Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-08T02:27:12.751Z Has data issue: false hasContentIssue false

8 - Diffusivities of small clusters

Published online by Cambridge University Press:  06 July 2010

Grazyna Antczak
Affiliation:
University of Wrocław, Poland; Leibniz Universität Hannover, Germany
Gert Ehrlich
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

In the previous chapter we presented possible mechanisms which can contribute to cluster diffusion; in this chapter, we will concentrate on the energetics of cluster movement, mostly the movement of the center of mass. Early studies of cluster diffusion were all done on tungsten surfaces using FIM, but as techniques other than field ion microscopy were applied to learning more about this subject, other surfaces came under scrutiny. The biggest change in the level of activity, however, was made by theoretical calculations. These now dominate the field and have usually covered several surfaces of different materials in one examination. The number of experimental studies of cluster behavior decreased markedly as computational efforts reached new intensities. Unfortunately, theoretical investigations still are quite uncertain and experiments are urgently needed for comparison and verification. Nevertheless we will try to arrange our comments chronologically in the description of each material, but with experiments and theoretical calculations separated.

Early investigations

Experiments

Work on the diffusion of single adatoms on a metal surface had been going on for just a few years when Bassett began to look at clusters formed by association of several atoms. In 1969 he noted that after depositing several atoms on the (211) and (321) planes of tungsten, clusters formed, with a mobility smaller than that of single atoms, provided that deposition took place with the atoms in the same channel. On these planes, clusters moved in only one dimension, along the channels of the planes.

Type
Chapter
Information
Surface Diffusion
Metals, Metal Atoms, and Clusters
, pp. 556 - 663
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassett, D. W., Parsley, M. J., Field ion microscope observations of cluster formation in metal deposits on tungsten surfaces, Nature 221 (1969) 1046.CrossRefGoogle Scholar
Bassett, D. W., Controlled clustering: a technique for use in studying thin film nucleation in the field ion microscope, J. Phys. E: Sci. Instr. 3 (1970) 417–418.CrossRefGoogle Scholar
Bassett, D. W., Field ion microscope studies of iridium adatom clusters on (110) tungsten surfaces, Surf. Sci. 21 (1970) 181–185.CrossRefGoogle Scholar
Bassett, D. W., The use of field ion microscopy in studies of the vapour deposition of metals, Surf. Sci. 23 (1970) 240–258.CrossRefGoogle Scholar
Tsong, T. T., Interaction of individual metal atoms on tungsten surfaces, J. Chem. Phys. 55 (1971) 4658–4659.CrossRefGoogle Scholar
Tsong, T. T., Direct observation of interactions between individual atoms on tungsten surfaces, Phys. Rev. B 6 (1972) 417–426.CrossRefGoogle Scholar
Bassett, D. W., Tice, D. R., The stability of W2 and WRe adatom clusters on (110) tungsten surfaces, Surf. Sci. 40 (1973) 499–511.CrossRefGoogle Scholar
