Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-09T17:18:50.076Z Has data issue: false hasContentIssue false

5 - Solar rotation

Published online by Cambridge University Press:  15 August 2009

Jean-Louis Tassoul
Affiliation:
Université de Montréal
Get access

Summary

Introduction

Until recently, only surface measurements of the solar rotation rate were available. Since the mid-1980s, with the advent of helioseismology, much has been learned about the internal rotation of the Sun through the inversion of p-mode frequency splittings. As was noted in Section 1.2.2, it now appears that the observed surface pattern of differential rotation with latitude prevails throughout most of the solar convection zone, with equatorial regions moving faster than higher latitudes. In contrast, the underlying radiative core appears to rotate nearly uniformly down to r ≈ 0.1−0.2R, at a rate that is intermediate between the polar and equatorial rates of the photosphere. Within the central region r ≲ 0.2R, some measurements suggest that the angular velocity increases with depth, implying rotation at a rate between 2 and 4 times that of the surface; other measurements strongly suggest, however, that the solar inner core rotates rigidly down to the center.

The problem presented by the observed solar differential rotation is one of long standing and many efforts have been made to formulate a plausible flow pattern that reproduces the large-scale motions in the solar atmosphere. Following Lebedinski's (1941) pioneering work, many theories have been proposed to explain how the equatorial acceleration originated and is maintained in the solar convection zone.

Type
Chapter
Information
Stellar Rotation , pp. 138 - 161
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Solar rotation
  • Jean-Louis Tassoul, Université de Montréal
  • Book: Stellar Rotation
  • Online publication: 15 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546044.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Solar rotation
  • Jean-Louis Tassoul, Université de Montréal
  • Book: Stellar Rotation
  • Online publication: 15 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546044.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Solar rotation
  • Jean-Louis Tassoul, Université de Montréal
  • Book: Stellar Rotation
  • Online publication: 15 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546044.006
Available formats
×