocline. J. Phys. Oceanogr., 7, 33–40.Google Scholar
Gutzwiller, M. 1990. Chaos in Classical and Quantum Mechanics. Springer-Verlag, New York.
Hamilton, E.L. 1980. Geoacoustic modeling of the seafloor. J. Acoust. Soc. Am., 68, 1313–1340.Google Scholar
Hamilton, E.L. 1987. Acoustic properties of sediments. In: Lara-Saenz, A., Ranz-Guerra, C., and Carbo-Fite, C. (eds), Acoustics and Ocean Bottom. C.S.I.C, Madrid, Spain.
Hamilton, G. 1977. Time variations of sound speed over long paths in the ocean. In: International Workshop on Low-Frequency Propagation and Noise (pp. 7–30). Department of the Navy.
Headrick, R.H., Lynch, J., Kemp, J., Newhall, A., von der Heydt, K., Apel, J., Badiey, M., Chiu, C.S., Finnette, S., Orr, M., Pasewark, B., Turgut, A., Wolf, S., and Teilbuerger, D. 1999. Acoustic normal mode fluctuation statistics in the 1995 SWARM internal wave scattering experiment. J. Acoust. Soc. Am., 107, 201–221.Google Scholar
Heaney, K.D., Kuperman, W.A., and McDonald, B.E. 1991. Perth–Bermuda sound propagation (1960): Adiabatic mode interpretation. J. Acoust. Soc. Am., 90, 2586–2594.Google Scholar
Henyey, F., and Ewart, T.E. 2006. Validity of the markov approximation in ocean acoustics. J. Acoust. Soc. Am., 119, 220–231.Google Scholar
Henyey, F., and Macaskill, C. 1996. Sound through the internal wave field. In: Adler, R.J., Müller, P., and Rozovskii, B.L. (eds), Stochastic Modeling in Physical Oceanography. Birkhauser Press, Boston.
Henyey, F.S. 1997. A quick introduction to path integrals. In: ‘Aha Hulilo'a winter workshop: Monte Carlo Simulations in Oceanography. University of Hawaii, School of Ocean and Earth Science and Technology.
Hotchkiss, F.S., and Wunsch, C. 1982. Internal waves in Hudson canyon with possible geological implications. Deep-Sea Res., 29, 415–442.Google Scholar
Howe, B.M., Worcester, P.F., and Spindel, R.C. 1987. Ocean acoustic tomography: Mesoscale velocity. J. Geophys. Res-Oceans (1978–2012), 92(C4), 3785–3805.Google Scholar
Huygens, C. 1690. Traité de la Lumiere. Published in Leiden Netherlands, also see 2012 re-print in the Forgotten Books' Classic Reprint Series.
Isaacson, E., and Keller, H.B. 1966. Analysis of Numerical Methods. John Wiley & Sons, New York.
Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media, Vol. 2. Academic Press, New York.
Jensen, F.B., Kuperman, W.A., Porter, M.B., and Schmidt, H. 1994. Computational Ocean Acoustics. Springer-Verlag, New York.
Katznelson, B., and Pereselkov, S. 2000. Low-frequency horizontal acoustic refraction caused by internal wave solitons in a shallow sea. Acoust. Phys., 46, 684–691.Google Scholar
Katznelson, B., Petnikov, V., and Lynch, J. 2012. Fundamentals of Shallow Water Acoustics. Springer Science+Business Media, New York.
Kennedy, R.M. 1969. Phase and amplitude fluctuations in propagating through a layered ocean. J. Acoust. Soc. Am., 46(3B), 737–745.Google Scholar
Kunze, E., Rosenfeld, L.K., Carter, G.S., and Gregg, M.C. 2002. Internal waves in the Monterey submarine canyon. J. Phys. Oc., 32, 1890–1914.Google Scholar
Landau, L.D., and Lifshitz, E.M. 1975. Classical Theory of Fields. Pergamon Press, Oxford.
Landau, L.D., and Lifshitz, E.M. 1976. Mechanics. Pergamon Press, Oxford.
Landau, L.D., and Lifshitz, E.M. 1980. Statistical Physics, Third Edition, Part 1. Pergamon, Oxford.