Tully, J. C., Gilmer, G. H., Shugard, M., Molecular dynamics of surface diffusion. I. The motion of adatoms and clusters, J. Chem. Phys. 71 (1979) 1630–1642.CrossRefGoogle Scholar
Ghaleb, D., Diffusion of adatom dimers on (111) surface of face centered crystals: A molecular dynamics study, Surf. Sci. 137 (1984) L103–108.CrossRefGoogle Scholar
Feibelman, P. J., Rebonding effects in separation and surface-diffusion barrier energies of an adatom pair, Phys. Rev. Lett. 58 (1987) 2766–2769.CrossRefGoogle ScholarPubMed
Liu, C.-L., Adams, J. B., Structure and diffusion of clusters on Ni surfaces, Surf. Sci. 268 (1992) 73–86.CrossRefGoogle Scholar
Valkealahti, S., Manninen, M., Diffusion on aluminum-cluster surfaces and the cluster growth, Phys. Rev. B 57 (1998) 15533–15540.CrossRefGoogle Scholar
Bogicevic, A., Ovesson, S., Lundqist, B. I., Jennison, D. R., Atom-by-atom and concerted hopping of atom pairs on an open metal surface, Phys. Rev. B 61 (2000) R2456–2459.CrossRefGoogle Scholar
Hammer, B., Bond activation at monatomic steps: NO dissociation at corrugated Ru(0001), Phys. Rev. Lett. 83 (1999) 3681–3684.CrossRefGoogle Scholar
Trushin, O. S., Salo, P., Alatalo, M., Ala-Nissila, T., Atomic mechanisms of cluster diffusion on metal fcc(100) surfaces, Surf. Sci. 482–485 (2001) 365–369.CrossRefGoogle Scholar
Ercolessi, F., Adams, J. B., Interatomic potentials from first-principles calculations: The force-matching method, Europhys. Lett. 26 (1994) 583–588.CrossRefGoogle Scholar
Zhuang, J., Liu, Q., Zhuang, M., Liu, L., Zhao, L., Li, Y., Exchange rotation mechanism for dimer diffusion on metal fcc(001) surfaces, Phys. Rev. B 68 (2003) 113401 1–4.CrossRefGoogle Scholar
Johnson, R. A., Analytical nearest-neighbor model for fcc metals, Phys. Rev. B 37 (1988) 3924–3931.CrossRefGoogle Scholar
Liu, Q., Sun, Z., Ning, X., Li, Y., Liu, L., Zhuang, J., Systematical study of dimer diffusion on metal fcc(001) surfaces, Surf. Sci. 554 (2004) 25–32.CrossRefGoogle Scholar
Chang, C. M., Wei, C. M., Self-diffusion of adatoms and dimers on fcc(100) surfaces, Chin. J. Phys. 43 (2005) 169–175.Google Scholar
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.CrossRefGoogle ScholarPubMed
Kresse, G., Hafner, J., Ab initio molecular dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251–14269.CrossRefGoogle ScholarPubMed
Ceperley, D. M., Alder, B. J., Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980) 566–569.CrossRefGoogle Scholar
Perdew, J. P., Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048–5079.CrossRefGoogle Scholar
Bogicevic, A., Hyldgaard, P., Wahnström, G., Lundqvist, B. I., Al dimer dynamics on Al(111), Phys. Rev. Lett. 81 (1998) 172–175.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Structure, stability, and surface diffusion of clusters: Irx on Ir(111), Surf. Sci. 239 (1990) 301–332.CrossRefGoogle Scholar
Chang, C. M., Wei, C. M., Chen, S. P., Self-diffusion of small clusters on fcc metal (111) surfaces, Phys. Rev. Lett. 85 (2000) 1044–1047.CrossRefGoogle ScholarPubMed
Chang, C. M., Wei, C. M., Chen, S. P., Structural and dynamical behavior of Al trimer on Al(111) surface, Surf. Sci. 465 (2000) 65–75.CrossRefGoogle Scholar
Wang, S. C., Diffusion of Ir clusters on Ir(111), Personal Communication, 1999.
