Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-07T12:27:02.002Z Has data issue: false hasContentIssue false

5 - Diffusion on two-dimensional surfaces

Published online by Cambridge University Press:  06 July 2010

Grazyna Antczak
Affiliation:
University of Wrocław, Poland; Leibniz Universität Hannover, Germany
Gert Ehrlich
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

In this chapter, we continue the task started in the last one: we will list diffusion characteristics determined on a variety of two-dimensional surfaces. For better orientation, ball models of fcc(111) and (100) planes have already been shown in Fig. 3.3, together with the (110), (100), and (111) planes of the bcc lattice in Fig. 3.4. In experiments it has been observed that on fcc(111) planes there are two types of adsorption sites: fcc (sometimes called bulk or stacking) and hcp (also referred to as surface or fault sites); these sites, indicated in Fig. 3.3b, can have quite different energetic properties. Two types of adsorption sites also exist on bcc(111) and hcp(0001) structures. However, on bcc(110) as well as on bcc(100) and fcc(100) planes, only one type of adsorption site has so far been observed, which makes it easier to follow adsorption on these surfaces.

Aluminum: Al(100)

Experimental work on two-dimensional surfaces of aluminum was long in coming, and was preceded by considerable theoretical work, with which we therefore begin here. The first effort, by Feibelman in 1987, was devoted to the Al(100) surface, and relied on local-density-functional theory (LDA–DFT). The primary aim of the work was to examine the binding energy of atom pairs, but he also estimated a barrier of 0.80 eV for the diffusive hopping of Al adatoms. Two years later, Feibelman investigated surface diffusion which takes place on Al(100) by exchange of an adatom with one from the substrate.

Type
Chapter
Information
Surface Diffusion
Metals, Metal Atoms, and Clusters
, pp. 261 - 422
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Feibelman, P. J., Rebonding effects in separation and surface-diffusion barrier energies of an adatom pair, Phys. Rev. Lett. 58 (1987) 2766–2769.CrossRefGoogle ScholarPubMed
Feibelman, P. J., Diffusion path for an Al adatom on Al(001), Phys. Rev. Lett. 65 (1990) 729–732.CrossRefGoogle Scholar
DeLorenzi, G., Jacucci, G., The migration of point defects on bcc surfaces using a metallic pair potential, Surf. Sci. 164 (1985) 526–542.CrossRefGoogle Scholar
Liu, C. L., Cohen, J. M., Adams, J. B., Voter, A. F., EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt, Surf. Sci. 253 (1991) 334–344.CrossRefGoogle Scholar
Adams, J. B., Foiles, S. M., Wolfer, W. G., Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method, J. Mater. Res. 4 (1989) 102–112.CrossRefGoogle Scholar
Voter, A. F., Chen, S. P., Accurate Interatomic Potentials for Ni, Al and Ni3Al, Mater. Res. Soc. Symp. Proc. 82 (1987) 175–180.CrossRefGoogle Scholar
Cohen, J. M., Long range adatom diffusion mechanism on fcc (100) EAM modeled materials, Surf. Sci. Lett. 306 (1994) L545–549.CrossRefGoogle Scholar
Black, J. E., Tian, Z.-J., Complicated exchange-mediated diffusion mechanisms in and on a Cu(100) substrate at high temperatures, Phys. Rev. Lett. 71 (1993) 2445–2448.CrossRefGoogle ScholarPubMed
Gravil, P. A., Holloway, S., Exchange mechanisms for self-diffusion on aluminum surfaces, Surf. Sci. 310 (1994) 267–272.CrossRefGoogle Scholar
Stumpf, R., Scheffler, M., Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of aluminum and their implications on crystal growth, Phys. Rev. B 53 (1996) 4958–4973.CrossRefGoogle Scholar
Li, J.-M., Zhang, P.-H., Yang, J.-L., Liu, L., Theoretical study of adatom self-diffusion on metallic fcc{100} surfaces, Chin. Phys. Lett. 14 (1997) 768–771.Google Scholar
Valkealahti, S., Manninen, M., Diffusion on aluminum-cluster surfaces and the cluster growth, Phys. Rev. B 57 (1998) 15533–15540.CrossRefGoogle Scholar
Feibelman, P. J., Scaling of hopping self-diffusion barriers on fcc(100) surfaces with bulk bond energies, Surf. Sci. 423 (1999) 169–174.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Adatom diffusion on W(211): Re, W, Mo, Ir and Rh, Surf. Sci. 206 (1988) 451–474.CrossRefGoogle Scholar
Kief, M. T., Egelhoff, W. F., Growth and structure of Fe and Co thin films on Cu(111), Cu(100), and Cu(110): A comprehensive study of metastable film growth, Phys. Rev. B 47 (1993) 10785–10814.CrossRefGoogle ScholarPubMed
Goldstein, J. T., Ehrlich, G., Atom and cluster diffusion on Re(0001), Surf. Sci. 443 (1999) 105–115.CrossRefGoogle Scholar
Ercolessi, F., Adams, J. B., Interatomic potentials from first-principles calculations: the force-matching method, Europhys. Lett. 26 (1994) 583–588.CrossRefGoogle Scholar
Trushin, O. S., Salo, P., Alatalo, M., Ala-Nissila, T., Atomic mechanisms of cluster diffusion on metal fcc(100) surfaces, Surf. Sci. 482–485 (2001) 365–369.CrossRefGoogle Scholar
Ovesson, S., Bogicevic, A., Wahnstrom, G., Lundqvist, B. I., Neglected adsorbate interactions behind diffusion prefactor anomalies on metals, Phys. Rev. B 64 (2001) 125423 1–11.CrossRefGoogle Scholar
Papanicolaou, N. I., Papathanakos, V. C., Papageorgiou, D. G., Self-diffusion on Al(100) and Al(111) surfaces by molecular-dynamics simulation, Physica B 296 (2001) 259–263.CrossRefGoogle Scholar
Fordell, T., Salo, P., Alatalo, M., Self-diffusion on fcc (100) metal surfaces: Comparison of different approximations, Phys. Rev. B 65 (2002) 233408 1–4.CrossRefGoogle Scholar
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.CrossRefGoogle ScholarPubMed
Kresse, G., Hafner, J., Ab initio molecular dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251–14269.CrossRefGoogle ScholarPubMed
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave set, Phys. Rev. B 54 (1996) 11169–11186.CrossRefGoogle ScholarPubMed
Chen, L. Y., Baldan, M. R., Ying, S. C., Surface diffusion in the low-friction limit: Occurrence of long jumps, Phys. Rev. B 54 (1996) 8856–8861.CrossRefGoogle ScholarPubMed
Agrawal, P. M., Rice, B. M., Thompson, D. L., Predicting trends in rate parameters for self-diffusion on FCC metal surfaces, Surf. Sci. 515 (2002) 21–35.CrossRefGoogle Scholar
Sun, Y.-J., Li, J.-M., Self-diffusion mechanisms of adatom on Al(001), (011) and (111) surfaces, Chin. Phys. Lett. 20 (2003) 269–272.Google Scholar
Chang, C. M., Wei, C. M., Self-diffusion of adatoms and dimers on fcc(100) surfaces, Chin. J. Phys. 43 (2005) 169–175.Google Scholar
Perkins, L. S., DePristo, A. E., The influence of lattice distortion on atomic self-diffusion on fcc(001) surfaces: Ni, Cu, Pd, Ag, Surf. Sci. 325 (1995) 169–176.CrossRefGoogle Scholar
Stumpf, R., Scheffler, M., Theory of self-diffusion at and growth of Al(111), Phys. Rev. Lett. 72 (1994) 254–257.CrossRefGoogle Scholar
Bogicevic, A., Strömquist, J., Lundqvist, B. I., Low-symmetry diffusion barriers in homoepitaxial growth of Al(111), Phys. Rev. Lett. 81 (1998) 637–640.CrossRefGoogle Scholar
Barth, J. V., Brune, H., Fischer, B., Weckesser, J., Kern, K., Dynamics of surface migration in the weak corrugation regime, Phys. Rev. Lett. 84 (2000) 1732–1735.CrossRefGoogle ScholarPubMed
Michely, T., Langenkamp, W., Hansen, H., Busse, C., Comment on “Dynamics of Surface Migration in the Weak Corrugation Regime,” Phys. Rev. Lett. 86 (2001) 2695.CrossRefGoogle ScholarPubMed
Busse, C., Langenkamp, W., Polop, C., Petersen, A., Hansen, H., Linke, U., Feibelman, P. J., Michely, T., Dimer binding energies on fcc(111) metal surfaces, Surf. Sci. 539 (2003) L560–566.CrossRefGoogle Scholar
Chang, C. M., Wei, C. M., Chen, S. P., Self-diffusion of small clusters on fcc metal (111) surfaces, Phys. Rev. Lett. 85 (2000) 1044–1047.CrossRefGoogle ScholarPubMed
Ovesson, S., Mean-field nucleation theory with nonlocal interactions, Phys. Rev. Lett. 88 (2002) 116102 1–4.CrossRefGoogle ScholarPubMed
Polop, C., Hansen, H., Busse, C., Michely, T., Relevance of nonlocal adatom-adatom interactions in homoepitaxial growth, Phys. Rev. B 67 (2003) 193405 1–4.CrossRefGoogle Scholar
Polop, C., Hansen, H., Langenkamp, W., Zhong, Z., Busse, C., Linke, U., Kotrla, M., Feibelman, P. J., Michely, T., Oscillatory interaction between O impurities and Al adatoms on Al(111) and its effect on nucleation and growth, Surf. Sci. 575 (2005) 89–102.CrossRefGoogle Scholar
Fuhrmann, D., Hulpke, E., Self-diffusion of potassium on ultra-thin epitaxial potassium layers, J. Chem. Phys. 106 (1997) 3407–3411.CrossRefGoogle Scholar
Stroscio, J. A., Pierce, D. T., Dragoset, R. A., Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction, Phys. Rev. Lett. 70 (1993) 3615–3618.CrossRefGoogle Scholar