Latora, V., and Baranger, M. 1999. Kolmogorov–Sinai entropy rate versus physical entropy. Phys. Rev. Lett., 82, 520–523.Google Scholar
Levine, M.D. 1990. Internal waves under the Arctic pack ice during AIWEX: The coherence structure. J. Geophys. Res., 95, 7347–7357.Google Scholar
Levine, M.D. 2002. A modification of the Garrett-Munk internal wave spectrum. J. Phys. Oc., 32, 3166–3181.Google Scholar
Levine, M.D., and Irish, J.D. 1981. A statistical description of temperature fine structure in the presence of internal waves. J. Phys. Oceanogr., 11, 676–691.Google Scholar
Levine, M.D., Irish, J.D., Ewart, J.D., and Reynolds, S.A. 1986. Simultaneous spatial and temporal measurements of the internal wave field during MATE. J. Goephys. Res., 91, 9709–9719.Google Scholar
Levine, M.D., Paulson, C.A., and Morison, J.H. 1987. Observations of internal gravity waves under the Arctic pack ice. J. Geophys. Res., 92, 779–782.Google Scholar
Lichtenberg, A.J., and Lieberman, M.A. 1983. Regular and Stochastic Motion. Applied Mathematical Sciences, Vol. 38. Springer-Verlag, New York.
Lien, R.-C., and Müller, P. 1992. Normal-mode decomposition of small-scale oceanic motions. J. Phys. Oceanogr., 22, 1583–1595.Google Scholar
Lighthill, J. 1978. Waves in Fluids. Cambridge University Press, Cambridge.
Lin, Y.T., Duda, T.F., and Lynch, J.F. 2009. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area. J. Acoust. Soc. Am., 126, 1752–1765.Google Scholar
Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., and Garcia, H.E. 2006. World Ocean Atlas 2005. Temperature, edited by S., Levitus (U.S.Government Printing Office, Washington, DC), NOAA Atlas NESDIS62, 1, 182.
Lovett, J.R. 1980. Geographic variation of low frequency sound absorption in the Atlantic, Indian, and Pacific Oceans. J. Acoust. Soc. Am., 67, 338–340.Google Scholar
Lynch, J.F., Colosi, J.A., Gawarkiewicz, G.G., Duda, T.F., Pierce, A.D., Badiey, M., Katsnelson, B.G., Miller, J.E., Siegmann, W., Ching-Sang, C., and Newhall, A. 2006. Consideration of fine-scale coastal oceanography and 3-D acoustics effects for the ESME sound exposure model. IEEE J. Oceanic Eng., 31, 33–48.Google Scholar
Lynch, J.F., Jin, G., Pawlowicz, R., Ray, D., Plueddemann, A.J., Chiu, C.S., Miller, J.H., Bourke, R.H., Parsons, A.R., and Muench, R. 1996. Acoustic travel-time perturbations due to shallow-water internal waves and internal tides in the Barents Sea Polar Front: Theory and experiment. J. Acoust. Soc. Am., 99(2), 803–821.Google Scholar
Lynch, J.F., Lin, Y.T., Duda, T.F., and Newhall, A.E. 2010. Acoustic ducting, reflection, refraction, and dispersion by curved nonlinear internal waves in shallow water. IEEE J. Oceanic Eng., 35, 12–28.Google Scholar
Macaskill, C., and Ewart, T.E. 1984. The probability distribution of intensity for acoustic propagation in a randomly varying ocean. J. Acoust. Soc. Am., 76(5), 1466–1473.Google Scholar
Macaskill, C., and Ewart, T.E. 1996. Numerical solution of the fourth moment equation for acoustic intensity correlations and comparison with the mid-ocean acoustic transmission experiment. J. Acoust. Soc. Am., 99, 1419–1430.Google Scholar
MacKenzie, K.V. 1981. Nine-term equation for sound speed in the ocean. J. Acoust. Soc. Am., 70, 807–812.Google Scholar
Mandelbrot, B.B. 1982. The Fractal Geometry of Nature. W. H. Freeman, New York.
Medwin, H., and Clay, C.S. 1997. Fundamentals of Acoustical Oceanography. Academic Press, San Diego.
Merzbacher, E. 1961. Quantum Mechanics. John Wiley & Sons, New York.
