Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-19T01:05:20.644Z Has data issue: false hasContentIssue false

8 - Group living in spiders: cooperative breeding and coloniality

Published online by Cambridge University Press:  05 June 2012

Trine Bilde
Affiliation:
Aarhus University, Denmark
Yael Lubin
Affiliation:
Ben-Gurion University of the Negev, Israel
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

Group living occurs in two different forms in spiders, cooperatively breeding social species and colonial species. The social species construct a communal nest and capture web, capture prey and feed together and cooperate in raising the young. Social spiders lack pre-mating dispersal, which results in regular inbreeding within colonies. Social species are thought to be derived from subsocial forms, which have lengthy maternal care and some cooperation among young, but pre-mating dispersal of juveniles limits inbreeding. There are currently only 25 known social species occurring in seven different families and representing perhaps 19 independent evolutionary transitions to sociality. Colonial group living is much more common and occurs in a wide range of forms, from short-lived or long-lived aggregations of web-building spiders to communal nesting of active hunting species. Colonial species generally do not cooperate in prey capture and feeding, though there are exceptions; they do not cooperate in brood care; they have pre-mating dispersal and are outbred. Coloniality is likely derived from aggregation at rich food sources or nesting sites. Cooperation in the colonial species takes the form of sharing silk structures such as frame threads and nesting sites. The benefits of close proximity include the capture of larger prey and reduced variance in prey amount per spider and early warning of the presence of predators or parasites. However, group living carries costs of greater visibility both to potential prey and to predators and parasites. These benefits and costs are similar in cooperative-breeding and colonial species, while the main differences between them lie in degree of cooperation and the mating and breeding systems.

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 275 - 306
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnarsson, I. (2006). A revision of the New World eximius lineage of Anelosimus (Araneae, Theridiidae) and a phylogenetic analysis using worldwide exemplars. Zoological Journal of the Linnean Society, 146, 453–593.CrossRefGoogle Scholar
Agnarsson, I., Avilés, L., Coddington, J. A. and Maddison, W. P. (2006). Sociality in theridiid spiders: repeated origins of an evolutionary dead end. Evolution, 60, 2342–2351.CrossRefGoogle ScholarPubMed
Agnarsson, I., Maddison, W. P. and Avilés, L. (2007). The phylogeny of the social Anelosmus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology. Molecular Phylogenetics and Evolution, 43, 833–851.CrossRefGoogle ScholarPubMed
Avilés, L. (1986). Sex-ratio bias and possible group selection in the social spider Anelosimus eximius. American Naturalist, 128, 1–12.CrossRefGoogle Scholar
Avilés, L. (1997). Causes and consequences of cooperation and permanent-sociality in spiders. In The Evolution of Social Behavior in Insects and Arachnids (ed. Crespi, B. and Choe, J.). Cambridge, UK: Cambridge University Press, pp. 476–498.CrossRefGoogle Scholar