Stroscio, J. A., Pierce, D. T., Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy, Phys. Rev. B 49 (1994) 8522–8525.CrossRefGoogle ScholarPubMed
Pfandzelter, R., Igel, T., Winter, H., Real-time study of nucleation, growth, and ripening during Fe/Fe(100) homoepitaxy using ion scattering, Phys. Rev. B 62 (2000) R2299–2302.CrossRefGoogle Scholar
Dulot, F., Kierren, B., Malterre, D., Determination of kinetic parameters in layer-by-layer growth from RHEED profile analysis, Thin Solid Films 423 (2003) 64–69.CrossRefGoogle Scholar
Köhler, U., Jensen, C., Schindler, A. C., Brendel, L., Wolf, D. E., Scanning tunnelling microscopy and Monte Carlo studies of homoepitaxy on Fe(110), Philos. Mag. B 80 (2000) 283–292.CrossRefGoogle Scholar
Finnis, M. W., Sinclair, J. E., A simple empirical N-body potential for transition metals, Philos. Mag. A 50 (1984) 45–55.CrossRefGoogle Scholar
Chen, D., Hu, W., Yang, J., Sun, L., The dynamic diffusion behaviors of 2D small Fe clusters on Fe(110) surface, J. Phys.: Condens. Matter 19 (2007) 446009 1–8.Google Scholar
Flahive, P. G., Graham, W. R., Pair potential calculations of single atom self-diffusion activation energies, Surf. Sci. 91 (1980) 449–462.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Self-adsorption sites on a close-packed surface: Ir on Ir(111), Phys. Rev. Lett. 62 (1989) 2297–2300.CrossRefGoogle Scholar
Davydov, S. Y., Calculation of the activation energy for surface self-diffusion of transition-metal atoms, Phys. Solid State 41 (1999) 8–10.CrossRefGoogle Scholar
Spisák, D., Hafner, J., Diffusion of Fe atoms on W surfaces and Fe/W films and along surface steps, Phys. Rev. B 70 (2004) 195426 1–13.CrossRefGoogle Scholar
Spisák, D., Hafner, J., Diffusion mechanisms for iron on tungsten, Surf. Sci. 584 (2005) 55–61.CrossRefGoogle Scholar
Chamati, H., Papanicolaou, N. I., Mishin, Y., Papaconstantopoulos, D. A., Embedded-atom potential for Fe and its application to self-diffusion on Fe(100), Surf. Sci. 600 (2006) 1793–1803.CrossRefGoogle Scholar
Shvets, I. V., Murphy, S., Kalinin, V., Nanowedge island formation on Mo(110), Surf. Sci. 601 (2007) 3169–3178.CrossRefGoogle Scholar
Tung, R. T., Graham, W. R., Single atom self-diffusion on nickel surfaces, Surf. Sci. 97 (1980) 73–87.CrossRefGoogle Scholar
Fu, T. Y., Tsong, T. T., Atomic processes in self-diffusion of Ni surfaces, Surf. Sci. 454–456 (2000) 571–574.CrossRefGoogle Scholar
Rice, B. M., Murthy, C. S., Garrett, B. C., Effects of surface structure and of embedded-atom pair functionals on adatom diffusion on fcc metallic surfaces, Surf. Sci. 276 (1992) 226–240.CrossRefGoogle Scholar
Foiles, S. M., Baskes, M. I., Daw, M. S., Embedded-atom-method functions for the fcc metals Cu, Ag, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33 (1986) 7983–7991.CrossRefGoogle ScholarPubMed
Oh, D. J., Johnson, R. A., Simple embedded atom method model for fcc and hcp metals, J. Mater. Res. 3 (1988) 471–478.CrossRefGoogle Scholar
Ackland, G. J., Tichy, G., Vitek, V., Finnis, M. W., Simple N-body potentials for the noble metals and nickel, Philos. Mag. A 56 (1987) 735–756.CrossRefGoogle Scholar
Shiang, K.-D., Molecular dynamics simulation of adatom diffusion on metal surfaces, J. Chem. Phys. 99 (1993) 9994–10000.CrossRefGoogle Scholar
Stoltze, P., Simulation of surface defects, J. Phys.: Condens. Matter 6 (1994) 9495–9517.Google Scholar
Li, Y., DePristo, A. E., Predicted growth mode for metal homoepitaxy on the fcc(111) surface, Surf. Sci. 351 (1996) 189–199.CrossRefGoogle Scholar
Mortensen, J. J., Hammer, B., Nielsen, O. H., Jacobsen, K. W., Nørskov, J. K., in: Elementary Processes in Excitations and Reactions on Solid Surfaces, Okiji, A., Kasai, H., Makoshi, K. (eds.), Density functional theory study of self-diffusion on the (111) surfaces of Ni, Pd, Pt, Cu, Ag and Au, (Springer-Verlag, Berlin, 1996), p. 173–182.CrossRefGoogle Scholar
Haug, K., Jenkins, T., Effects of hydrogen on the three-dimensional epitaxial growth of Ni(100), (110), and (111), J. Phys. Chem. B 104 (2000) 10017–10023.CrossRefGoogle Scholar
Daw, M. S., Baskes, M. I., Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443–6453.CrossRefGoogle Scholar
Wonchoba, S. E., Hu, W. H., Truhlar, D. G., Surface diffusion of H on Ni(100): Interpretation of the transition temperature, Phys. Rev. B 51 (1995) 9985–10002.CrossRefGoogle ScholarPubMed
Kürpick, U., Self-diffusion on (100), (110), and (111) surfaces of Ni and Cu: A detailed study of prefactors and activation energies, Phys. Rev. B 64 (2001) 075418 1–7.CrossRefGoogle Scholar
Bulou, H., Massobrio, C., Mechanisms of exchange diffusion on fcc(111) transition metal surfaces, Phys. Rev. B 72 (2005) 205427 1–6.CrossRefGoogle Scholar
Kong, L. T., Lewis, L. J., Transition state theory of the preexponential factors for self-diffusion on Cu, Ag, and Ni surfaces, Phys. Rev. B 74 (2006) 073412 1–4.CrossRefGoogle Scholar
Kim, S. Y., Lee, I.-H., Jun, S., Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces, Phys. Rev. B 76 (2007) 245407 1–15.Google Scholar
Passerone, D., Parrinello, M., Action-derived molecular dynamics in the study of rare events, Phys. Rev. Lett. 87 (2001) 108302 1–4.CrossRefGoogle Scholar
Kellogg, G. L., Surface diffusion of Pt adatoms on Ni surfaces, Surf. Sci. 266 (1992) 18–23.CrossRefGoogle Scholar
Schrammen, P., Hölzl, J., Investigation of surface self-diffusion of Ni atoms on the Ni(100) plane by means of work function measurements and Monte Carlo calculations, Surf. Sci. 130 (1983) 203–228.CrossRefGoogle Scholar
Bartelt, M. C., Perkins, L. S., Evans, J. W., Transitions in critical size for metal (100) homoepitaxy, Surf. Sci. 344 (1995) L1193–1199.CrossRefGoogle Scholar
Kopatzki, E., Günther, S., Nichtl-Pecher, W., Behm, R. J., Homoepitaxial growth on Ni(100) and its modification by a preadsorbed oxygen adlayer, Surf. Sci. 284 (1993) 154–166.CrossRefGoogle Scholar
Sanders, D. E., DePristo, A. E., Predicted diffusion rates on fcc (001) metal surfaces for adsorbate/substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt, Au, Surf. Sci. 260 (1992) 116–128.CrossRefGoogle Scholar
Perkins, L. S., DePristo, A. E., Self-diffusion mechanisms for adatoms on fcc(100) surfaces, Surf. Sci. 294 (1993) 67–77.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Yelon, A., Many-body nature of the Meyer–Neidel compensation law for diffusion, Phys. Rev. Lett. 75 (1995) 469–472.CrossRefGoogle ScholarPubMed
Shi, Z.-P., Zhang, Z., Swan, A. K., Wendelken, J. F., Dimer shearing as a novel mechanism for cluster diffusion and dissociation on metal (100) surfaces, Phys. Rev. Lett. 76 (1996) 4927–4930.CrossRefGoogle ScholarPubMed
Kürpick, U., Rahman, T. S., Vibrational free energy contribution to self-diffusion on Ni(100), Cu(100) and Ag(100), Surf. Sci. 383 (1997) 137–148.CrossRefGoogle Scholar
Merikoski, J., Vattulainen, I., Heinonen, J., Ala-Nissila, T., Effect of kinks and concerted diffusion mechanisms on mass transport and growth on stepped metal surfaces, Surf. Sci. 387 (1997) 167–182.CrossRefGoogle Scholar
Mehl, H., Biham, O., Furman, I., Karimi, M., Models for adatom diffusion on fcc (001) metal surfaces, Phys. Rev. B 60 (1999) 2106–2116.CrossRefGoogle Scholar
Wills, J. M., Harrison, W. A., Further studies on interionic interactions in simple metals and transition metals, Phys. Rev. B 29 (1984) 5486–5490.CrossRefGoogle Scholar
Haug, K., Zhang, Z., John, D., Walters, C. F., Zehner, D. M., Plummer, W. E., Effects of hydrogen in Ni(100) submonolayer homoepitaxy, Phys. Rev. B 55 (1997) R10233–10236.CrossRefGoogle Scholar
Haug, K., Do, N.-K. N., Kinetic Monte Carlo study of the effect of hydrogen on the two-dimensional epitaxial growth of Ni(100), Phys. Rev. B 60 (1999) 11095–11101.CrossRefGoogle Scholar
Chang, C. M., Wei, C. M., Hafner, J., Self-diffusion of adatoms on Ni(100) surfaces, J. Phys.: Condens. Matter 13 (2001) L321–328.Google Scholar
Müller, B., Nedelmann, L., Fischer, B., Brune, H., Kern, K., Initial stages of Cu epitaxy on Ni(100): Postnucleation and a well-defined transition in critical island size, Phys. Rev. B 54 (1996) 17858–17865.CrossRefGoogle Scholar
Krausch, G., Fink, R., Jacobs, K., Kohl, U., Lohmüller, J., Luckscheiter, B., Platzer, R., Runge, B.-U., Wöhrmann, U., Schatz, G., Surface and interface studies with perturbed angular correlations, Hyperfine Interactions 78 (1993) 261–280.CrossRefGoogle Scholar
Perkins, L. S., DePristo, A. E., Heterogeneous adatom diffusion on fcc (100) surfaces: Ni, Cu, Rh, Pd, and Ag, Surf. Sci. 319 (1994) 225–231.CrossRefGoogle Scholar