Chen, D., Hu, W., Yang, J., Sun, L., The dynamic diffusion behaviors of 2D small Fe clusters on Fe(110) surface, J. Phys.: Condens. Matter 19 (2007) 446009 1–8.Google Scholar
Hu, W., Shu, X., Zhang, B., Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials, Comput. Mater. Sci. 23 (2002) 175–189.CrossRefGoogle Scholar
Hu, W., Deng, H., Yuan, X., Fukumoto, M., Point defect properties in hcp rare metals with analytic modified embedded atom potential, Eur. Phys. J. B 34 (2003) 429–440.CrossRefGoogle Scholar
Kellogg, G. L., Voter, A. F., Surface diffusion modes for Pt dimers and trimers on Pt(001), Phys. Rev. Lett. 67 (1991) 622–625.CrossRefGoogle Scholar
Kellogg, G. L., Surface diffusion of Pt adatoms on Ni surfaces, Surf. Sci. 266 (1992) 18–23.CrossRefGoogle Scholar
Shi, Z.-P., Zhang, Z., Swan, A. K., Wendelken, J. F., Dimer shearing as a novel mechanism for cluster diffusion and dissociation on metal (100) surfaces, Phys. Rev. Lett. 76 (1996) 4927–4930.CrossRefGoogle ScholarPubMed
Kim, S. Y., Lee, I.-H., Jun, S., Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces, Phys. Rev. B 76 (2007) 245407 1–15.Google Scholar
Fu, T. Y., Tsong, T. T., Atomic processes in self-diffusion of Ni surfaces, Surf. Sci. 454–456 (2000) 571–574.CrossRefGoogle Scholar
Hamilton, J. C., Daw, M. S., Foiles, S. M., Dislocation mechanism for island diffusion on fcc(111) surfaces, Phys. Rev. Lett. 74 (1995) 2760–2763.CrossRefGoogle ScholarPubMed
Wang, S. C., Ehrlich, G., Diffusion of large surface clusters: Direct observations on Ir(111), Phys. Rev. Lett. 79 (1997) 4234–4237.CrossRefGoogle Scholar
Longo, R. C., Rey, C., Gallego, L. J., Molecular dynamics study of the melting behaviour of seven-atom clusters of fcc transition and noble metals on the (111) surface of the same metal using the embedded atom model, Surf. Sci. 459 (2000) L441–445.CrossRefGoogle Scholar
Voter, A. F., Chen, S. P., Accurate interatomic potentials for Ni, Al and Ni3Al, Mater. Res. Soc. Symp. Proc. 82 (1987) 175–180.CrossRefGoogle Scholar
Kürpick, U., Self-diffusion of one-dimensional clusters on fcc(110)(2 × 1) surfaces of Pt, Ag, Cu, and Ni, Phys. Rev. B 63 (2001) 045409 1–5.CrossRefGoogle Scholar
Schlösser, D. C., Morgenstern, K., Verheij, L. K., Rosenfeld, G., Besenbacher, F., Comsa, G., Kinetics of island diffusion on Cu(111) and Ag(111) studied with variable-temperature STM, Surf. Sci. 465 (2000) 19–39.CrossRefGoogle Scholar
Repp, J., Meyer, G., Rieder, K.-H., Hyldgaard, P., Site determination and thermally assisted tunneling in homogeneous nucleation, Phys. Rev. Lett. 91 (2003) 206102 1–4.CrossRefGoogle Scholar
Liu, C.-L., Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system, Surf. Sci. 316 (1994) 294–302.CrossRefGoogle Scholar
Kellogg, G. L., Oscillatory behavior in the size dependence of cluster mobility on metal surfaces: Rh on Rh(100), Phys. Rev. Lett. 73 (1994) 1833–1836.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Self-diffusion of adatoms, dimers, and vacancies on Cu(100), Phys. Rev. B 56 (1997) 7643–7655.CrossRefGoogle Scholar
Biham, O., Furman, I., Karimi, M., Vidali, G., Kennett, R., Zeng, H., Models for diffusion and island growth in metal monolayers, Surf. Sci. 400 (1998) 29–43.CrossRefGoogle Scholar