Avilés, L. (2000). Nomadic behaviour and colony fission in a cooperative spider: life history evolution at the level of the colony?Biological Journal of the Linnean Society, 70, 325–339.CrossRefGoogle Scholar
Avilés, L. and Bukowski, T. (2006). Group living and inbreeding depression in a subsocial spider. Proceedings of the Royal Society of London, B, 270, 157–163.CrossRefGoogle Scholar
Avilés, L. and Maddison, W. (1991). When is the sex ratio biased in social spiders? Chromosome studies of embryos and male meiosis in Anelosimus species. Journal of Arachnology, 19, 126–135.Google Scholar
Avilés, L. and Tufino, P. (1998). Colony size and individual fitness in the social spider Anelosimus eximius. American Naturalist, 152, 403–418.CrossRefGoogle ScholarPubMed
Avilés, L., Agnarsson, I., Salazar, A., et al. (2007). Altitudinal patterns of spider sociality and the biology of a new midelevation social Anelosimus species in Ecuador. American Naturalist, 170, 783–792.CrossRefGoogle ScholarPubMed
Avilés, L., Maddison, W. P. and Agnarsson, I. (2006). A new independently derived social spider with explosive colony proliferation and a female size dimorphism. Biotropica, 38, 743–753.CrossRefGoogle Scholar
Avilés, L., McCormack, J., Cutter, A. and Bukowski, T. (2000). Precise, highly female-biased sex ratios in a social spider. Proceedings of the Royal Society of London, B, 267, 1445–1449.CrossRefGoogle Scholar
Avilés, L., Varas, C. and Dyreson, E. (1999). Does the African social spider Stegodyphus dumicola control the sex of individual offspring?Behavioral Ecology and Sociobiology, 46, 237–243.Google Scholar
Beavis, A. S., Rowell, D. M. and Evans, T. (2007). Cannibalism and kin recognition in Delena cancerides (Araneae: Sparassidae), a social huntsman spider. Journal of Zoology, 271, 233–237.CrossRefGoogle Scholar
Bertram, B. C. R. (1978). Living in groups: predators and prey. In Behavioural Ecology: An Evolutionary Approach (ed. Krebs, J. R. and Davies, N. B.). Oxford, UK: Blackwell.Google Scholar
Bilde, T. and Lubin, Y. (2001). Kin recognition and cannibalism in a subsocial spider. Journal of Evolutionary Biology, 14, 959–966.CrossRefGoogle Scholar
Bilde, T., Coates, K., Birkhofer, K., Bird, T., et al. (2007). Survival benefits select for group living despite reproductive costs in a social spider. Journal of Evolutionary Biology, 20, 2412–2426.CrossRefGoogle Scholar
Bilde, T., Lubin, Y., Smith, D., Schneider, J. and Maklakov, A. A. (2005). The transition to social inbred mating systems in spiders: role of inbreeding tolerance in a subsocial predecessor. Evolution, 59, 160–174.CrossRefGoogle Scholar
Buskirk, R. E. (1975a). Aggressive display and orb defense in a colonial spider, Metabus gravidus. Animal Behaviour, 23, 560–567.CrossRefGoogle Scholar
Buskirk, R. E. (1975b). Coloniality, activity patterns and feeding in a tropical orb-weaving spider. Ecology, 56, 1314–1328.CrossRefGoogle Scholar
Buskirk, R. E. (1981). Sociality in the Arachnida. In Social Insects, Vol. 2 (ed. Hermann, H.). London: Academic Press, pp. 281–367.Google Scholar
Crouch, T. and Lubin, Y. (2001). Population stability and extinction in a social spider Stegodyphus mimosarum (Araneae: Eresidae). Biological Journal of the Linnean Society, 72, 409–417.CrossRefGoogle Scholar
Crouch, T., Lubin, Y. and Bodasing, M. (1998). Dispersal in the social spider Stegodyphus mimosarum Pavesi 1883 (Araneae: Eresidae). Durban Museum Novitates, 23, 52–55.Google Scholar
Downes, M. F. (1994). The nest of the social spider Phryganoporus candidus (Araneae: Desidae): structure, annual growth cycle and host plant relationships. Australian Journal of Zoology, 42, 237–259.CrossRefGoogle Scholar