Miguel, J. J., Sanchez, A., Cebollada, A., Gallego, J. M., Perron, J., Ferrer, S., The surface morphology of a growing crystal studied by thermal energy atom scattering (TEAS), Surf. Sci. 189/190 (1987) 1062–1068.CrossRefGoogle Scholar
Miguel, J. J., Cebollada, A., Gallego, J. M., Ferrón, J., Ferrer, S., Quantitative evaluation of the perfection of an epitaxial film grown by vapor deposition as determined by thermal energy atom scattering, J. Cryst. Growth 88 (1988) 442–454.CrossRefGoogle Scholar
Ernst, H.-J., Fabre, F., Lapujoulade, J., Nucleation and diffusion of Cu adatoms on Cu(100): A helium-atom-beam scattering study, Phys. Rev. B 46 (1992) 1929–1932.CrossRefGoogle ScholarPubMed
Brune, H., Bales, G. S., Jacobsen, H., Boragno, C., Kern, K., Measuring surface diffusion from nucleation island densities, Phys. Rev. B 60 (1999) 5991–6006.CrossRefGoogle Scholar
Breeman, M., Boerma, D. O., Migration of Cu adatoms on a Cu(100) surface, studied with low energy ion scattering (LEIS), Surf. Sci. 269/270 (1992) 224–228.CrossRefGoogle Scholar
Dürr, H., Wendelken, J. F., Zuo, J.-K., Island morphology and adatom energy barriers during homoepitaxy on Cu(001), Surf. Sci. 328 (1995) L527–532.CrossRefGoogle Scholar
Laurens, C. R., Rosu, M. F., Pleiter, F., Niesen, L., Soft-landing deposition of radioactive probe atoms on surfaces, Hyperfine Interactions 120/121 (1999) 59–68.CrossRefGoogle Scholar
Wynblatt, P., Gjostein, N. A., A calculation of relaxation, migration and formation energies for surface defects in copper, Surf. Sci. 12 (1968) 109–127.CrossRefGoogle Scholar
Hansen, L., Stoltze, P., Jacobsen, K. W., Nørskov, J. K., Self-diffusion on Cu surfaces, Phys. Rev. B 44 (1991) 6523–6526.CrossRefGoogle Scholar
Hansen, L. B., Stoltze, P., Jacobsen, K. W., Nørskov, J. K., Activation free energy and entropy for the normal and exchange selfdiffusion processes on Cu(100), Surf. Sci. 289 (1993) 68–74.CrossRefGoogle Scholar
Tian, Z.-J., Rahman, T. S., Energetics of stepped Cu surfaces, Phys. Rev. B 47 (1993) 9751–9759.CrossRefGoogle ScholarPubMed
Sutton, A. P., Chen, J., Long-range Finnis–Sinclair potentials, Philos. Mag. Lett. 61 (1990) 139–146.CrossRefGoogle Scholar
Shiang, K.-D., Theoretical studies of adatom diffusion on metal surfaces, Phys. Lett. A 180 (1993) 444–452.CrossRefGoogle Scholar
Liu, C.-L., Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system, Surf. Sci. 316 (1994) 294–302.CrossRefGoogle Scholar
Lee, C., Barkema, G. T., Breeman, M., Pasquarello, A., Car, R., Diffusion mechanism of Cu adatoms on a Cu(001) surface, Surf. Sci. 306 (1994) L575–578.CrossRefGoogle Scholar
Karimi, M., Tomkowski, T., Vidali, G., Biham, O., Diffusion of Cu on Cu surface, Phys. Rev. B 52 (1995) 5364–5374.CrossRefGoogle Scholar
Biham, O., Furman, I., Karimi, M., Vidali, G., Kennett, R., Zeng, H., Models for diffusion and island growth in metal monolayers, Surf. Sci. 400 (1998) 29–43.CrossRefGoogle Scholar
Merikoski, J., T. Ala-Nissila, Diffusion processes and growth on stepped metal surfaces, Phys. Rev. B 52 (1995) R8715–8718.CrossRefGoogle Scholar
Kumar, P. V., Raul, J. S., Warakomski, S. J., Fichthorn, K. A., Smart Monte Carlo for accurate simulation of rare-event dynamics: Diffusion of adsorbed species on solid surfaces, J. Chem. Phys. 105 (1996) 686–695.CrossRefGoogle Scholar
Rosato, V., Guillope, M., Legrand, B., Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model, Philos. Mag. A 59 (1989) 321–336.CrossRefGoogle Scholar
Cleri, F., Rosato, V., Tight-binding potentials for transition metals and alloys, Phys. Rev. B 48 (1993) 22–33.CrossRefGoogle ScholarPubMed
Evangelakis, G. A., Papanicolaou, N. I., Adatom self-diffusion processes on (001) copper surfaces by molecular dynamics, Surf. Sci. 347 (1996) 376–386.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Self-diffusion of adatoms, dimers, and vacancies on Cu(100), Phys. Rev. B 56 (1997) 7643–7655.CrossRefGoogle Scholar
Boisvert, G., Mousseau, N., Lewis, L. J., Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100), Phys. Rev. B 58 (1998) 12667–12670.CrossRefGoogle Scholar
Kürpick, U., Kara, A., Rahman, T. S., Role of lattice vibrations in adatom diffusion, Phys. Rev. Lett. 78 (1997) 1086–1089.CrossRefGoogle Scholar
Kürpick, U., Rahman, T. S., The role of vibrational entropy in surface diffusion: adatoms and vacancies on Ag(100), Cu(100), and Ni(100), Surf. Sci. 427–428 (1999) 15–21.CrossRefGoogle Scholar
Trushin, O. S., Kokko, K., Salo, P. T., Hergert, W., Kotrla, M., Step roughening effect on adatom diffusion, Phys. Rev. B 56 (1997) 12135–12138.CrossRefGoogle Scholar
Durukanoglu, S., Trushin, O. S., Rahman, T. S., Effect of step-step separation on surface diffusion processes, Phys. Rev. B 73 (2006) 125426 1–6.CrossRefGoogle Scholar
Xie, Q., Dynamics of adatom self-diffusion and island morphology evolution at a Cu(100) surface, Phys. Status Solidi (b) 207 (1998) 153–170.3.0.CO;2-1>CrossRefGoogle Scholar
Zhuang, J., Liu, L., Global study of mechanisms for adatom diffusion on metal fcc(100) surfaces, Phys. Rev. B 59 (1999) 13278–13284.CrossRefGoogle Scholar
Wang, Z., Li, Y., Adams, J. B., Kinetic lattice Monte Carlo simulation of facet growth rate, Surf. Sci. 450 (2000) 51–63.CrossRefGoogle Scholar
Adams, J. B., Wang, Z., Li, Y., Modeling Cu thin film growth, Thin Solid Films 365 (2000) 201–210.CrossRefGoogle Scholar
Wang, J., Huang, H., Cale, T. S., Diffusion barriers on Cu surfaces and near steps, Modeling Simul. Mater. Sci. Eng. 12 (2004) 1209–1225.CrossRefGoogle Scholar
Pentcheva, R., Ab initio study of microscopic processes in the growth of Co on Cu(001), Appl. Phys. A 80 (2005) 971–975.CrossRefGoogle Scholar
Jahma, M. O., Rusanen, M., Karim, A., Koponen, I. T., Ala-Nissila, T., Rahman, T. S., Diffusion and submonolayer island growth during hyperthermal deposition on Cu(100) and Cu(111), Surf. Sci. 598 (2005) 246–252.CrossRefGoogle Scholar
Yildirim, H., Kara, A., Durukanoglu, S., Rahman, T. S., Calculated pre-exponential factors and energetics for adatom hopping on terraces and steps of Cu(100) and Cu(110), Surf. Sci. 600 (2006) 484–492.CrossRefGoogle Scholar
Kong, L. T., Lewis, L. J., Surface diffusion coefficient: Substrate dynamics matters, Phys. Rev. B 77 (2008) 165422 1–5.CrossRefGoogle Scholar
Müller, J. E., Ibach, H., Migration of point defects at charged Cu, Ag, and Au (100) surfaces, Phys. Rev. B 74 (2006) 085408 1–10.CrossRefGoogle Scholar
Breeman, M., Boerma, D. O., Sites, mobilities, and cluster formation of In atoms on a stepped Cu(100) surface, Phys. Rev. B 46 (1992) 1703–1709.CrossRefGoogle ScholarPubMed
Rosu, M. F., Pleiter, F., Niesen, L., Interaction between Cu atoms and isolated 111In probe atoms on a Cu(100) surface, Phys. Rev. B 63 (2001) 165425 1–10.CrossRefGoogle Scholar
Siclen, C. D., Indium adatom diffusion and clustering on stepped copper surfaces, Phys. Rev. B 51 (1995) 7796–7804.CrossRefGoogle ScholarPubMed
Cohen, C., Girard, Y., Leroux-Hugon, P., L'Hoir, A., Moulin, J., Schmaus, D., Surface diffusion of Pb on (100) Cu: Coverage dependence and influence of ordered-phase formation, Europhys. Lett. 24 (1993) 767–772.CrossRefGoogle Scholar
Graham, A. P., Hofmann, F., Toennies, J. P., Chen, L. Y., Ying, S. C., Experimental and theoretical investigation of the microscopic vibrational and diffusional dynamics of sodium atoms on a Cu(001) surface, Phys. Rev. B 56 (1997) 10567–10578.CrossRefGoogle Scholar
Ellis, J., Toennies, J. P., Observation of jump diffusion of isolated sodium atoms on a Cu(001) surface by helium atom scattering, Phys. Rev. Lett. 70 (1993) 2118–2121.CrossRefGoogle ScholarPubMed
Graham, A. P., Hofmann, F., Toennies, J. P., Chen, L. Y., Ying, S. C., Determination of the Na/Cu(001) potential energy surface from helium scattering studies of the surface dynamics, Phys. Rev. Lett. 78 (1997) 3900–3903.CrossRefGoogle Scholar
Cucchetti, A., Ying, S. C., Diffusion of Na atoms on a Cu(001) surface, Phys. Rev. B 60 (1999) 11110–11117.CrossRefGoogle Scholar
Alexandrowicz, G., Jardine, A. P., Hedgeland, H., Allison, W., Ellis, J., Onset of 3D collective surface diffusion in the presence of lateral interactions: Na/Cu(001), Phys. Rev. Lett. 97 (2006) 156103 1–4.CrossRefGoogle Scholar
Jardine, A. P., Alexandrowicz, G., Hedgeland, H., Diehl, R. D., Allison, W., Ellis, J., Vibration and diffusion of Cs atoms on Cu(001), J. Phys.: Condens. Matter 19 (2007) 305010–305027.Google Scholar
Evangelakis, G. A., Kallinteris, G. C., Papanicolaou, N. I., Molecular dynamics study of gold adatom diffusion on low-index copper surfaces, Surf. Sci. 394 (1997) 185–191.CrossRefGoogle Scholar