Trushin, O. S., Salo, P., Ala-Nissila, T., Energetics and many-particle mechanisms of two-dimensional cluster diffusion on Cu(100) surfaces, Phys. Rev. B 62 (2000) 1611–1614.CrossRefGoogle Scholar
Salo, P., Hirvonen, J., Koponen, I. T., Trushin, O. S., Heinonen, J., Ala-Nissila, T., Role of concerted atomic movements on the diffusion of small islands on fcc(100) metal surfaces, Phys. Rev. B 64 (2001) 161405 1–4.CrossRefGoogle Scholar
Sanchez, J. R., Evans, J. W., Diffusion of small clusters on metal (100) surfaces: Exact master-equation analysis for lattice-gas models, Phys. Rev. B 59 (1999) 3224–3233.CrossRefGoogle Scholar
Rosato, V., Guillope, M., Legrand, B., Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model, Philos. Mag. A 59 (1989) 321–336.CrossRefGoogle Scholar
Guillope, M., Legrand, B., (110) Surface stability in noble metals, Surf. Sci. 215 (1989) 577–595.CrossRefGoogle Scholar
Basham, M., Montalenti, F., Mulheran, P. A., Multiscale modeling of island nucleation and growth during Cu(100) homoepitaxy, Phys. Rev. B 73 (2006) 045422 1–10.CrossRefGoogle Scholar
Marinica, M.-C., Barreteau, C., Desjonqueres, M.-C., Spanjaard, D., Influence of short-range adatom-adatom interactions on the surface diffusion of Cu on Cu(111), Phys. Rev. B 70 (2004) 075415 1–14.CrossRefGoogle Scholar
Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F., Kress, J. D., Structural stability and lattice defects in copper: Ab initio, tight binding, and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106 1–16.CrossRefGoogle Scholar
Morgenstern, K., Braun, K.-F., Rieder, K.-H., Direct imaging of Cu dimer formation, motion, and interaction with Cu atoms on Ag(111), Phys. Rev. Lett. 93 (2004) 056102 1–4.CrossRefGoogle Scholar
Karim, A., Al-Rawi, A. N., Kara, A., Rahman, T. S., Trushin, O., Ala-Nissila, T., Diffusion of small two-dimensional Cu islands on Cu(111) studied with a kinetic Monte Carlo method, Phys. Rev. B 73 (2006) 165411 1–11.CrossRefGoogle Scholar
Foiles, S. M., Baskes, M. I., Daw, M. S., Embedded-atom-method functions for the fcc metals Cu, Ag, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33 (1986) 7983–7991.CrossRefGoogle ScholarPubMed
Yang, J., Hu, W., Tang, J., Xu, M., Long-time scale dynamics study of diffusion dynamics of small Cu clusters on Cu(111) surface, J. Phys. Chem. C 112 (2008) 2074–2078.CrossRefGoogle Scholar
Papathanakos, V., Evangelakis, G. A., Structural and diffusive properties of small 2D Au clusters on the Cu(111) surface, Surf. Sci. 499 (2002) 229–243.CrossRefGoogle Scholar
Chirita, V., Münger, E. P., Greene, J. E., Sundgren, J.-E., Cluster diffusion and surface morphological transitions on Pt(111) via reptation and concerted motion, Thin Solid Films 370 (2000) 179–185.CrossRefGoogle Scholar
Raeker, T. J., DePristo, A. E., Molecular dynamic and Monte Carlo simulation of Fe island growth on Cu(111), Surf. Sci. 317 (1994) 283–294.CrossRefGoogle Scholar
Ayrault, G., Ehrlich, G., Surface self-diffusion on an fcc crystal: An atomic view, J. Chem. Phys. 60 (1974) 281–294.CrossRefGoogle Scholar
Kellogg, G. L., Diffusion behavior of Pt adatoms and clusters on the Rh(100) surface, Appl. Surf. Sci. 67 (1993) 134–141.CrossRefGoogle Scholar
Voter, A. F., Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100), Phys. Rev. B 34 (1986) 6819–6829.CrossRefGoogle Scholar