Downes, M. F. (1995). Australasian social spiders: what is meant by ‘social’?Records of the Western Australian Museum, Supplement, 52, 25–32.Google Scholar
Evans, T. A. (1999). Kin recognition in a social spider. Proceedings of the Royal Society of London, B, 266, 287–292.CrossRefGoogle Scholar
Evans, T. A. (2000). Male work and sex ratio in social crab spiders. Insectes Sociaux, 47, 285–288.CrossRefGoogle Scholar
Evans, T. A. and Main, B. Y. (1993). Attraction between social crab spider: silk pheromones in Diaea socialis. Behavioral Ecology, 4, 99–105.CrossRefGoogle Scholar
Evans, T. A., Wallis, W. E. J. and Elgar, M. A. (1995). Making a meal of mother. Nature, 376, 299.CrossRefGoogle Scholar
Fernández Campón, F. (2007). Group foraging in the colonial spider Parawixia bistriata (Araneidae): an effect of resource levels and prey size. Animal Behaviour, 74, 1551–1562.CrossRefGoogle Scholar
Fernández Campón, F. (2008) More sharing when there is less: insights on spider sociality from an orb-weaver's perspective. Animal Behaviour, 75, 1063–1073.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford, UK: Clarendon Press.CrossRefGoogle Scholar
Foster, K. R., Wenseleers, T. and Ratnieks, F. L. W. (2006). Kin selection is the key to altruism. Trends in Ecology and Evolution, 21, 57–60.CrossRefGoogle ScholarPubMed
Fowler, H. G. and Diehl, J. (1978). Biology of a Paraguayan colonial orb-weaver, Eriophora bistriata (Rengger) (Araneae, Araneidae). Bulletin of the British Arachnological Society, 4, 241–250.Google Scholar
Frank, S. A. (1987). Demography and sex ratio in social spiders. Evolution, 41, 1267–1281.CrossRefGoogle ScholarPubMed
Furey, R. E. (1998). Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region. Animal Behaviour, 55, 727–735.CrossRefGoogle Scholar
Gillespie, R. G. (1987). The role of prey availability in aggregative behavior of the orb weaving spider Tetragnatha elongata. Animal Behaviour, 35, 675–681.CrossRefGoogle Scholar
Gonzaga, M. O. and Vasconcellos-Netto, J. (2001). Female body size, fecundity parameters and foundation of new colonies in Anelosimus jabaquara (Araneae, Theridiidae). Insectes Sociaux, 48, 94–100.CrossRefGoogle Scholar
Griffin, A. S. and West, S. A. (2003). Kin discrimination and the benefit of helping in cooperatively breeding vertebrates. Science, 302, 634–636.CrossRefGoogle ScholarPubMed
Guevara, J. and Avilés, L. (2007). Multiple techniques confirm elevational differences in insect size that may influence spider sociality. Ecology, 88, 2015–2023.CrossRefGoogle ScholarPubMed
Gundermann, J. L., Horel, A. and Krafft, B. (1988). Maternal food-supply activity and its regulation in Coelotes terrestris (Araneae: Agelenidae). Behaviour, 107, 278–296.CrossRefGoogle Scholar
Hamilton, W. D. (1964). The genetical evolution of social behaviour. I and II. Journal of Theoretical Biology, 7, 1–16, 17–52.CrossRefGoogle Scholar
Hamilton, W. D. (1967). Extraordinary sex ratios. Science, 156, 477–488.CrossRefGoogle ScholarPubMed
Henschel, J. R., Lubin, Y. and Schneider, J. (1995). Sexual competition in an inbreeding social spider, Stegodyphus dumicola (Araneae: Eresidae). Insectes Sociaux, 42, 419–426.CrossRefGoogle Scholar
Hodge, M. A. and Uetz, G. W. (1992). Antipredator benefits of single- and mixed-species grouping by Nephila clavipes L. (Araneae, Tetragnathidae). Journal of Arachnology, 20, 212–216.Google Scholar
