Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-03T01:32:15.265Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

24 - Effective actions in ten dimensions

from Part 3 - String theory

Michael Dine
Affiliation:
University of California, Santa Cruz
Get access

Summary

In ten dimensions, supersymmetry greatly restricts the allowed particle content and effective actions of theories with massless fields. Without gauge interactions there are only two consistent possibilities. These correspond to the low-energy limits of the IIA and IIB theories. These have N = 2 supersymmetry (they have 32 conserved supercharges). Because the symmetry is so restrictive, we can understand a great deal about the low energy limits of these theories without making any detailed computations. We can even make exact statements about the non-perturbative behavior of these theories. This is familiar from our studies of field theories in four dimensions with more than four supercharges. In ten dimensions, supersymmetric gauge theories have N = 1 supersymmetry (16 supercharges). Classically, specification of the gauge group completely specifies the terms in the effective action with up to two derivatives. Quantum mechanically, only the gauge groups O(32) and E8 × E8 are possible.

Eleven-dimensional supergravity

Rather than start with these ten-dimensional theories, it is instructive to start in eleven dimensions. Eleven is the highest dimension where one can write a supersymmetric action (in higher dimensions, spins higher than 2 are required). This fact by itself has focused much attention on this theory. But it is also known that the theory in eleven dimensions has a connection with string theory. As we will see later, if one takes the strong coupling limit of the Type IIA string theory, one obtains a theory whose low-energy limit is elevendimensional supergravity.

The particle content of the eleven-dimensional theory is simple: there is a graviton, gMN (44 degrees of freedom) and a three-index antisymmetric tensor field, CMNO (84 degrees of freedom); here M, N, O = 0, …, 9 are space–time indices. There is also a gravitino, ψM. This has 16 × 8 degrees of freedom. We have, as usual, counted degrees of freedom by considering a theory in nine dimensions, remembering that gMN is symmetric and traceless and that the basic spinor representation in nine dimensions is sixteen-dimensional (it combines the two eight-dimensional spinors of O(8)).

The Lagrangian for the eleven-dimensional theory, in addition to the Ricci scalar, involves a field strength for the three-index field, CMNO.

Type
Chapter
Information
Supersymmetry and String Theory
Beyond the Standard Model
, pp. 340 - 346
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×