Michalevsky, P.N., Gavrilov, A.N., and Baggeroer, A.B. 1999. The trans-arctic acoustic propagation experiment and climate monitoring in the arctic. IEEE J. Oc. Eng., 24, 183–201.Google Scholar
Mignerey, P.C., and Orr, M.H. 2004. Observations of match-field autocorrelation time in the South China Sea. IEEE J. Oceanic Eng., 29, 1280–1291.Google Scholar
Milder, D.M. 1969. Ray and wave invariants for SOFAR channel propagation. J. Acoust. Soc. Am., 46, 1259–1263.Google Scholar
MODE-Group, et al. 1978. The mid-ocean dynamics experiment. Deep-Sea Res., 25(10), 859–910.
Morozov, A.K., and Colosi, J.A. 2004. Entropy and scintillation analysis for acoustical beam propagation through ocean internal waves. J. Acoust. Soc. Am., 117, 16111623.Google Scholar
Müller, P. 1976. On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77(10), 789–823.Google Scholar
Müller, P., Holloway, G., Henyey, F., and Pomphrey, N. 1986. Nonlinear interactions amount internal gravity waves. Rev. Geo. Phys., 24(3), 493–536.Google Scholar
Müller, P., Olbers, D.J., and Willebrand, J. 1978. The IWEX spectrum. J. Geophys. Res., 83, 479–500.Google Scholar
Munk, W.H. 1966. Abyssal recipes. Deep-Sea Res., 13, 107–130.Google Scholar
Munk, W.H. 1974. Sound channel in an exponentially stratified ocean, with application to SOFAR. J. Acoust. Soc. Am., 55, 220–226.Google Scholar
Munk, W.H. 1981. Internal waves and small scale processes. In:Warren, B., and Wunsch, C. (eds), The Evolution of Physical Oceanography. MIT Press, Cambridge, MA.
Munk, W.H. 1998. Once again: Once again – tidal friction. Prog. Ocean., 40, 7–35.Google Scholar
Munk, W.H., and Forbes, A.M.G. 1989. Global warming: An acoustic measure? J. Phys. Oc., 19, 1765–1778.Google Scholar
Munk, W., Spindel, R., Baggeroer, A., and Birdsall, T. 1994. The heard island feasibility test. J. Acoust. Soc. Am., 96(4), 2330–2342.Google Scholar
Munk, W.H., Worcester, P.F., and Wunsch, C. 1995. Ocean Acoustic Tomography. Cambridge University Press, Cambridge.
Munk, W.H., Worcester, P.F., and Zachariasen, F. 1981. Scattering of sound by internal wave currents: The relation to vertical momentum flux. J. Phys. Oc., 11, 442–454.Google Scholar
Munk, W., and Wunsch, C. 1979. Ocean acoustic tomography: A scheme for large scale monitoring. Deep-Sea Res., 26(2), 123–161.Google Scholar
Munk, W.H., and Wunsch, C. 1983. Ocean acoustic tomography: Rays and modes. Rev. Geophys. Space Phys., 21, 777–793.Google Scholar
Munk, W.H., and Wunsch, C. 1998. Abyssal Recipes II. Deep-Sea Res. Pt I, 45, 1977–2010.Google Scholar
Munk, W.H., and Zachariasen, F. 1976. Sound propagation through a fluctuating stratified ocean: Theory and observation. J. Acoust. Soc. Am., 59, 818–838.Google Scholar
Nichols, R.H., and Young, H.J. 1968. Fluctuations in low-frequency acoustic propagation in the ocean. J. Acoust. Soc. Am., 43(4), 716–722.Google Scholar
Ostashev, V., and Wilson, K. 2015. Acoustics in Moving and Inhomogeneous Media. CRC Press, Boca Raton, FL.
Pedlosky, J. 1987. Geophysical Fluid Dynamics. Springer, New York.
Penland, C. 1985. Acoustic normal mode propagation through a three dimensional internal wave field. J. Acoust. Soc. Am., 78, 1356–1365.Google Scholar
Phillips, O.M. 1977. The Dynamics of the Upper Ocean, 2nd edition. Cambridge University Press, Cambridge.
Pierce, A.D. 1994. Acoustics: An introduction to Its Physical Principles and Application. American Institute of Physics, Melville, NY.