Hodge, M. A. and Uetz, G. W. (1996). Foraging advantages of mixed-species association between solitary and colonial orb-weaving spiders. Oecologia, 107, 578–587.CrossRefGoogle ScholarPubMed
Hurst, L. D. and Vollrath, F. (1992). Sex-ratio adjustment in solitary and social spiders. Trends in Ecology and Evolution, 7, 326–327.CrossRefGoogle ScholarPubMed
Jackson, R. R. (1978). Comparative studies of Dictyna and Mallos (Araneae, Dictynidae). I. Social organization. Revue Arachnologique, 1, 133–164.Google Scholar
Jackson, R. R. (1986). Communal jumping spiders (Araneae: Salticidae) from Kenya: interspecific nest complexes, cohabitation with web-building spiders, and intraspecific interactions. New Zealand Journal of Zoology, 13, 13–26.CrossRefGoogle Scholar
Jackson, R. R., Nelson, X. J. and Salm, K. (2008a). The natural history of Myrmarachne melanotarsa, a social ant mimicking jumping spider. New Zealand Journal of Zoology, 35, 225–235.CrossRefGoogle Scholar
Jackson, R. R., Pollard, S. D. and Salm, K. (2008b). Observations of Portia africana, an araneophagic jumping spider, living together and sharing prey. New Zealand Journal of Zoology, 35, 237–243.CrossRefGoogle Scholar
Jakob, E. M. (1991). Costs and benefits of group living for pholcid spiderlings: losing food, saving silk. Animal Behaviour, 41, 711–722.CrossRefGoogle Scholar
Jakob, E. M. (1994). Contests over prey by group-living pholcids. Journal of Arachnology, 22, 39–45.Google Scholar
Jakob, E. M., Blanchong, J. A., Popsen, M. A., Sedey, K. A. and Summerfield, M. S. (2000). Ontogenetic shifts in the costs of living in groups: focal observations of a pholcid spider (Holocnemus pluchei). American Midland Naturalist, 143, 405–413.CrossRefGoogle Scholar
Jakob, E. M., Porter, A. H. and Uetz, G. W. (2001). Site fidelity and the costs of movement among territories: an example from colonial web-building spiders. Canadian Journal of Zoology, 79, 2094–2100.CrossRefGoogle Scholar
Johannesen, J. and Lubin, Y., (1999). Group founding and breeding structure in the subsocial spider Stegodyphus lineatus (Eresidae). Heredity, 82, 677–686.CrossRefGoogle Scholar
Johannesen, J. and Lubin, Y. (2001). Evidence for kin structured group founding and limited juvenile dispersal in the sub-social spider Stegodyphus lineatus (Araneae, Eresidae). Journal of Arachnology, 29, 413–422.CrossRefGoogle Scholar
Johannesen, J., Lubin, Y., Bilde, T.Smith, D. R. and Schneider, J. M. (2007). The age and evolution of sociality in Stegodyphus spiders: a molecular phylogenetic approach. Proceedings of the Royal Society of London, B, 274, 231–237.CrossRefGoogle Scholar
Johannesen, J., Moritz, R. F. A., Simunek, H., Seibt, U. and Wickler, W. (2009a). Species cohesion despite extreme inbreeding in a social spider. Journal of Evolutionary Biology, 22, 1137–1142.CrossRefGoogle Scholar
Johannesen, J., Wickler, W., Seibt, U. and Moritz, R. F. A. (2009b). Population history in social spiders repeated: colony structure and lineage evolution in Stegodyphus mimosarum (Eresidae). Molecular Ecology, 18, 2812–2818.CrossRefGoogle Scholar
Jones, T. C. and Parker, P. G. (2002). Delayed juvenile dispersal benefits both mother and offspring in the cooperative spider Anelosimus studiosus (Araneae: Theridiidae). Behavioral Ecology, 13, 142–148.CrossRefGoogle Scholar
Jones, T. C., Riechert, S. E., Dalrymple, S. E. and Parker, P. G. (2007). Fostering model explains variation in levels of sociality in spider system. Animal Behaviour, 73, 195–204.CrossRefGoogle Scholar
