Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-08-02T11:39:50.780Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  15 October 2009

T. G. Nieh
Affiliation:
Lawrence Livermore National Laboratory, California
J. Wadsworth
Affiliation:
Lawrence Livermore National Laboratory, California
O. D. Sherby
Affiliation:
Stanford University, California
Get access

Summary

Superplasticity, the ability of certain materials to undergo very large tensile strains, was first described in 1912. It became the subject of intense research in the early 1960s following a review of Soviet work and the illustration of the potential commercial applications of superplasticity.

There have been enormous advances in the field, of superplasticity since that time. The field has clear commercial applications, but also retains fascinating scientific challenges in understanding the underpinning physical mechanisms. Recent breakthroughs include the development of superplasticity in polycrystalline ceramics, composites and intermetallics, and also the observation of superplasticity in metallic materials at high strain rates. Superplasticity at high strain rates, in particular, is expected to have a significant technological impact on promoting the commercial applications of superplastic materials.

This book emphasizes the materials aspects of superplasticity and thus was written from the materials point of view. A brief history of the development of superplasticity is first introduced. Then, the two major types of superplasticity, i.e. fine-structure and internal-stress superplasticity, and their operative mechanisms are discussed. Other possible superplastic mechanisms, such as Class I solid solutions and superplasticity at dynamic high strain rates are also described. In addition, microstructural factors controlling the ductility and fracture in superplastic materials are presented. The observations of superplasticity in metals (including Al, Mg, Fe, Ti, Ni), ceramics (including monolithics and composites), intermetallics (including Ni-, Ti-, Fe- aluminides), metal-matrix composites (including Al-, Mg- base), and laminates are thoroughly described.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • T. G. Nieh, Lawrence Livermore National Laboratory, California, J. Wadsworth, Lawrence Livermore National Laboratory, California, O. D. Sherby, Stanford University, California
  • Book: Superplasticity in Metals and Ceramics
  • Online publication: 15 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511525230.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • T. G. Nieh, Lawrence Livermore National Laboratory, California, J. Wadsworth, Lawrence Livermore National Laboratory, California, O. D. Sherby, Stanford University, California
  • Book: Superplasticity in Metals and Ceramics
  • Online publication: 15 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511525230.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • T. G. Nieh, Lawrence Livermore National Laboratory, California, J. Wadsworth, Lawrence Livermore National Laboratory, California, O. D. Sherby, Stanford University, California
  • Book: Superplasticity in Metals and Ceramics
  • Online publication: 15 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511525230.001
Available formats
×