Pinkel, R. 1983. Doppler sonar observations of internal wave: Wave-field structure. J. Phys. Oceanogr., 13, 804–815.Google Scholar
Pinkel, R. 1984. Dopper sonar observations of internal waves: The wavenumber - frequency spectrum. J. Phys. Oceanogr., 14, 1249–1270.Google Scholar
Pinkel, R. 2000. Internal solitary waves in the warm pool of the western equatorial Pacific. J. Phys. Oceanogr., 30, 2906–2926.Google Scholar
Pinkel, R. 2008. Advection, phase distortion, and the frequency spectrum of finescale fields in the sea. J. Phys. Oceanogr., 38, 291–313.Google Scholar
Pinkel, R. 2014. Vortical and internal wave shear and strain. J. Phys. Oceanogr., 44, 2070–2092.Google Scholar
Piperakis, G.S., Skarsoulis, E.K., and Makrakis, G.N. 2006. Rytov approximation of tomographic receptions in weakly range-dependent ocean environments. J. Acoust. Soc. Am., 120, 120–134.Google Scholar
Plueddemann, A.J. 1992. Internal wave observations from the Arctic environmental drifting buoy. J. Geophys. Res., 97, 12619–12638.Google Scholar
Polzin, K.L., and Lvov, Y.V. 2011. Toward regional characterizations of the oceanic internal wave field. Rev. Geo. Phys., 1–61.Google Scholar
Pringle, J.M. 1999. Observations of high-frequency internal waves in the Coastal Ocean Dynamics region. J. Geophys. Res., 104, 5263–5281.Google Scholar
Raghukumar, K., and Colosi, J.A. 2014. High frequency normal mode statistics in a shallow water waveguide: I. The effect of random linear internal waves. J. Acoust. Soc. Am., 136, 66–79.Google Scholar
Raghukumar, K., and Colosi, J.A. 2015. High frequency normal mode statistics in a shallow water waveguide: II. The combined effect of random linear surface and internal waves. J. Acoust. Soc. Am., 137, 2950–2961.Google Scholar
Rainville, L., and Pinkel, R. 2006. Propagation of low mode internal waves through the ocean. J. Phys. Oceanogr., 36, 1220–1236.Google Scholar
Ramp, S.R., Tang, T.Y., Duda, T.F., Lynch, J.F., Liu, A.K., Chiu, C-S., Bahr, F.L., Kim, H-R., and Yang, Y-J. 2004. Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE J. Oceanic Eng., 29(4), 1157–1181.Google Scholar
Ray, R.D., and Mitchum, G.T. 1996. Surface manifestations of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 2101–2104.Google Scholar
Revelle, R.H. 1974. On starting a university.
Reynolds, S., Flatté, S.M., Dashen, R., and Maciejewski, P. 1985. AFAR measurements of acoustic mutual coherence functions of time and frequency. J. Acoust. Soc. Am., 77, 1723–1731.Google Scholar
Rouseff, D., Turgut, A., Wolf, S., Finnette, S., Orr, M., Pasewark, B., Apel, J., Badiey, M., Chiu, C.S., Headrick, R., Kemp, J., Lynch, J., Kemp, J., Newhall, A., von der Heydt, K., and Teilbuerger, D. 2002. Coherence of acoustic mode propagation through shallow water internal waves. J. Acoust. Soc. Am., 111, 1655–1666.Google Scholar
Rytov, S. 1937. Wave and geometrical optics. Comptes Rendus (Doklady) de Í Acad. des Sciences, USSR, 18, 263–300.Google Scholar
Rytov, S.M., Kravtsov, Y.A., and Tatarskii, V.I. 1989. Principles of Statistical Radiophysics 4 Wave Propagation Through Random Media. Springer-Verlag, Berlin.
Sakurai, J.J. 1985. Modern Quantum Mechanics. Addison-Westley, Reading, MA.
Sato, H., Fehler, M.C., and Maeda, T. 2012. Seismic Wave Propagation and Scattering in the Heterogeneous Earth. Vol. 496. Springer, Berlin.
Schulman, L.S. 1981. Techniques and Applications of Path Integration. John Wiley & Sons, New York.
Shankar, R. 1994. Principles of Quantum Mechanics, 2nd edition Plenum Press, New York.