Kim, K.-W. and Horel, A. (1998). Matriphagy in the spider Amaurobius ferox (Araneae, Amaurobiidae): an example of mother-offspring interactions. Ethology, 104, 1021–1037.CrossRefGoogle Scholar
Kim, K.-W. and Roland, C. (2000). Trophic egg laying in the spider, Amaurobius ferox: mother-offspring interactions and functional value. Behavioural Processes, 50, 31–42.CrossRefGoogle ScholarPubMed
Koenig, B. (1997). Cooperative care of young in mammals. Naturwissenschaften, 84, 95–104.Google Scholar
Kraus, O. and Kraus, M. (1988). The genus Stegodyphus (Arachnida, Araneae) sibling species, species groups, and parallel evolution of social living. Verhandlungen des Naturwissenschaftlichen Vereins Hamburg, 30, 151–254.Google Scholar
Kullmann, E. J. (1972). Evolution of social behavior in spiders (Araneae, Eresidae and Theridiidae). American Zoologist, 12, 419–426.CrossRefGoogle Scholar
Lubin, Y. D. (1974). Adaptive advantages and evolution of colony formation in Cyrtophora (Araneae, Araneidae). Zoological Journal of the Linnean Society, 54, 321–339.CrossRefGoogle Scholar
Lubin, Y. D. (1980). Population studies of two colonial orb-weaving spiders. Zoological Journal of the Linnean Society, 70, 265–287.CrossRefGoogle Scholar
Lubin, Y. D. (1991). Patterns of variation in female-biased colony sex ratios in a social spider. Biological Journal of the Linnean Society, 43, 297–311.CrossRefGoogle Scholar
Lubin, Y. and Bilde, T. (2007). The evolution of sociality in spiders. Advances in the Study of Behavior, 37, 83–145.CrossRefGoogle Scholar
Lubin, Y. D. and Crozier, R. H. (1985). Electrophoretic evidence for population differentiation in a social spider, Achaearanea wau Levi (Theridiidae). Insectes Sociaux, 32, 297–304.CrossRefGoogle Scholar
Lubin, Y. D. and Robinson, M. H. (1982). Dispersal by swarming in social spiders. Science, 216, 319–321.CrossRefGoogle Scholar
Lubin, Y., Birkhofer, K., Berger-Tal, R. and Bilde, T. (2009). Limited male dispersal in a social spider with extreme inbreeding. Biological Journal of the Linnean Society, 97, 227–234.CrossRefGoogle Scholar
Marques, E. S. A., Vasconcellos-Netto, J. and Mello, M. B. (1998). Life history and social behavior of Anelosimus jabaquara and Anelosimus dubiosus (Araneae, Theridiidae). Journal of Arachnology, 26, 227–237.Google Scholar
McCrate, A. T. and Uetz, G. W. (2009). Kleptoparasites: a twofold cost of group living for the colonial spider, Metepeira incrassata (Araneae, Araneidae). Behavioural Ecology and Sociobiolog, 64, 389–399.CrossRefGoogle Scholar
Meehan, C. J., Olsen, E. J., Reudnick, M. W., Kyser, T. K. and Curry, R. L. (2009). Herbivory in a spider through exploitation of an ant-plant mutualism. Current Biology, 19, R892.CrossRefGoogle Scholar
Nelson, X. J. and Jackson, R. R. (2008). Anti-predator crèches and aggregations of ant-mimicking jumping spiders (Araneae: Salticidae). Biological Journal of the Linnean Society, 94, 475–481.CrossRefGoogle Scholar
Nunney, L. (1985). Female-biased sex ratios: individual or group selection. Evolution, 39, 349–361.CrossRefGoogle ScholarPubMed
Pasquet, A., Leborgne, R. and Cantarella, T. (1997). Opportunistic egg-feeding in the kleptoparasitic spider Argyrodes gibbosus. Ethology, 103, 160–170.CrossRefGoogle Scholar
Powers, K. S. and Avilés, L. (2003). Natal dispersal patterns of a subsocial spider Anelosimus cf. jucundus (Theridiidae). Ethology, 109, 725–737.CrossRefGoogle Scholar