Stepanyuk, V. S., Bazhanov, D. I., Baranov, A. N., Hergert, W., Katsnelson, A. A., Dederichs, P. H., Kirschner, J., Atomistic processes and the strain distribution in the early stages of thin film growth, Appl. Phys. A 72 (2001) 443–446.CrossRefGoogle Scholar
Wulfhekel, W., Lipkin, N. N., Kliewer, J., Rosenfeld, G., Jorritsma, L. C., Poelsema, B., Comsa, G., Conventional and manipulated growth of Cu/Cu(111), Surf. Sci. 348 (1996) 227–242.CrossRefGoogle Scholar
Henzler, M., Schmidt, T., Luo, E. Z., in: The Structure of Surfaces IV, Xie, X., Tong, S. Y., Hove, M. A. V. (eds.), Modes in homoepitaxial growth on Cu(111), Ag(111), and Pt(111), (World Scientific, Singapore, 1994), p. 619–264.Google Scholar
Schlösser, D. C., Morgenstern, K., Verheij, L. K., Rosenfeld, G., Besenbacher, F., Comsa, G., Kinetics of island diffusion on Cu(111) and Ag(111) studied with variable-temperature STM, Surf. Sci. 465 (2000) 19–39.CrossRefGoogle Scholar
Repp, J., Moresco, F., Meyer, G., Rieder, K.-H., Hyldgard, P., Perrson, M., Substrate mediated long-range oscillatory interaction between adatoms, Phys. Rev. Lett. 85 (2000) 2981–2984.CrossRefGoogle ScholarPubMed
Knorr, N., Brune, H., Epple, M., Hirstein, A., Schneider, M. A., Kern, K., Long-range adsorbate interactions mediated by a two-dimensional electron gas, Phys. Rev. B 65 (2002) 115420 1–5.CrossRefGoogle Scholar
Repp, J., Meyer, G., Rieder, K.-H., Hyldgaard, P., Site determination and thermally assisted tunneling in homogeneous nucleation, Phys. Rev. Lett. 91 (2003) 206102 1–4.CrossRefGoogle Scholar
Kallinteris, G. C., Evangelakis, G. A., Papanicolaou, N. I., Molecular dynamics study of the vibrational and transport properties of copper adatoms on the (111) copper surface, compared with the (001) face, Surf. Sci. 369 (1996) 185–198.CrossRefGoogle Scholar
Rosato, V., Guillope, M., Legrand, B., Thermodynamical and structural properties of f.c.c. transition metals using simple tight-binding model, Philos. Mag. A 59 (1997) 321.CrossRefGoogle Scholar
Breeman, M., Barkema, G. T., Langelaar, M. H., Boerma, D. O., Computer simulation of metal-on-metal epitaxy, Thin Solid Films 272 (1996) 195–207.CrossRefGoogle Scholar
Bogicevic, A., Ovesson, S., Hyldgaard, P., Lundqvist, B. I., Brune, H., Jennison, D. R., Nature, strength, and consequences of indirect adsorbate interactions on metals, Phys. Rev. Lett. 85 (2000) 1910–1913.CrossRefGoogle ScholarPubMed
Larsson, M. I., Kinetic Monte Carlo simulations of adatom island decay on Cu(111), Phys. Rev. B 64 (2001) 115428 1–10.CrossRefGoogle Scholar
Wang, Y. X., Pan, Z. Y., Li, Z. J., Wei, Q., Zang, L. K., Zhang, Z. X., Effect of tensile strain on adatom diffusion on Cu(111) surface, Surf. Sci. 545 (2003) 137–142.CrossRefGoogle Scholar
Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F., Kress, J. D., Structural stability and lattice defects in copper: Ab initio, tight binding, and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106 1–16.CrossRefGoogle Scholar
Huang, H., Woo, C. H., Wei, H. L., Zhang, X. X., Kinetics-limited surface structures at the nanoscale, Appl. Phys. Lett. 82 (2003) 1272–1274.CrossRefGoogle Scholar
Marinica, M.-C., Barreteau, C., Desjonqueres, M.-C., Spanjaard, D., Influence of short-range adatom-adatom interactions on the surface diffusion of Cu on Cu(111), Phys. Rev. B 70 (2004) 075415 1–14.CrossRefGoogle Scholar
Ferrón, J., Gómez, L., Miguel, J. J., Miranda, R., Nonstochastic behavior of atomic surface diffusion on Cu(111) down to low temperatures, Phys. Rev. Lett. 93 (2004) 166107 1–4.CrossRefGoogle ScholarPubMed
Yang, J., Hu, W., Tang, J., Xu, M., Long-time scale dynamics study of diffusion dynamics of small Cu clusters on Cu(111) surface, J. Phys. Chem. C 112 (2008) 2074–2078.CrossRefGoogle Scholar
Breeman, M., Barkema, G. T., Boerma, D. O., Binding energies and stability of Cu-adatom clusters on Cu(100) and Cu(111), Surf. Sci. 323 (1995) 71–80.CrossRefGoogle Scholar
Padillo-Campos, L., Toro-Labbé, A., Theoretical study of the diffusion of alkali metals on a Cu(111) surface, J. Mol. Struct. (Theochem) 390 (1997) 183–192.CrossRefGoogle Scholar
Anderson, M. L., D'Amato, M. J., Feibelman, P. J., Swartzentruber, B. S., Vacancy-mediated and exchange diffusion in a Pb/Cu(111) surface alloy: Concurrent diffusion on two length scales, Phys. Rev. Lett. 90 (2003) 126102 1–4.CrossRefGoogle Scholar
Dhanak, V. R., Bassett, D. W., Field ion microscope studies of submonolayer rhodium films on (110) tungsten and molybdenum surfaces, Surf. Sci. 238 (1990) 289–292.CrossRefGoogle Scholar
Abramenkov, A. D., Slezov, V. V., Tanatarov, L. V., Fogel, Y. M., Investigation of surface diffusion of copper atoms on molybdenum by secondary ion-ion emission, Sov. Phys.- Solid State 12 (1971) 2365–2368.Google Scholar
Saadat, A. R., Activation energies for surface diffusion and polarizabilities of gallium, indium and tin on a molybdenum surface, J. Phys. D: Appl. Phys. 27 (1994) 356–359.CrossRefGoogle Scholar
Jubert, P.-O., Fruchart, O., Meyer, C., Nucleation and surface diffusion in pulsed laser deposition of Fe on Mo(110), Surf. Sci. 522 (2003) 8–16.CrossRefGoogle Scholar
Vedula, Y. S., Loburets, A. T., Naumovets, A. G., Surface diffusion and interaction of adsorbed barium atoms on the (011) face of molybdenum, Sov. Phys. JETP 50 (1979) 391–396.Google Scholar
Naumovets, A. G., Vedula, Y. S., Surface diffusion of adsorbates, Surf. Sci. Rep. 4 (1985) 365–434.CrossRefGoogle Scholar
Hamilton, J. C., Magic size effects for heteroepitaxial island diffusion, Phys. Rev. Lett. 77 (1996) 885–888.CrossRefGoogle ScholarPubMed
Ayrault, G., Ehrlich, G., Surface self-diffusion on an fcc crystal: An atomic view, J. Chem. Phys. 60 (1974) 281–294.CrossRefGoogle Scholar
Tsui, F., Wellman, J., Uher, C., Clarke, R., Morphology transition and layer-by-layer growth of Rh(111), Phys. Rev. Lett. 76 (1996) 3164–3167.CrossRefGoogle Scholar
Kellogg, G. L., Direct observation of substitutional-atom trapping on a metal surface, Phys. Rev. Lett. 72 (1994) 1662–1665.CrossRefGoogle ScholarPubMed
Kellogg, G. L., Oscillatory behavior in the size dependence of cluster mobility on metal surfaces: Rh on Rh(100), Phys. Rev. Lett. 73 (1994) 1833–1836.CrossRefGoogle Scholar
McDowell, H. K., Doll, J. D., Theoretical studies of surface diffusion: Self-diffusion in the fcc(100) system, J. Chem.Phys. 78 (1983) 3219–3222.CrossRefGoogle Scholar
McDowell, H. K., Doll, J. D., Theoretical studies of surface diffusion: Self-diffusion in the bcc (110) system, Surf. Sci. 121 (1982) L537–540.CrossRefGoogle Scholar
Voter, A. F., Doll, J. D., Surface self-diffusion constants at low temperature: Monte Carlo transition state theory with importance sampling, J. Chem. Phys. 80 (1984) 5814–5817.CrossRefGoogle Scholar
Voter, A. F., Doll, J. D., Transition state theory description of surface self-diffusion: Comparison with classical trajectory results, J. Chem. Phys. 80 (1984) 5832–5838.CrossRefGoogle Scholar
Voter, A. F., Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100), Phys. Rev. B 34 (1986) 6819–6829.CrossRefGoogle Scholar
Lynden-Bell, R. M., Migration of adatoms on the (100) surface of face-centered-cubic metals, Surf. Sci. 259 (1991) 129–138.CrossRefGoogle Scholar
Sanders, D. E., DePristo, A. E., A non-unique relationship between potential energy surface barrier and dynamical diffusion barrier: fcc(111) metal surface, Surf. Sci. 264 (1992) L169–176.CrossRefGoogle Scholar
Mruzik, M. R., Pound, G. M., A molecular dynamics study of surface diffusion, J. Phys. F 11 (1981) 1403–1422.CrossRefGoogle Scholar
Feibelman, P. J., Stumpf, R., Adsorption-induced lattice relaxation and diffusion by concerted substitution, Phys. Rev. B 59 (1999) 5892–5897.CrossRefGoogle Scholar
Máca, F., Kotrla, M., Trushin, O. S., Energy barriers for diffusion on stepped Rh(111) surfaces, Surf. Sci. 454–456 (2000) 579–583.CrossRefGoogle Scholar
Máca, F., Kotrla, M., Trushin, O. S., Energy barriers for interlayer diffusion in Pt/Pt(111) and Rh/Rh(111) homoepitaxy: Small islands, Czech. J. Phys. 49 (1999) 1591–1596.CrossRefGoogle Scholar
Kellogg, G. L., Diffusion of individual platinum atoms on single-crystal surfaces of rhodium, Phys. Rev. B 48 (1993) 11305–11312.CrossRefGoogle Scholar
Kellogg, G. L., Diffusion behavior of Pt adatoms and clusters on the Rh(100) surface, Appl. Surf. Sci. 67 (1993) 134–141.CrossRefGoogle Scholar
Flynn-Sanders, D. K., Evans, J. W., Thiel, P. A., Homoepitaxial growth on Pd(100), Surf. Sci. 289 (1993) 75–84.CrossRefGoogle Scholar
Evans, J. W., Flynn-Sanders, D. K., Thiel, P. A., Surface self-diffusion barrier of Pd(100) from low-energy electron diffraction, Surf. Sci. 298 (1993) 378–383.CrossRefGoogle Scholar