Shannon, C.E. 1948. A mathematical theory of communication. Bell Syst. Tech. J., 27, 379–423.Google Scholar
Sherman, J.T., and Pinkel, R. 1991. Estimates of the vertical wavenumber-frequency spectra of vertical shear and strain. J. Phys. Oceanogr., 21, 292–303.Google Scholar
Simmen, J., Flatté, S.M., and Wang, G.Y. 1997. Wavefront folding, chaos, and diffraction for sound propagation through ocean internal waves. J. Acoust. Soc. Am., 102, 239–255.Google Scholar
Skarsoulis, E.K., and Cornuelle, B.D. 2004. Travel-time sensitivity kernels in ocean acoustic tomography. J. Acoust. Soc. Am., 116, 227–238.Google Scholar
Smith, K.B., Brown, M.G., and Pinkel, R. 1992a. Acoustic ray chaos induced by mesoscale ocean structure. J. Acoust. Soc. Am., 91(4), 1950–1959.Google Scholar
Smith, K.B., Brown, M.G., and Pinkel, R. 1992b. Ray chaos in underwater acoustics. J. Acoust. Soc. Am., 91(4), 1939–1949.Google Scholar
Spiesberger, J.L., and Worcester, P.F. 1981. Fluctuations of resolved acoustic multipaths at long range in the ocean. J. Acoust. Soc. Am., 70, 565–577.Google Scholar
Steinberg, J.C., and Birdsall, T.G. 1966. Underwater sound propagation in the Straits of Florida. J. Acoust. Soc. Am., 39(2), 301–315.Google Scholar
Stoughton, R.B., Flatté, S.M., and Howe, B.M. 1986. Acoustic measurement of internal wave rms displacement and rms horizontal current off Bermuda in late 1983. J. Geophys. Res., 91, 7721–7732.Google Scholar
Tabor, M. 1989. Chaos and Integrability in Nonlinear Dynamics. John Wiley & Sons, New York.
Tang, D., Moum, J.N., Lynch, J.F., Abbot, P.A., Chapman, R., Dahl, P.H., Duda, T.F., Gawarkiewicz, G.G., Glenn, S.M., Goff, J.A., Graber, H.C., Kemp, J.N., Maffei, A.R., Nash, J.D., and Newhall, A.E. 2007. Shallow Water 06: A joint acoustic propagation/nonlinear internal wave physics experiment. Oceanography, 20, 156–167.Google Scholar
Tang, X., Pinkel, R., and Creamer, D. B. 2006. Simulations of large acoustic scintillations in the Straits of Florida. J. Acoust. Soc. Am., 120(6), 3539–3552.Google Scholar
Pinkel, R. 1974. Parabolic equation method in underwater acoustics. J. Acoust. Soc. Am., 55, S34.Google Scholar
Pinkel, R. 2003. Theory of explosive beam spreading due to ray chaos. J. Acoust. Soc. Am., 114, 2775–2781.Google Scholar
Pinkel, R., and Brown, M.G. 1996. Asymptotic phase errors in parabolic approximations to the one-way Helmholtz equation. J. Acoust. Soc. Am., 99, 1405–1413.Google Scholar
Pinkel, R., and Hardin, R.H. 1973. In: A Synopsis of the AESD Workshop on Acoustic Modeling by non-Ray Techniques. Office of Naval Research, AESD TN-73-05.
Pinkel, R., and Tang, X. 1996. Ray chaos and eigenrays. J. Acoust. Soc. Am., 99, 185–195.Google Scholar
Tatarskii, V.I. 1971. The Effects of the Turbulent Atmosphere on Wave Propagation. Israel Program for Scientific Translation: Jerusalem, Israel.
Thorpe, S.A. 1975. The excitation, dissipation, and interaction of internal waves in the deep ocean. J. Goephys. Res., 80, 328–338.Google Scholar
Thorpe, W.H. 1967. Analytic description of the low frequency attenuation coefficient. J. Acoust. Soc. Am., 42, 270.Google Scholar
Thorsos, E.I., Henyey, F.S., Elam, W.T., Hefner, B.T., Reynolds, S.A., and Yang, J. 2010. Transport theory for shallow water propagation with rough boundaries. AIP Conference Proceedings, 1272, 99–105.Google Scholar
Tielburger, D., Finnette, S., and Wolf, S. 1997. Acoustic propagation through an internal wave field in a shallow water waveguide. J. Acoust. Soc. Am., 101, 789–808.Google Scholar
Topinka, M.A., and Westervelt, R.M. 2003. Imaging electron flow. Phys. Today, 56, 47–52.Google Scholar
Turner, J.S. 1979. Buoyancy Effects in Fluids. Cambridge University Press, Cambridge.