Fernandez, P., Massobrio, C., Blandin, P., Buttet, J., Embedded atom method computations of structural and dynamic properties of Cu and Ag clusters adsorbed on Pd(110) and Pd(100): evolution of the most stable geometries versus cluster size, Surf. Sci. 307–309 (1994) 608–613.CrossRefGoogle Scholar
Massobrio, C., Fernandez, P., Cluster adsorption on metallic surfaces: Structure and diffusion in the Cu/Pd(110) and Pd/Pd(110) systems, J. Chem. Phys. 102 (1995) 605–610.CrossRefGoogle Scholar
Silva, E. Z., Antonelli, A., Diffusion of Pd clusters on Pd(111) surfaces: A molecular dynamics study, Surf. Sci. 452 (2000) 239–246.CrossRefGoogle Scholar
Voter, A. F., Simulation of the layer-growth dynamics in silver films: Dynamics of adatom and vacancy clusters on Ag(100), Proc. SPIE 821 (1987) 214–226.CrossRefGoogle Scholar
Haftel, M. I., Surface reconstruction of platinum and gold and the embedded-atom method, Phys. Rev. B 48 (1993) 2611–2622.CrossRefGoogle Scholar
Haftel, M. I., Rosen, M., Franklin, T., Hettermann, M., Molecular dynamics observations of the interdiffusion and Stranski-Krastanov growth in the early film deposition of Au on Ag(100), Phys. Rev. Lett. 72 (1994) 1858–1861.CrossRefGoogle Scholar
Haftel, M. I., Rosen, M., Molecular-dynamics description of early film deposition of Au on Ag(110), Phys. Rev. B 51 (1995) 4426–4434.CrossRefGoogle Scholar
Nelson, R. C., Einstein, T. L., Khare, S. V., Reus, P. J., Energetics of steps, kinks, and defects on Ag{100} and Ag{111} using the embedded atom method, and some consequences, Surf. Sci. 295 (1993) 462–484.CrossRefGoogle Scholar
Schwoebel, P. R., Kellogg, G. L., Palladium diffusion and cluster nucleation on Ta(110), Phys. Rev. B 38 (1988) 5326–5331.CrossRefGoogle Scholar
Bassett, D. W., Field ion microscopic studies of submonolayer films of nickel, palladium and platinum on (110) tungsten surfaces, Thin Solid Films 48 (1978) 237–246.CrossRefGoogle Scholar
Graham, W. R., Ehrlich, G., Surface self-diffusion of atoms and atom pairs, Phys. Rev. Lett. 31 (1973) 1407–1408.CrossRefGoogle Scholar
Graham, W. R., Ehrlich, G., Surface diffusion of atom clusters, J. Phys. F 4 (1974) L212–214.CrossRefGoogle Scholar
Graham, W. R., Ehrlich, G., Surface self-diffusion of single atoms, Thin Solid Films 25 (1975) 85–96.CrossRefGoogle Scholar
Reed, D. A., Ehrlich, G., Chemical specificity in the surface diffusion of clusters: Ir on W(211), Philos. Mag. 32 (1975) 1095–1099.CrossRefGoogle Scholar
Sakata, T., Nakamura, S., Surface diffusion of molybdenum atoms on tungsten surfaces, Surf. Sci. 51 (1975) 313–317.CrossRefGoogle Scholar
Stolt, K., Graham, W. R., Ehrlich, G., Surface diffusion of individual atoms and dimers: Re on W(211), J. Chem. Phys. 65 (1976) 3206–3222.CrossRefGoogle Scholar
Stolt, K., Wrigley, J. D., Ehrlich, G., Thermodynamics of surface clusters – direct observations of Re2 on W(211), J. Chem. Phys. 69 (1978) 1151–1161.CrossRefGoogle Scholar
Ehrlich, G., Stolt, K., in: Growth and Properties of Metal Clusters, Bourdon, J. (ed.), Surface diffusion of metal clusters on metals, (Elsevier, Amsterdam, 1980), p. 1–14.Google Scholar
Reed, D. A., Ehrlich, G., In-channel clusters: rhenium on W(211), Surf. Sci. 151 (1985) 143–165.CrossRefGoogle Scholar
Cowan, P., Tsong, T. T., Diffusion behavior of tungsten clusters on the tungsten (110) planes, Phys. Lett. 53A (1975) 383–383.CrossRefGoogle Scholar