Evans, J. W., Bartelt, M. C., Nucleation and growth in metal-on-metal homoepitaxy: Rate equations, simulations and experiments, J. Vac. Sci. Technol. A 12 (1994) 1800–1808.CrossRefGoogle Scholar
Evteev, A. V., Kosilov, A. T., Solyanik, S. A., Atomic mechanisms and kinetics of self-diffusion on the Pd(001) surface, Phys. Solid State 46 (2004) 1781–1784.CrossRefGoogle Scholar
Evans, J. W., Flynn, D. K., Thiel, P. A., Influence of adsorption-site geometry and diffusion on thin-film growth: Pt/Pd(100), Ultramicroscopy 31 (1989) 80–86.CrossRefGoogle Scholar
Félix, C., Vandoni, G., Harbich, W., Buttet, J., Monot, R., Surface mobility of Ag on Pd(100) measured by specular helium scattering, Phys. Rev. B 54 (1996) 17039–17050.CrossRefGoogle ScholarPubMed
Félix, C., Vandoni, G., Harbich, W., Buttet, J., Monot, R., Surface diffusion of Ag on Pd(100) measured with specular helium scattering, Surf. Sci. 331–333 (1995) 925–929.CrossRefGoogle Scholar
Massobrio, C., Nacer, B., Bekkay, T., Vandoni, G., Felix, C., Low energy impact of silver atoms on Pd(100): comparison between helium scattering and microscopic scale simulation results, Surf. Sci. 385 (1997) 87–96.CrossRefGoogle Scholar
Steltenpohl, A., Memmel, N., Self-diffusion on Pd(111), Surf. Sci. 454–456 (2000) 558–561.CrossRefGoogle Scholar
Steltenpohl, A., Memmel, N., Energetic and entropic contributions to surface diffusion and epitaxial growth, Phys. Rev. Lett. 84 (2000) 1728–1731.CrossRefGoogle ScholarPubMed
Papanicolaou, N. I., Self-diffusion on Pd(111) by molecular dynamics simulation, Comput. Mater. Sci. 24 (2002) 117–121.CrossRefGoogle Scholar
Hunger, E., Haas, H., Adsorption sites and diffusion steps of In and Cd on Pd(111) surfaces, Surf. Sci. 234 (1990) 273–286.CrossRefGoogle Scholar
Ondrejcek, M., Hencel, W., Conrad, H., Cháb, V., Chvoj, Z., Engel, W., Bradshaw, A. M., Surface diffusion of K on Pd 111 studied by photoemission electron microscopy, Chem. Phys. Lett. 215 (1993) 528–534.CrossRefGoogle Scholar
Snábl, M., Ondrejcek, M., Cháb, V., Stenzel, W., Conrad, H., Bradshaw, A. M., Temperature dependence of the surface diffusion coefficient of K atoms on Pd{111} measured with PEEM, Surf. Sci. 352–354 (1996) 546–551.CrossRefGoogle Scholar
Stark, D., Diffusion processes on stepped surfaces of thin metal films: Migration of silver adatoms on silver (111) terraces, Surf. Sci. 189/190 (1987) 1111–1116.CrossRefGoogle Scholar
Jones, G. W., Marcano, J. M., Nørskov, J. K., Venables, J. A., Energies controlling nucleation and growth processes: The case of Ag/W(110), Phys. Rev. Lett. 65 (1990) 3317–3320.CrossRefGoogle Scholar
Venables, J. A., Nucleation calculations in a pair-binding model, Phys. Rev. B 36 (1987) 4153–4162.CrossRefGoogle Scholar
Spiller, D. T., Akhter, P., Venables, J. A., UHV-SEM study of the nucleation and growth of Ag/W(110), Surf. Sci. 131 (1983) 517–533.CrossRefGoogle Scholar
Luo, E. Z., Wollschläger, J., Wegner, F., Henzler, M., SPA-LEED studies of growth of Ag on Ag(111) at low temperatures, Appl. Phys. A 60 (1995) 19–25.CrossRefGoogle Scholar
Rosenfeld, G., Lipkin, N. N., Wulfhekel, W., Kliewer, J., Morgenstern, K., Poelsema, B., Comsa, G., New concepts for controlled homoepitaxy, Appl. Phys. A 61 (1995) 455–466.CrossRefGoogle Scholar
Brune, H., Bromann, K., Röder, H., Kern, K., Jacobsen, J., Stoltze, P., Jacobsen, K., Nørskov, J., Effect of strain on surface diffusion and nucleation, Phys. Rev. B 52 (1995) R14380–14383.CrossRefGoogle ScholarPubMed
Cox, E., Li, M., Chung, P.-W., Ghosh, C., Rahman, T. S., Jenks, C. J., Evans, J. W., Thiel, P. A., Temperature dependence of island growth shapes during submonolayer deposition of Ag on Ag(111), Phys. Rev. B 71 (2005) 115414 1–9.CrossRefGoogle Scholar
Rilling, W. K., Gilmore, C. M., Andreadis, T. D., Sprague, J. A., An embedded-atom-method study of diffusion of an Ag adatom on (111) Ag, Can. J. Phys. 68 (1990) 1035–1040.CrossRefGoogle Scholar
Nelson, R. C., Einstein, T. L., Khare, S. V., Reus, P. J., Energetics of steps, kinks, and defects on Ag{100} and Ag{111} using the embedded atom method, and some consequences, Surf. Sci. 295 (1993) 462–484.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Puska, M. J., Nieminen, R. M., Energetics of diffusion on the (100) and (111) surfaces of Ag, Au, and Ir from first principles, Phys. Rev. B 52 (1995) 9078–9085.CrossRefGoogle ScholarPubMed
Ferrando, R., Tréglia, G., Tight-binding molecular dynamics study of diffusion on Au and Ag(111), Surf. Sci. 331–333 (1995) 920–924.CrossRefGoogle Scholar
Ratsch, C., Seitsonen, A. P., Scheffler, M., Strain dependence of surface diffusion: Ag on Ag(111) and Pt(111), Phys. Rev. B 55 (1997) 6750–6753.CrossRefGoogle Scholar
Ratsch, C., Scheffler, M., Density-functional theory calculations of hopping rates of surface diffusion, Phys. Rev. B 58 (1998) 13163–13166.CrossRefGoogle Scholar
Papanicolaou, N. I., Evangelakis, G. A., Kallinteris, G. C., Molecular dynamics description of silver adatom diffusion on Ag(100) and Ag(111) surfaces, Comput. Mater. Sci. 10 (1998) 105–110.CrossRefGoogle Scholar
Antczak, G., Ehrlich, G., Jump processes in surface diffusion, Surf. Sci. Rep. 62 (2007) 39–61.CrossRefGoogle Scholar
Baletto, F., Mottet, C., Ferrando, R., Molecular dynamics simulation of surface diffusion and growth on silver and gold clusters, Surf. Sci. 446 (2000) 31–45.CrossRefGoogle Scholar
Chvoj, Z., Ghosh, C., Rahman, T. S., Tringides, M. C., Prefactors for interlayer diffusion on Ag/Ag(111), J. Phys.: Condens. Matter 15 (2003) 5223–5230.Google Scholar
Vrijmoeth, J., Vegt, H. A., Meyer, J. A., Vlieg, E., Behm, R. J., Surfactant-induced layer-by-layer growth of Ag on Ag(111): Origin and side effects, Phys. Rev. Lett. 72 (1994) 3843–3846.CrossRefGoogle Scholar
Vegt, H. A., Vrijmoeth, J., Behm, B. J., Vlieg, E., Sb-enhanced nucleation in the homoepitaxial growth of Ag(111), Phys. Rev. B 57 (1998) 4127–4131.CrossRefGoogle Scholar
Haftel, M. I., Rosen, M., New ballistically and thermally activated exchange processes in the vapor deposition of Au on Ag(111): a molecular dynamics study, Surf. Sci. 407 (1998) 16–26.CrossRefGoogle Scholar
Morgenstern, K., Braun, K.-F., Rieder, K.-H., Direct imaging of Cu dimer formation, motion, and interaction with Cu atoms on Ag(111), Phys. Rev. Lett. 93 (2004) 056102 1–4.CrossRefGoogle Scholar
Morgenstern, K., Fast scanning tunneling microscopy as a tool to understand changes on metal surfaces: from nanostructures to single atoms, Phys. Stat. Sol. 242 (2005) 773–796.CrossRefGoogle Scholar
Silly, F., Pivetta, M., Ternes, M., Patthey, F., Pelz, J. P., Schneider, W.-D., Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea, Phys. Rev. Lett. 92 (2004) 016101 1–4.CrossRefGoogle Scholar
Hartig, K., Janssen, A. P., Venables, J. A., Nucleation and growth in the system Ag/Mo(100): A comparison of UHV-SEM and AES/LEED observations, Surf. Sci. 74 (1978) 69–78.CrossRefGoogle Scholar
Langelaar, M. H., Breeman, M., Boerma, D. O., Mobility of Ag adatoms on Ag(100), Surf. Sci. 352–354 (1996) 597–601.CrossRefGoogle Scholar
Zhang, C.-M., Bartelt, M. C., Wen, J.-M., Jenks, C. J., Evans, J. W., Thiel, P. A., The initial stages of Ag/Ag(100) homoepitaxy: scanning tunneling microscopy experiements and Monte Carlo simulations, J. Cryst. Growth 174 (1997) 851–857.CrossRefGoogle Scholar
Zhang, C.-M., Bartelt, M. C., Wen, J.-M., Jenks, C. J., Evans, J. W., Thiel, P. A., Submonolayer island formation and the onset of multilayer growth during Ag/Ag(100) homoepitaxy, Surf. Sci. 406 (1998) 178–193.CrossRefGoogle Scholar
Thiel, P. A., Evans, J. W., Nucleation, growth, and relaxation of thin films: Metal(100) homoepitaxial systems, J. Phys. Chem. B 104 (2000) 1663–1676.CrossRefGoogle Scholar
Bardotti, L., Stoldt, C. R., Jenks, C. J., Bartelt, M. C., Evans, J. W., Thiel, P. A., High-resolution LEED profile analysis and diffusion barrier estimation for submonolayer homoepitaxy of Ag/Ag(100), Phys. Rev. B 57 (1998) 12544–12549.CrossRefGoogle Scholar
Rosu, M. F., Laurens, C. R., Falepin, A., James, M. A., Langelaar, M. H., Pleiter, F., Rogojanu, O. C., Niesen, L., Direct observation of self-diffusion mechanism on the Ag(100) surface, Phys. Rev. Lett. 81 (1998) 4680–4683.CrossRefGoogle Scholar
Frank, S., Wedler, H., Behm, R. J., Rottler, J., Maass, P., Caspersen, K. J., Stoldt, C. R., Thiel, P. A., Evans, J. W., Approaching the low-temperature limit in nucleation and two-dimensional growth of fcc (100) metal films Ag/Ag(100), Phys. Rev. B 66 (2002) 155435 1–7.CrossRefGoogle Scholar
Voter, A. F., Simulation of the layer-growth dynamics in silver films: Dynamics of adatom and vacancy clusters on Ag(100), Proc. SPIE 821 (1987) 214–226.CrossRefGoogle Scholar