Udovydchenkov, I.A., and Brown, M.G. 2008. Modal group time spreads in weakly range-dependent deep ocean environments. J. Acoust. Soc. Am., 123, 41–50.Google Scholar
Udovydchenkov, I.A., Brown, M.G., Duda, T.F., A., Mercer, J.A., Andrew, R.K., Worcester, P.F., Dzieciuch, M.A., Howe, B.M., and Colosi, J.A. 2012. Modal analysis of the range evolution of broadband wavefields in the North Pacific Ocean: Low mode numbers. J. Acoust. Soc. Am., 131, 4409–4427.Google Scholar
Udovydchenkov, I.A., Brown, M.G., Duda, T.F., Mercer, J.A., Andrew, R.K., Worcester, P.F., Dzieciuch, M.A., Howe, B.M. and Colosi, J.A. 2013. Weakly dispersive modal pulse propagation in the North Pacific Ocean. J. Acoust. Soc. Am., 134, 3386–3394.Google Scholar
Urick, R.J. 1979. Sound Propagation in the Sea. Defense Advanced Research Agency, Los Altos, CA.
Uscinski, B.J. 1982. Intensity fluctuations in a multiple scattering medium. Solution of the fourth moment equation. Proc. R. Soc. London Ser. A, 380, 137–169.Google Scholar
Van Kampen, N.G. 1981. Stochastic Processes in Physics and Chemistry. North-Holland, New York.
Van Uffelen, L.J., Worcester, P.F., Dzieciuch, M.A., and Rudnick, D. 2009. The vertical structure of shadow-zone arrivals at long range in the ocean. J. Acoust. Soc. Am., 125, 3569–3588.Google Scholar
Vera, M.D. 2007. Comparison of ocean acoustic horizontal coherence predicted by path-integral approximations and parabolic equation simulation results. J. Acoust. Soc. Am., 121, 166–174.Google Scholar
Virovlyansky, A.L. 2003. Ray travel times at long ranges in acoustic waveguides. J. Acoust. Soc. Am., 113, 2523–2532.Google Scholar
Virovlyansky, A.L. 2014. Ray-based description of mode coupling by sound speed fluctuations in the ocean. J. Acoust. Soc. Am., 137, 2137.Google Scholar
Virovlyansky, A.L., and Zaslavsky, G.M. 2000. Evaluation of the smoothed interference pattern under conditions of ray chaos. Chaos, 10, 211–223.Google Scholar
Voronovich, A.G., and Ostashev, V.E. 2006. Low frequency sound scattering by internal waves in the ocean. J. Acoust. Soc. Am., 119, 1406–1419.Google Scholar
Voronovich, A.G., Ostashev, V.E., Colosi, J.A., Cornuelle, B.D., Dushaw, B.D., Dzieciuch, M.A., Howe, B.M., Mercer, J.A., Munk, W.H., Spindel, R.C., and Worcester, P.F. 2005. Horizontal refraction of acoustic signals retrieved from North Pacific Acoustic Laboratory billboard array data. J. Acoust. Soc. Am., 117, 1527–1537.Google Scholar
Wage, K.E., Baggeroer, A.B., and Preisig, J. 2003. Modal analysis of broadband acoustic receptions at 3515-km range in the North Pacific using short-time Fourier techniques. J. Acout. Soc. Am., 113, 801–817.Google Scholar
Wage, K.E., Dzieciuch, M.A.,Worcester, P.F., Howe, B.M., and Mercer, J.A. 2005. Mode coherence at megameter ranges in the North Pacific Ocean. J. Acout. Soc. Am., 117, 1565–1581.Google Scholar
Weinburg, H., and Burridge, R. 1974. Horizontal ray theory for ocean acoustics. J. Acoust. Soc. Am., 55, 63–79.Google Scholar
Wheelon, A.D. 2003. Electromagnetic Scintillation, Vols. 1–3. Cambridge University Press, New York.