Powers, K. S. and Avilés, L. (2007). The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology, 76, 995–1003.CrossRefGoogle ScholarPubMed
Pruitt, J. N. and Riechert, S. E. (2009). Frequency-dependent success of cheaters during foraging bouts might limit their spread within colonies of a socially polymorphic spider. Evolution, 63, 2966–2973.CrossRefGoogle ScholarPubMed
Pruitt, J. N., Riechert, S. E. and Jones, T. C. (2008). Behavioural syndromes and their fitness consequences in a socially polymorphic spider, Anelosimus studiosus. Animal Behaviour, 76, 871–879.CrossRefGoogle Scholar
Rao, D. and Lubin, Y. (2010). Conditions favouring group living in web-building spiders in an extreme desert environment. Israel Journal of Ecology and Evolution (in press).CrossRef
Rayor, L. S. and Uetz, G. W. (1990). Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behavioral Ecology and Sociobiology, 27, 77–85.CrossRefGoogle Scholar
Riechert, S. E. and Jones, T. C. (2008). Phenotypic variation in the social behaviour of the spider Anelosimus studiosus along a latitudinal gradient. Animal Behaviour, 75, 1893–1902.CrossRefGoogle Scholar
Rowell, D. M. and Avilés, L. (1995). Sociality in a bark-dwelling huntsman spider from Australia, Delena cancerides Walckenaer (Araneae: Sparassidae). Insectes Sociaux, 42, 287–302.CrossRefGoogle Scholar
Rowell, D. M. and Main, B. Y. (1992). Sex ratio in the social spider Diaea socialis (Araneae: Thomisidae). Journal of Arachnology, 20, 200–206.Google Scholar
Ruch, J., Heinrich, L., Bilde, T. and Schneider, J. M. (2009). Relatedness facilitates cooperation in the subsocial spider, Stegodyphus tentoriicola. BMC Evolutionary Biology, 9, 257.CrossRefGoogle ScholarPubMed
Rypstra, A. L. (1979). Foraging flocks in spiders: a study of aggregate behaviour in Cyrtophora citricola Forskaal (Araneae: Araneidae) in West Africa. Behavioral Ecology and Sociobiology, 5, 291–300.CrossRefGoogle Scholar
Rypstra, A. L. (1985). Aggregations of Nephila clavipes (L.) (Araneae, Araneidae) in relation to prey availability. Journal of Arachnology, 13, 71–78.Google Scholar
Rypstra, A. L. (1993). Prey size, social competition, and the development of reproductive division-of-labor in social spider groups. American Naturalist, 142, 868–880.CrossRefGoogle Scholar
Salomon, M. and Lubin, Y. (2007). Cooperative breeding increases reproductive success in the social spider Stegodyphus dumicola (Araneae, Eresidae). Behavioral Ecology and Sociobiology, 61, 1743–1750.CrossRefGoogle Scholar
Salomon, M., Mayntz, D. and Lubin, Y. (2008). Colony nutrition skews reproduction in a social spider. Behavioral Ecology, 19, 605–611.CrossRefGoogle Scholar
Salomon, M., Schneider, J. and Lubin, Y. (2005). Maternal investment in a spider with suicidal maternal care, Stegodyphus lineatus (Araneae, Eresidae). Oikos, 109, 614–622.CrossRefGoogle Scholar
Schneider, J. M. (2002). Reproductive state and care giving in Stegodyphus (Araneae: Eresidae) and the implications for the evolution of sociality. Animal Behaviour, 63, 649–658.CrossRefGoogle Scholar
Schneider, J. M. and Bilde, T. (2008). Benefits of cooperation with genetic kin in a subsocial spider. Behavioral Ecology and Sociobiology, 105, 10 843–10 846.Google Scholar
Schneider, J. M., Roos, J., Lubin, Y. and Henschel, J. R. (2001). Dispersal of Stegodyphus dumicola: they do balloon after all!Journal of Arachnology, 29, 114–116.CrossRefGoogle Scholar