Yu, B. D., Scheffler, M., Anisotropy of growth of the close-packed surfaces of silver, Phys. Rev. Lett. 77 (1996) 1095–1098.CrossRefGoogle ScholarPubMed
Yu, B. D., Scheffler, M., Ab initio study of step formation and self-diffusion on Ag(100), Phys. Rev. B 55 (1997) 13916–13924.CrossRefGoogle Scholar
Kürpick, U., Rahman, T. S., Diffusion processes relevant to homoepitaxial growth on Ag(100), Phys. Rev. B 57 (1998) 2482–2492.CrossRefGoogle Scholar
Haftel, M. I., Surface reconstruction of platinum and gold and the embedded-atom method, Phys. Rev. B 48 (1993) 2611–2622.CrossRefGoogle Scholar
Fink, R., Wesche, R., Klas, T., Krausch, G., Platzer, R., Voigt, J., Wöhrmann, U., Schatz, G., Step-correlated diffusion of In atoms on Ag(100) and Ag(111) surfaces, Surf. Sci. 225 (1990) 331–340.CrossRefGoogle Scholar
Fink, R., Krausch, G., Luckscheiter, B., Platzer, R., Voigt, J., Wesche, R., Wöhrmann, U., Ding, X. L., Schatz, G., Diffusion of isolated In atoms on Ag and Cu surfaces, Vacuum 41 (1990) 1643–1645.CrossRefGoogle Scholar
Patthey, F., Massobrio, C., Schneider, W.-D., Dynamics of surface alloying: Determination of diffusion barriers from photoelectron spectra, Phys. Rev. B 53 (1996) 13146–13149.CrossRefGoogle ScholarPubMed
Canepa, M., Magnano, E., Campora, A., Cantini, P., Salvietti, M., Mattera, L., Diffusion by atomic place exchange in ultrathin iron films on Ag(100): an ion scattering spectroscopy study, Surf. Sci. 352–354 (1996) 36–40.CrossRefGoogle Scholar
Caffio, M., Atrei, A., Bardi, U., Rovida, G., Growth mechanism and structure of nickel deposited on Ag(001), Surf. Sci. 588 (2005) 135–148.CrossRefGoogle Scholar
Schwoebel, P. R., Kellogg, G. L., Palladium diffusion and cluster nucleation on Ta(110), Phys. Rev. B 38 (1988) 5326–5331.CrossRefGoogle Scholar
Antczak, G., Blaszczyszyn, R., Diffusion of palladium on tantalum microcrystal, Acta Phys. Pol. 103 (2003) 57–65.CrossRefGoogle Scholar
Ehrlich, G., Hudda, F. G., Atomic view of surface self-diffusion: tungsten on tungsten, J. Chem. Phys. 44 (1966) 1039–1049.CrossRefGoogle Scholar
Bassett, D. W., Parsley, M. J., Field ion microscope studies of transition metal adatom diffusion on (110), (211) and (321) tungsten surfaces, J. Phys. D 3 (1970) 707–716.CrossRefGoogle Scholar
Cowan, P., Tsong, T. T., Diffusion behavior of tungsten clusters on the tungsten (110) planes, Phys. Lett. 53A (1975) 383–383.CrossRefGoogle Scholar
Kellogg, G. L., Tsong, T. T., Cowan, P., Direct observation of surface diffusion and atomic interactions on metal surfaces, Surf. Sci. 70 (1978) 485–519.CrossRefGoogle Scholar
Chen, C., Tsong, T. T., Behavior of Ir atoms and clusters on Ir surfaces, Phys. Rev. B 41 (1990) 12403–12412.CrossRefGoogle ScholarPubMed
Antczak, G., Ehrlich, G., Long jump rates in surface diffusion: W on W(110), Phys. Rev. Lett. 92 (2004) 166105 1–4.CrossRefGoogle Scholar
Ehrlich, G., Kirk, C. F., Binding and field desorption of individual tungsten atoms, J. Chem. Phys. 48 (1968) 1465–1480.CrossRefGoogle Scholar
Wynblatt, P., Gjostein, N. A., A calculation of migration energies and binding energies for tungsten adatoms on tungsten surfaces, Surf. Sci. 22 (1970) 125–136.CrossRefGoogle Scholar
Banavar, J. R., Cohen, M. H., Gomer, R., A calculation of surface diffusion coefficients of adsorbates on the (110) plane of tungsten, Surf. Sci. 107 (1981) 113–126.CrossRefGoogle Scholar
Doll, J. D., McDowell, H. K., Theoretical studies of surface diffusion: Self-diffusion in the bcc(211) System, Surf. Sci. 123 (1982) 99–105.CrossRefGoogle Scholar
Xu, W., Adams, J. B., W single adatom diffusion on W surfaces, Surf. Sci. 319 (1994) 58–67.CrossRefGoogle Scholar
Chen, D., Hu, W., Deng, H., Sun, L., Gao, F., Diffusion of tungsten clusters on tungsten (110) surface, Eur. Phys. J. B 68 (2009) 479–485.CrossRefGoogle Scholar
Davydov, S. Y., Tikhonov, S. K., On the cohesive approach to the calculation of d-metal on d-metal adsorption properties, Surf. Sci. 371 (1997) 157–167.CrossRefGoogle Scholar
Harrison, W. A., Wills, J. M., Interionic interactions in simple metals, Phys. Rev. B 25 (1982) 5007–5017.CrossRefGoogle Scholar
Wills, J. M., Harrison, W. A., Interionic interactions in transition metals, Phys. Rev. B 28 (1983) 4363–4373.CrossRefGoogle Scholar
Loburets, A. T., Naumovets, A. G., Vedula, Y. S., Surface diffusion of lithium on (011) face of tungsten, Surf. Sci. 120 (1982) 347–366.CrossRefGoogle Scholar
Morin, R., Diffusion and compressibility of sodium on the (110) plane of tungsten, Surf. Sci. 155 (1985) 187–202.CrossRefGoogle Scholar
Schmidt, L., Gomer, R., Adsorption of potassium on tungsten, J. Chem. Phys. 42 (1965) 3573–3598.CrossRefGoogle Scholar
Naumovets, A. G., Desorption of potassium from tungsten in an electric field, Soviet Phys. Sol. State 5 (1964) 1668–1674.Google Scholar
Meclewski, R., Measurement of the surface-diffusion activation energy of potassium on tungsten, Acta Phys. Pol. A 37 (1970) 41–47.Google Scholar
Dabrowski, A. M., Kleint, C., Cross-correlation function of field emission flicker noise from K/W(110): interpretation by adparticle surface diffusion, Surf. Sci. 172 (1986) 372–384.CrossRefGoogle Scholar
Dennler, S., Hafner, J., First-principles study of ultrathin Mn films on W surfaces. II. Surface diffusion, Phys. Rev. B 72 (2005) 214414 1–9.Google Scholar
Nahm, T.-U., Gomer, R., The conversion of Fe on W(110) from the low temperature to the high temperature form, Surf. Sci. 380 (1997) 52–60.CrossRefGoogle Scholar
Sladecek, M., Sepiol, B., Korecki, J., Slezak, T., Rüffer, R., Kmiec, D., Vogl, G., Dynamics in submonolayer Fe-films, Surf. Sci. 566–568 (2004) 372–376.CrossRefGoogle Scholar
Bassett, D. W., Field ion microscopic studies of submonolayer films of nickel, palladium and platinum on (110) tungsten surfaces, Thin Solid Films 48 (1978) 237–246.CrossRefGoogle Scholar
Kellogg, G. L., Surface diffusion and clustering of nickel atoms on the (110) plane of tungsten, Surf. Sci. 187 (1987) 153–164.CrossRefGoogle Scholar
Melmed, A. J., Adsorption and surface diffusion of copper on tungsten, J. Chem. Phys. 43 (1965) 3057–3062.CrossRefGoogle Scholar
Melmed, A. J., Influence of adsorbed gas on surface diffusion and nucleation, J. Appl. Phys. 37 (1966) 275–279.CrossRefGoogle Scholar
Jones, J. P., The adsorption of copper on tungsten, Proc. Roy. Soc. (London) A 284 (1965) 469–487.CrossRefGoogle Scholar
Nishikawa, O., Saadat, A. R., Field emission and field ion microscope study of Ga, In, and Sn on W: Structure, work function, diffusion and binding energy, Surf. Sci. 60 (1976) 301–324.CrossRefGoogle Scholar
Fu, T.-Y., Cheng, L.-C., Hwang, Y.-J., Tseng, T. T., Diffusion of Pd adatoms on W surfaces and their interactions with steps, Surf. Sci. 507–510 (2002) 103–107.CrossRefGoogle Scholar
Oh, S.-M., Koh, S. J., Kyuno, K., Ehrlich, G., Non-nearest-neighbor jumps in 2D diffusion: Pd on W(110), Phys. Rev. Lett. 88 (2002) 236102 1–4.CrossRefGoogle Scholar
Langmuir, I., Taylor, J. B., The mobility of cesium atoms adsorbed on tungsten, Phys. Rev. 40 (1932) 463–464.CrossRefGoogle Scholar
Taylor, J. B., Langmuir, I., The evaporation of atoms, ions and electrons from cesium films on tungsten, Phys. Rev. 44 (1933) 423–458.CrossRefGoogle Scholar
Love, H. M., Wiederick, H. D., Cesium diffusion at a tungsten surface, Can. J. Phys. 47 (1969) 657–663.CrossRefGoogle Scholar
Utsugi, H., Gomer, R., Field desorption of barium from tungsten, J. Chem. Phys. 37 (1962) 1706–1719.CrossRefGoogle Scholar
Naumovets, A. G., Poplavsky, V. V., Vedula, Y. S., Diffusion and phase transitions in barium monolayers on the (011) plane of tungsten, Surf. Sci. 200 (1988) 321–334.CrossRefGoogle Scholar
Tsong, T. T., Kellogg, G., Direct observation of the directional walk of single adatoms and the adatom polarizability, Phys. Rev. B 12 (1975) 1343–1353.CrossRefGoogle Scholar
Bassett, D. W., Parsley, M. J., The effect of an electric field on the surface diffusion of rhenium adsorbed on tungsten, Brit. J. Appl. Phys. (J. Phys. D) 2 (1969) 13–16.CrossRefGoogle Scholar
Tsong, T. T., Direct observation of interactions between individual atoms on tungsten surfaces, Phys. Rev. B 6 (1972) 417–426.CrossRefGoogle Scholar
Johnson, R. A., White, P. J., Interpretation of field-ion microscopy data for surface diffusion and clustering, Phys. Rev. B 7 (1973) 4016–4018.CrossRefGoogle Scholar
Tsong, T. T., Surface diffusion and cluster binding energy of individual atoms on tungsten surfaces, Phys. Rev. B 7 (1973) 4018–4020.CrossRefGoogle Scholar
Lovisa, M., Ehrlich, G., Adatom diffusion on metals: Ir on W(110), J. Phys. (Paris) 50 (1989) C8–279–284.CrossRefGoogle Scholar
Lovisa, M., Diffusivity of Ir atoms on W(110), Private communication (1993).