Kellogg, G. L., Tsong, T. T., Cowan, P., Direct Observation of surface diffusion and atomic interactions on metal surfaces, Surf. Sci. 70 (1978) 485–519.CrossRefGoogle Scholar
Bassett, D. W., Chung, C. K., Tice, D., Field ion microscope studies of atomic displacement processes on metal surfaces, La Vide 176 (1975) 39–43.Google Scholar
Fink, H.-W., Ehrlich, G., Direct observation of three-body interactions in adsorbed layers: Re on W(110), Phys. Rev. Lett. 52 (1984) 1532–1534.CrossRefGoogle Scholar
Bassett, D. W., Migration of platinum adatom clusters on tungsten (110) surfaces, J. Phys. C 9 (1976) 2491–2503.CrossRefGoogle Scholar
Tsong, T. T., Casanova, R., Elementary displacement steps in the migration of tungsten diatomic clusters on the tungsten {110} plane, Phys. Rev. B 21 (1980) 4564–4570.CrossRefGoogle Scholar
Tsong, T. T., Casanova, R., Migration behavior of single tungsten atoms and tungsten diatomic clusters on the tungsten(110) plane, Phys. Rev. B 22 (1980) 4632–4649.CrossRefGoogle Scholar
Fink, H.-W., Ehrlich, G., Rhenium on W(110): Structure and mobility of higher clusters, Surf. Sci. 150 (1985) 419–429.CrossRefGoogle Scholar
Watanabe, F., Ehrlich, G., Direct observations of pair interactions on a metal: Heteropairs on W(110), J. Chem. Phys. 95 (1991) 6075–6087.CrossRefGoogle Scholar
Oh, S.-M., Koh, S. J., Kyuno, K., Ehrlich, G., Non-nearest-neighbor jumps in 2D diffusion: Pd on W(110), Phys. Rev. Lett. 88 (2002) 236102 1–4.CrossRefGoogle Scholar
Fu, T.-Y., Cheng, L.-C., Hwang, Y.-J., Tseng, T. T., Diffusion of Pd adatoms on W surfaces and their interactions with steps, Surf. Sci. 507/510 (2002) 103–107.CrossRefGoogle Scholar
Chambers, R. S., Determination of cluster spacings in the FIM: iridium dimers on W(110), Surf. Sci. 246 (1991) 25–30.CrossRefGoogle Scholar
Koh, S. J., Ehrlich, G., Pair- and many-atom interactions in the cohesion of surface clusters: Pdx and Irx on W(110), Phys. Rev. B 60 (1999) 5981–5990.CrossRefGoogle Scholar
Fu, T.-Y., Hwang, Y.-J., Tsong, T. T., Structure and diffusion of Pd clusters on the W(110) surface, Appl. Surf. Sci. 219 (2003) 143–148.CrossRefGoogle Scholar
Fu, T.-Y., Weng, W. J., Tsong, T. T., Dynamic study of W atoms and clusters on W(111) surfaces, Appl. Surf. Sci. 254 (2008) 7831–7834.CrossRefGoogle Scholar
Xu, W., Adams, J. B., W dimer diffusion on W(110) and (211) surfaces, Surf. Sci. 339 (1995) 247–257.CrossRefGoogle Scholar
Chen, D., Hu, W., Deng, H., Sun, L., Gao, F., Diffusion of tungsten clusters on tungsten (110) surface, Eur. Phys. J. B 68 (2009) 479–485.CrossRefGoogle Scholar
Goldstein, J. T., Ehrlich, G., Atom and cluster diffusion on Re(0001), Surf. Sci. 443 (1999) 105–115.CrossRefGoogle Scholar
Schwoebel, P. R., Kellogg, G. L., Structure of Iridium Cluster Nuclei on Ir(100), Phys. Rev. Lett. 61 (1988) 578–580.CrossRefGoogle Scholar
Chen, C., Tsong, T. T., Behavior of Ir atoms and clusters on Ir surfaces, Phys. Rev. B 41 (1990) 12403–12412.CrossRefGoogle ScholarPubMed
Chen, C., Tsong, T. T., Displacement distribution and atomic jump direction in diffusion of Ir atoms on the Ir(001) surface, Phys. Rev. Lett. 64 (1990) 3147–3150.CrossRefGoogle ScholarPubMed