Seibt, U. and Wickler, W. (1988a). Bionomics and social structure of ‘family spiders’ of the genus Stegodyphus, with special reference to the African species S. dumicola and S. mimosarum (Araneae, Eresidae). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 30, 255–303.Google Scholar
Seibt, U. and Wickler, W. (1988b). Why do ‘family spiders,’ Stegodyphus (Eresidae) live in colonies?Journal of Arachnology, 16, 193–198.Google Scholar
Smith, D. R. (1982). Reproductive success of solitary and communal Philoponella oweni (Araneae: Uloboridae). Behavioral Ecology and Sociobiology, 11, 149–154.CrossRefGoogle Scholar
Smith, D., Rijn, S., Henschel, J., Bilde, T. and Lubin, Y. (2009). Amplified fragment length polymorphism fingerprints support limited gene flow among social spider populations. Biological Journal of the Linnean Society, 97, 235–246.CrossRefGoogle Scholar
Uetz, G. W. (2001). Understanding the evolution of social behavior in colonial web-building spiders. In Model Systems in Behavioral Ecology: Integrating Empirical, Theoretical and Conceptual Approaches (ed. Dugatkin, L. A.). Monographs in Behavior and Ecology. Princeton, NJ: Princeton University Press, pp. 110–130.Google Scholar
Uetz, G. W. and Hieber, C. S. (1997). Colonial web-building spiders: balancing the costs and benefits of group living. In The Evolution of Social Behavior in Insects and Arachnids (ed. Choe, J. and Crespi, B.). Cambridge, UK: Cambridge University Press, pp. 458–475.CrossRefGoogle Scholar
Uetz, G. W., Boyle, J., Hieber, C. S. and Wilcox, R. S. (2002). Antipredator benefits of group living in colonial web-building spiders: the ‘early warning’ effect. Animal Behaviour, 63, 445–452.CrossRefGoogle Scholar
Ulbrich, K. and Henschel, J. R. (1999). Intraspecific competition in a social spider. Ecological Modelling, 115, 243–251.CrossRefGoogle Scholar
Vakanas, G. and Krafft, B. (2001). Coordination of behavioral sequences between individuals during prey capture in a social spider, Anelosimus eximius. Journal of Insect Behavior, 14, 777–798.CrossRefGoogle Scholar
White, M. J. D. (1973). Animal Cytology and Evolution. Cambridge, UK: Cambridge University Press.Google Scholar
Whitehouse, M. A. E. and Jackson, R. R. (1994). Group structure and time budgets of Argyrodes antipodiana (Araneae, Theridiidae), a kleptoparasitic spider from New Zealand. New Zealand Journal of Zoology, 20, 201–206.CrossRefGoogle Scholar
Whitehouse, M. A. E. and Lubin, Y. (1999). Strategic interference competition by individuals in social spider foraging groups. Animal Behaviour, 58, 677–688.CrossRefGoogle Scholar
Whitehouse, M. E. A. and Lubin, Y. (2005). The function of societies and the evolution of group living: spider societies as a test case. Biological Reviews, 80, 347–361.CrossRefGoogle Scholar
Willey, M. B. and Jackson, R. R. (1993). Predatory behavior of a social spider, Stegodyphus sarasinorum (Araneae, Eresidae): why attack first?Canadian Journal of Zoology, 71, 2220–2223.CrossRefGoogle Scholar
Wilson, E. O. (1971). The Insect Societies. Cambridge, MA: Harvard University Press.Google Scholar
Yip, E. C., Clarke, S. and Rayor, L. S. (2009). Aliens among us: nestmate recognition in the huntsman spider, Delena cancerides. Insectes Sociaux, 56, 223–231.CrossRefGoogle Scholar
Yip, E. C., Powers, K. S. and Avilés, L. (2008). Cooperative capture of large prey solves scaling challenge faced by spider societies. Proceedings of the National Academy of Sciences of the USA, 105, 11 818–11 822.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×