Antczak, G., Ehrlich, G., Long jumps in diffusion of iridium on W(110), Phys. Rev. B 71 (2005) 115422 1–9.CrossRefGoogle Scholar
Bassett, D. W., Migration of platinum adatom clusters on tungsten (110) surfaces, J. Phys. C 9 (1976) 2491–2503.CrossRefGoogle Scholar
Jones, J. P., Jones, N. T., Field emission microscopy of gold on single-crystal planes of tungsten, Thin Solid Films 35 (1976) 83–97.CrossRefGoogle Scholar
Debe, M. K., King, D. A., Space-group determination of the low-temperature W{100}(2 × 2)R45 surface structure by low-energy-electron diffraction, Phys. Rev. Lett. 39 (1977) 708–711.CrossRefGoogle Scholar
Bayat, B., Wassmuth, H.-W., Desorption kinetics and directional dependence of the surface diffusion of potassium on stepped W(100) surfaces, Surf. Sci. 140 (1984) 511–520.CrossRefGoogle Scholar
Kellogg, G. L., The mobility and structure of nickel atoms on the (100) plane of tungsten, Surf. Sci. 192 (1987) L879–886.CrossRefGoogle Scholar
Beben, J., Gubernator, W., Investigation of surface diffusion of Hf on W(100) by the density fluctuation method, Surf. Sci. 304 (1994) 59–64.CrossRefGoogle Scholar
Morin, R., Drechsler, M., A study of a coadsorbate surface diffusion (Pb on C/W), Surf. Sci. 111 (1981) 140–148.CrossRefGoogle Scholar
Xu, Z., Zhou, L. G., Wang, J., Cale, T. S., Huang, H., Three-dimensional Ehrlich-Schwoebel barriers of W, Computers, Materials, and Continua 3 (2006) 43–47.Google Scholar
Ackland, G. J., Thetford, R., An improved n-body semiempirical model for body-centered cubic transition-metals, Philos. Mag. A 56 (1987) 15–30.CrossRefGoogle Scholar
Graham, W. R., Ehrlich, G., Direct identification of atomic binding sites on a crystal, Surf. Sci. 45 (1974) 530–552.CrossRefGoogle Scholar
Gong, Y. M., Gomer, R., Thermal roughening on stepped tungsten surfaces I. The zone (011) – (112), J. Chem. Phys 88 (1988) 1359–1369.CrossRefGoogle Scholar
Fu, T. Y., Weng, W. J., Tsong, T. T., Dynamic study of W atoms and clusters on W(111) surfaces, Appl. Surf. Sci. 254 (2008) 7831–7834.CrossRefGoogle Scholar
Flahive, P. G., Graham, W. R., Surface site geometry and diffusion characteristics of single Ni atoms on W(111), Thin Solid Films 51 (1978) 175–184.CrossRefGoogle Scholar
Biernat, T., Kleint, C., Meclewski, R., Field emission current fluctuations due to lithium adsorbed on the W(111) region, Surf. Sci. 246 (1991) 54–59.CrossRefGoogle Scholar
Biernat, T., Dabrowski, A. M., Two-process diffusion of titanium on the (111) tungsten plane by the current fluctuation method in FEM, Vacuum 63 (2001) 113–118.CrossRefGoogle Scholar
Biernat, T., Blaszczyszyn, R., Surface diffusion of dysprosium on the W(111) facet, Appl. Surf. Sci. 230 (2004) 81–87.CrossRefGoogle Scholar
Chen, C. L., Tsong, T. T., Self-diffusion on reconstructed and nonreconstructed Ir surfaces, J. Vac. Sci. Technol. A 10 (1992) 2178–2184.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Atomic behavior at individual binding sites: Ir, Re, and W on Ir(111), Phys. Rev. Lett. 68 (1992) 1160–1163.CrossRefGoogle Scholar
Kyuno, K., Gölzhäuser, A., Ehrlich, G., Growth and the diffusion of platinum atoms and dimers on Pt(111), Surf. Sci. 397 (1998) 191–196.CrossRefGoogle Scholar
Wang, S. C., Kürpick, U., Ehrlich, G., Surface diffusion of compact and other clusters: Irx on Ir(111), Phys. Rev. Lett. 81 (1998) 4923–4926.CrossRefGoogle Scholar
Fu, T.-Y., Wu, H.-T., Tsong, T. T., Energetics of surface atomic processes near a lattice step, Phys. Rev. B 58 (1998) 2340–2346.CrossRefGoogle Scholar
Piveteau, B., Spanjaard, D., Desjonquères, M. C., Inversion of the stability between normal and fault sites for transition-metal adatoms on (111)fcc and (0001)hcp transition metal surfaces, Phys. Rev. B 46 (1992) 7121–7126.CrossRefGoogle ScholarPubMed
Shiang, K.-D., Wei, C. M., Tsong, T. T., A molecular dynamics study of self-diffusion on metal surfaces, Surf. Sci. 301 (1994) 136–150.CrossRefGoogle Scholar
Chang, C. M., Wei, C. M., Chen, S. P., Modeling of Ir adatoms on Ir surfaces, Phys. Rev. B 54 (1996) 17083–17096.CrossRefGoogle ScholarPubMed
Trushin, O. S., Kotrla, M., Máca, F., Energy barriers on stepped Ir/Ir(111) surfaces: a molecular statics calculation, Surf. Sci. 389 (1997) 55–65.CrossRefGoogle Scholar
Kürpick, U., Self-diffusion on stepped Ir(111) surfaces, Phys. Rev. B 69 (2004) 205410 1–6.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Determination of atomic binding sites on the fcc(111) plane, Surf. Sci. 246 (1991) 37–42.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111), J. Chem. Phys. 94 (1991) 4071–4074.CrossRefGoogle Scholar
Chen, C., Tsong, T. T., Displacement distribution and atomic jump direction in diffusion of Ir atoms on the Ir(001) surface, Phys. Rev. Lett. 64 (1990) 3147–3150.CrossRefGoogle ScholarPubMed
Friedl, A., Schütz, O., Müller, K., Self-diffusion on iridium (100). A structure investigation by field-ion microscopy, Surf. Sci. 266 (1992) 24–29.CrossRefGoogle Scholar
Fu, T.-Y., Tsong, T. T., Structure and diffusion of small Ir and Rh clusters on Ir(001) surfaces, Surf. Sci. 421 (1999) 157–166.CrossRefGoogle Scholar
Tsong, T. T., Chen, C. L., Atomic replacement and vacancy formation and annihilation on iridium surfaces, Nature 355 (1992) 328–331.CrossRefGoogle Scholar
Bassett, D. W., Webber, P. R., Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces, Surf. Sci. 70 (1978) 520–531.CrossRefGoogle Scholar
Feibelman, P. J., Nelson, J. S., Kellogg, G. L., Energetics of Pt adsorption on Pt(111), Phys. Rev. B 49 (1994) 10548–10556.CrossRefGoogle Scholar
Bott, M., Hohage, M., Morgenstern, M., Michely, T., Comsa, G., New approach for determination of diffusion parameters of adatoms, Phys. Rev. Lett. 76 (1996) 1304–1307.CrossRefGoogle ScholarPubMed
Gölzhäuser, A., Ehrlich, G., Atom movement and binding on surface clusters: Pt on Pt(111) clusters, Phys. Rev. Lett. 77 (1996) 1334–1337.CrossRefGoogle ScholarPubMed
Villarba, M., Jónsson, H., Diffusion mechanisms relevant to metal crystal growth: Pt/Pt(111), Surf. Sci. 317 (1994) 15–36.CrossRefGoogle Scholar
Liu, S., Zhang, Z., Nørskov, J., Metiu, H., The mobility of Pt atoms and small Pt clusters on Pt(111) and its implications for the early stages of epitaxial growth, Surf. Sci. 321 (1994) 161–171.CrossRefGoogle Scholar
Wang, R., Fichthorn, K. A., An investigation of the energetics and dynamics of adatom motion to descending step edges in Pt/Pt(111) homoepitaxy, Surf. Sci. 301 (1994) 253–259.CrossRefGoogle Scholar
Jacobsen, J., Jacobsen, K. W., Stoltze, P., Nørskov, J. K., Island shape-induced transition from 2D to 3D growth for Pt/Pt(111), Phys. Rev. Lett. 74 (1995) 2295–2298.CrossRefGoogle Scholar
Feibelman, P. J., Interlayer self-diffusion on stepped Pt(111), Phys. Rev. Lett. 81 (1998) 168–171.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Scheffler, M., Island morphology and adatom self-diffusion on Pt(111), Phys. Rev. B 57 (1998) 1881–1889.CrossRefGoogle Scholar
Máca, F., Kotrla, M., Trushin, O. S., Energy barriers for diffusion on stepped Pt(111) surface, Vacuum 54 (1999) 113–117.CrossRefGoogle Scholar
Leonardelli, G., Lundgren, E., Schmid, M., Adatom interlayer diffusion on Pt(111): an embedded atom method study, Surf. Sci. 490 (2001) 29–42.CrossRefGoogle Scholar
Lee, B., Cho, K., Extended embedded-atom method for platinum nanoparticles, Surf. Sci. 600 (2006) 1982–1990.CrossRefGoogle Scholar
Cai, J., Ye, Y. Y., Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys, Phys. Rev. B 54 (1996) 8398–8410.CrossRefGoogle ScholarPubMed