Chen, C. L., Tsong, T. T., Observation of two diffusion modes of a Re-Ir dimer-vacancy complex on the Ir(001) surface and their diffusion mechanisms, Phys. Rev. Lett. 72 (1994) 498–501.CrossRefGoogle ScholarPubMed
Fu, T.-Y., Tsong, T. T., Structure and diffusion of small Ir and Rh clusters on Ir(001) surfaces, Surf. Sci. 421 (1999) 157–166.CrossRefGoogle Scholar
Fu, T.-Y., Tsong, T. T., Structure and diffusion mechanism of Ir and Rh tetramers on Ir(001) surfaces, Surf. Sci. 482–485 (2001) 1249–1254.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Cluster motion on metals: Ir on Ir(111), J. Chem. Phys. 91 (1989) 6535–6536.CrossRefGoogle Scholar
Wang, S. C., Kürpick, U., Ehrlich, G., Surface diffusion of compact and other clusters: Irx on Ir(111), Phys. Rev. Lett. 81 (1998) 4923–4926.CrossRefGoogle Scholar
Kürpick, U., Fricke, B., Ehrlich, G., Diffusion mechanisms of compact surface clusters: Ir7 on Ir(111), Surf. Sci. 470 (2000) L45–51.CrossRefGoogle Scholar
Tsong, T. T., Chen, C. L., Diffusion of Ir-dimers on Ir(110) surfaces by atomic-exchange and atomic-hopping mechanisms, Surf. Sci. 246 (1991) 13–24.CrossRefGoogle Scholar
Shiang, K.-D., Tsong, T. T., Molecular-dynamics study of self-diffusion: Iridium dimers on iridium surfaces, Phys. Rev. B 49 (1994) 7670–7678.CrossRefGoogle ScholarPubMed
Chang, C. M., Wei, C. M., Chen, S. P., Modeling of Ir adatoms on Ir surfaces, Phys. Rev. B 54 (1996) 17083–17096.CrossRefGoogle ScholarPubMed
Hamilton, J. C., Sorensen, M. R., Voter, A. F., Compact surface-cluster diffusion by concerted rotation and translation, Phys. Rev. B 61 (2000) R5125–5128.CrossRefGoogle Scholar
Schwoebel, P. R., Foiles, S. M., Bisson, C. L., Kellogg, G. L., Structure of platinum clusters on Pt(100): Experimental observations and embedded-atom-method calculations, Phys. Rev. B 40 (1989) 10639–10642.CrossRefGoogle ScholarPubMed
Kellogg, G. L., The effect of an externally applied electric field on the diffusion of Pt adatoms, dimers, and trimers on Pt(001), Appl. Surf. Sci. 76/77 (1994) 115–121.CrossRefGoogle Scholar
Bassett, D. W., Parsley, M. J., The effect of an electric field on the surface diffusion of rhenium adsorbed on tungsten, Brit. J. Appl. Phys. (J. Phys. D) 2 (1969) 13–16.CrossRefGoogle Scholar
Kyuno, K., Gölzhäuser, A., Ehrlich, G., Growth and the diffusion of platinum atoms and dimers on Pt(111), Surf. Sci. 397 (1998) 191–196.CrossRefGoogle Scholar
Kyuno, K., Ehrlich, G., Diffusion and dissociation of platinum clusters on Pt(111), Surf. Sci. 437 (1999) 29–37.CrossRefGoogle Scholar
Liu, S., Zhang, Z., Nørskov, J., Metiu, H., The mobility of Pt atoms and small Pt clusters on Pt(111) and its implications for the early stages of epitaxial growth, Surf. Sci. 321 (1994) 161–171.CrossRefGoogle Scholar
Linderoth, T. R., Horch, S., Petersen, L., Helveg, S., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Novel mechanism for diffusion of one-dimensional clusters; Pt/Pt(110)-(1 × 2), Phys. Rev. Lett. 82 (1999) 1494–1497.CrossRefGoogle Scholar
Münger, E. P., Chirita, V., Greene, J. E., Sundgren, J.-E., Adatom-induced diffusion of two-dimensional close-packed Pt7 clusters on Pt(111), Surf. Sci. 355 (1996) L325–330.CrossRefGoogle Scholar
Oh, D. J., Johnson, R. A., Simple embedded atom method model for fcc and hcp metals, J. Mater. Res. 3 (1988) 471–478.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Atom incorporation at surface clusters: An atomic view, Phys. Rev. Lett. 67 (1991) 2509–2512.CrossRefGoogle Scholar