White, A.W., Andrew, R.K., Mercer, J.A., Worcester, P.F., Dzieciuch, M.A., and Colosi, J.A. 2013. Wavefront intensity statistics for 284-Hz broadband transmissions to 107-km range in the Philippine Sea: Observations and modeling. J. Acoust. Soc. Am., 134, 3347–3358.Google Scholar
Wijesekera, H., Padman, L., Dillon, T., Levine, M., and Paulson, C. 1993. The application of internal-wave dissipation models to a region of strong mixing. J. Phys. Oceanogr., 23, 269–286.Google Scholar
Wilson, W.D. 1960. Equation for the speed of sound in sea water. J. Acoust. Soc. Am., 32(10), 1357–1357.Google Scholar
Wolfson, M.A., and Pinkel, R. 2000. Study of horizontal multipaths and ray chaos due to ocean mesoscale structure. J. Acout. Soc. Am., 107, 154–162.Google Scholar
Wolfson, M.A., and Tomsovic, S. 2001. On the stability of long-range sound propagation through a structured ocean. J. Acoust. Soc. Am., 109, 2693–2703.Google Scholar
Wood, A.B. 1930. A Textbook of Sound. George Bell and Sons, London.
Worcester, P.F. 1977. Reciprocal acoustic transmission in a midocean environment. J. Acoust. Soc. Am., 62, 895–905.Google Scholar
Worcester, P.F., Cornuelle, B.D., Dzieciuch, M.A., Munk, W.H., Colosi, J.A., Howe, B.M., Mercer, J.A., Spindel, R.C., Metzger, K., Birdsall, T., and Baggeroer, A. 1999. A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean. J. Acoust. Soc. Am., 105, 3185–3201.Google Scholar
Worcester, P.F., Cornuelle, B.D., Hildebrand, J.A., Hodgkiss, W.S., Duda, T.F., Boyd, J., Howe, B.M., Mercer, J.A., and Spindel, R.C. 1994. A comparison of measured and predicted acoustic arrival patterns in travel time depth coordinates at 1000-km range. J. Acoust. Soc. Am., 95, 3118–3128.Google Scholar
Worcester, P.F., Dzieciuch, M.A., Mercer, J.A., Andrew, R.K., Dushaw, B.D., Baggeroer, A.B., Heaney, K.D., D'Spain, G., Colosi, J.A., and Stephen, R.A. 2013. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Am., 134(4), 3359–3375.Google Scholar
Worcester, P.F., Howe, B.M., Mercer, J.A., and Dzieciuch, M.A. 2000. A comparison of long-range acoustic propagation at ultra-low (28Hz) and very low (84 Hz) frequencies. In: Talanov, V.I. (ed), Proceedings of the US-Russia Workshop on Experimental Underwater Acoustics (93–104). Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod.
Worcester, P.F, and Spindel, R.C. 2005. North Pacific acoustic laboratory. J. Acoust. Soc. Am., 117(3), 1499–1510.Google Scholar
Worcester, P.F., Williams, G.O., and Flatté, S.M. 1981. Fluctuations of resolved acoustic multipaths at short range in the ocean. J. Acoust. Soc. Am., 70, 825–840.Google Scholar
Wunsch, C. 1976. Geographic variability of the internal wave field: A search for sources and sinks. J. Phys. Oceanogr., 6, 471–485.Google Scholar
Wunsch, C., and Hendry, R. 1972. Array measurements of the bottom boundary layer and the internal wave field on the continental slope. Geophys. Fluid Dyn., 4, 101–145.Google Scholar
Wunsch, C., and Webb, S. 1979. The climatology of the deep ocean internal wave field. J. Phys. Oceanogr., 9, 235–243.Google Scholar
Young, W.R., Rhines, P.B., and Garrett, C.J.R. 1982. Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515–527.Google Scholar
Zaslavsky, G.M. 1980. Stochasticity in quantum systems. Phys. Rev., 80, 157–250.Google Scholar
Zhou, J.X., Zhang, X.Z., and Rogers, P.H. 1991. Resonant interaction of sound wave with internal solitons in the coastal zone. J. Acoust. Soc. Am., 90(4), 2042–2054.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John A. Colosi, Naval Postgraduate School, Monterey, California
  • Book: Sound Propagation through the Stochastic Ocean
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139680417.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John A. Colosi, Naval Postgraduate School, Monterey, California
  • Book: Sound Propagation through the Stochastic Ocean
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139680417.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John A. Colosi, Naval Postgraduate School, Monterey, California
  • Book: Sound Propagation through the Stochastic Ocean
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139680417.011
Available formats
×