Yang, J., Hu, W., Yi, G., Tang, J., Atomistic simulation of Pt trimer on Pt(111) surface, Appl. Surf. Sci. 253 (2007) 8825–8829.CrossRefGoogle Scholar
Blandin, P., Massobrio, C., Diffusion properties and collisional dynamics of Ag adatoms and dimers on Pt(111), Surf. Sci. 279 (1992) L219–224.CrossRefGoogle Scholar
Massobrio, C., Blandin, P., Structure and dynamics of Ag clusters on Pt(111), Phys. Rev. B 47 (1993) 13687–13694.CrossRefGoogle Scholar
Röder, H., Brune, H., Bucher, J.-P., Kern, K., Changing morphology of metallic monolayers via temperature controlled heteroepitaxial growth, Surf. Sci. 298 (1993) 121–126.CrossRefGoogle Scholar
Brune, H., Röder, H., Boragno, C., Kern, K., Microscopic view of nucleation on surfaces, Phys. Rev. Lett. 73 (1994) 1955–1958.CrossRefGoogle ScholarPubMed
Feibelman, P. J., Diffusion barrier for a Ag adatom on Pt(111), Surf. Sci. 313 (1994) L801–805.CrossRefGoogle Scholar
Sabiryanov, R. F., Larsson, M. I., Cho, K. J., Nix, W. D., Clemens, B. M., Surface diffusion and growth of patterned nanostructures on strained surfaces, Phys. Rev. B 67 (2003) 125412 1–8.CrossRefGoogle Scholar
Kresse, G., Joubert, J., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758–1775.CrossRefGoogle Scholar
Goyhenex, C., Adatom and dimer migration in heteroepitaxy: Co/Pt(111), Surf. Sci. 600 (2006) 15–22.CrossRefGoogle Scholar
Graham, A. P., Toennies, J. P., Macroscopic diffusion and low-frequency vibration of sodium on Pt(111) investigated with helium atom scattering, J. Phys. Chem. B 105 (2001) 4003–4009.CrossRefGoogle Scholar
Price, D. L., Effects of a volume-dependent potential on equilibrium properties of liquid sodium, Phys. Rev. A 4 (1971) 358–363.CrossRefGoogle Scholar
Kellogg, G. L., Feibelman, P. J., Surface self-diffusion on Pt(001) by an atomic exchange mechanism, Phys. Rev. Lett. 64 (1990) 3143–3146.CrossRefGoogle ScholarPubMed
Kellogg, G. L., Temperature dependence of surface self-diffusion on Pt(001), Surf. Sci. 246 (1991) 31–36.CrossRefGoogle Scholar
Kellogg, G. L., The effect of an externally applied electric field on the diffusion of Pt adatoms, dimers, and trimers on Pt(001), Appl. Surf. Sci. 76/77 (1994) 115–121.CrossRefGoogle Scholar
Kellogg, G. L., Electric field inhibition and promotion of exchange diffusion on Pt(001), Phys. Rev. Lett. 70 (1993) 1631–1634.CrossRefGoogle Scholar
Linderoth, T. R., Mortensen, J. J., Jacobsen, K. W., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Homoepitaxial growth of Pt on Pt(100)-hex: Effects of strongly anisotropic diffusion and finite island sizes, Phys. Rev. Lett. 77 (1996) 87–90.CrossRefGoogle ScholarPubMed
Mortensen, J. J., Linderoth, T. R., Jacobsen, K. W., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Effects of anisotropic diffusion and finite island sizes in homoepitaxial growth Pt on Pt(100)-hex, Surf. Sci. 400 (1998) 290–313.CrossRefGoogle Scholar
Zhuang, J., Liu, L., Exchange mechanism for adatom diffusion on metal fcc(100) surfaces, Phys. Rev. B 58 (1998) 1173–1176.CrossRefGoogle Scholar
Haftel, M. I., Rosen, M., Franklin, T., Hettermann, M., Molecular dynamics observations of the interdiffusion and Stranski-Krastanov growth in the early film deposition of Au on Ag(100), Phys. Rev. Lett. 72 (1994) 1858–1861.CrossRefGoogle Scholar
Haftel, M. I., Rosen, M., Molecular-dynamics description of early film deposition of Au on Ag(110), Phys. Rev. B 51 (1995) 4426–4434.CrossRefGoogle Scholar
Zhuang, J., Liu, L., Adatom self-diffusion on Pt(100) surface by an ad-dimer migrating, Science in China A 43 (2000) 1108–1113.CrossRefGoogle Scholar
Xiao, W., Greaney, P. A., Chrzan, D. C., Pt adatom diffusion on strained Pt(001), Phys. Rev. B 70 (2004) 033402 1–4.CrossRefGoogle Scholar
Kellogg, G. L., Wright, A. F., Daw, M. S., Surface diffusion and adatom-induced substrate relaxations of Pt, Pd, and Ni atoms on Pt(001), J. Vac. Sci. Technol. A 9 (1991) 1757–1760.CrossRefGoogle Scholar
Günther, S., Kopatzki, E., Bartelt, M. C., Evans, J. W., Behm, R. J., Anisotropy in nucleation and growth of two-dimensional islands during homoepitaxy on ‘hex’ reconstructed Au(100), Phys. Rev. Lett. 73 (1994) 553–556.CrossRefGoogle Scholar
Liu, S., Bönig, L., Metiu, H., Effect of small-cluster mobility and dissociation on the island density in epitaxial growth, Phys. Rev. B 52 (1995) 2907–2913.CrossRefGoogle ScholarPubMed
Göbel, H., Blanckenhagen, P., A study of surface diffusion on gold with an atomic force microscope, Surf. Sci. 331–333 (1995) 885–890.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Self-diffusion on low-index metallic surfaces: Ag and Au(100) and (111), Phys. Rev. B 54 (1996) 2880–2889.CrossRefGoogle Scholar
Bönig, L., Liu, S., Metiu, H., An effective medium theory study of Au islands on the Au(100) surface: reconstruction, adatom diffusion, and island formation, Surf. Sci. 365 (1996) 87–95.CrossRefGoogle Scholar
Yu, B. D., Scheffler, M., Physical origin of exchange diffusion on fcc(100) metal surfaces, Phys. Rev. B 56 (1997) R15569–15572.CrossRefGoogle Scholar
He, Y.-L., Wang, G.-C., Observation of atomic place exchange in submonolayer heteroepitaxial Fe/Au(001) films, Phys. Rev. Lett. 71 (1993) 3834–3837.CrossRefGoogle ScholarPubMed
Hernán, O. S., Parga, A. L. Vázquez, Gallego, J. M., Miranda, R., Self-surfactant effect on Fe/Au(100): place exchange plus Au self-diffusion, Surf. Sci. 415 (1998) 106–121.CrossRefGoogle Scholar
Liu, Y. B., Sun, D. Y., Gong, X. G., Local strain induced anisotropic diffusion on (23×√3)-Au(111) surface, Surf. Sci. 498 (2002) 337–342.CrossRefGoogle Scholar
Ercolessi, F., Parinello, M., Tosatti, E., Au(100) reconstruction in the glue model, Surf. Sci. 177 (1986) 314–328.CrossRefGoogle Scholar
Ercolessi, F., Parrinello, M., Tosatti, E., Simulation of gold in the glue model, Philos. Mag. A 58 (1988) 213–226.CrossRefGoogle Scholar
Fischer, B., Brune, H., Barth, J. V., Fricke, A., Kern, K., Nucleation kinetics on inhomogeneous substrates: Al/Au(111), Phys. Rev. Lett. 82 (1999) 1732–1735.CrossRefGoogle Scholar
Meyer, J. A., Baikie, I. D., Kopatzki, E., Behm, R. J., Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange, Surf. Sci. 365 (1996) L647–651.CrossRefGoogle Scholar
Goyhenex, C., Bulou, H., Deville, J.-P., Tréglia, G., Atomistic simulations of relaxation and reconstruction phenomena in heteroepitaxy: Co/Au(111), Appl. Surf. Sci. 188 (2002) 134–139.CrossRefGoogle Scholar
Bulou, H., Lucas, O., Kibaly, M., Goyhenex, C., Long-time scale molecular dynamics study of Co diffusion on the Au(111) surface, Comput. Mater. Sci. 27 (2003) 181–185.CrossRefGoogle Scholar
Bulou, H., Massobrio, C., Dynamical behavior of Co adatoms on the herringbone reconstructed surface of Au(111), Superlattices Microstruct. 36 (2004) 305–313.CrossRefGoogle Scholar
Li, S.-C., Han, Y., Jia, J.-F., Xue, Q.-K., Liu, F., Determination of the Ehrlich-Schwoebel barrier in epitaxial growth of thin films, Phys. Rev. B 74 (2006) 195428 1–5.CrossRefGoogle Scholar
Jnawali, G., Hattab, H., Bobisch, C. A., Bernhart, A., Zubkov, E., Möller, R., Hoegen, M. Horn-von, Homoepitaxial growth of Bi(111), Phys. Rev. B 78 (2008) 035321 1–9.CrossRefGoogle Scholar
Trushin, O. S., Salo, P., Ala-Nissila, T., Energetics and many-particle mechanisms of two-dimensional cluster diffusion on Cu(100) surfaces, Phys. Rev. B 62 (2000) 1611–1614.CrossRefGoogle Scholar
Antczak, G., Long jumps in one-dimensional surface self-diffusion: Rebound transitions, Phys. Rev. B 73 (2006) 033406 1–4.CrossRefGoogle Scholar
Lide, D. R., CRC Handbook of Chemistry and Physics, 86th Edition (CRC Press, Taylor & Francis, Boca Raton, 2008).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×