Münger, E. P., Chirita, V., Sundgren, J.-E., Greene, J. E., Destabilization and diffusion of two-dimensional close-packed Pt clusters on Pt(111) during film growth from the vapor phase, Thin Solid Films 318 (1998) 57–60.CrossRefGoogle Scholar
Chirita, V., Münger, E. P., Sundgren, J.-E., Greene, J. E., Enhanced cluster mobilities on Pt(111) during film growth from the vapor phase, Appl. Phys. Lett. 72 (1998) 127–129.CrossRefGoogle Scholar
Chirita, V., Münger, E. P., Greene, J. E., Sundgren, J.-E., Reptation: A mechanism for cluster migration on (111) face-centered-cubic metal surfaces, Surf. Sci. 436 (1999) L641–647.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Diffusion of Pt dimers on Pt(111), Phys. Rev. B 59 (1999) 9846–9849.CrossRefGoogle Scholar
Albe, K., Müller, M., Cluster diffusion and island formation on fcc(111) metal surfaces studied by atomic scale computer simulations, Internat'l Series of Numerical Math. 149 (2005) 19–28.Google Scholar
Albe, K., Nordlund, K., Averback, R. S., Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon, Phys. Rev. B 65 (2002) 195124 1–11.CrossRefGoogle Scholar
Yang, J., Hu, W., Yi, G., Tang, J., Atomistic simulation of Pt trimer on Pt(111) surface, Appl. Surf. Sci. 253 (2007) 8825–8829.CrossRefGoogle Scholar
Blandin, P., Massobrio, C., Diffusion properties and collisional dynamics of Ag adatoms and dimers on Pt(111), Surf. Sci. 279 (1992) L219–224.CrossRefGoogle Scholar
Massobrio, C., Blandin, P., Structure and dynamics of Ag clusters on Pt(111), Phys. Rev. B 47 (1993) 13687–13694.CrossRefGoogle Scholar
Goyhenex, C., Adatom and dimer migration in heteroepitaxy: Co/Pt(111), Surf. Sci. 600 (2006) 15–22.CrossRefGoogle Scholar
Montalenti, F., Ferrando, R., Leapfrog diffusion mechanism for one-dimensional chains on missing-row reconstructed surfaces, Phys. Rev. Lett. 82 (1999) 1498–1501.CrossRefGoogle Scholar
Feibelman, P. J., Ordering of self-diffusion barrier energies on Pt(110)-(1 × 2), Phys. Rev. B 61 (2000) R2452–2455.CrossRefGoogle Scholar
Bönig, L., Liu, S., Metiu, H., An effective medium theory study of Au islands on the Au(100) surface: reconstruction, adatom diffusion, and island formation, Surf. Sci. 365 (1996) 87–95.CrossRefGoogle Scholar
Montalenti, F., Ferrando, R., Dimer diffusion on (110)(1 × 2) metal surfaces, Surf. Sci. 432 (1999) 27–36.CrossRefGoogle Scholar
Fan, W., Gong, X. G., Simulation of Ni cluster diffusion on Au(110)-(1 × 2) surface, Appl. Surf. Sci. 219 (2003) 117–122.CrossRefGoogle Scholar
Knorr, N., Brune, H., Epple, M., Hirstein, A., Schneider, M. A., Kern, K., Long-range adsorbate interactions mediated by a two-dimensional electron gas, Phys. Rev. B 65 (2002) 115420 1–5.CrossRefGoogle Scholar
Tsong, T. T., Kellogg, G., Direct observation of the directional walk of single adatoms and the adatom polarizability, Phys. Rev. B 12 (1975) 1343–1353.CrossRefGoogle Scholar
Chen, C. L., Tsong, T. T., Self-diffusion on the reconstructed and nonreconstructed Ir(110) surfaces, Phys. Rev. Lett. 66 (1991) 1610–1613.CrossRefGoogle ScholarPubMed
Kellogg, G. L., Temperature dependence of surface self-diffusion on Pt(001), Surf. Sci. 246 (1991) 31–36.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×