Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T07:26:50.451Z Has data issue: false hasContentIssue false

5 - Logic design

from Part 2 - Combinational logic

Published online by Cambridge University Press:  05 June 2012

Zvi Kohavi
Affiliation:
Technion - Israel Institute of Technology, Haifa
Niraj K. Jha
Affiliation:
Princeton University, New Jersey
Get access

Summary

The principal application of switching theory is in the design of digital circuits. The design of such circuits is commonly referred to as logical (or logic) design. Most digital systems are constructed from electronic switching circuits. In this chapter, we describe some components that are typical of the basic building blocks used in constructing digital systems. Switching algebra will be used to describe the logical behavior of networks composed of these building blocks as well as to manipulate and simplify switching expressions, thereby reducing the number of components used in the design. We shall be concerned with the logic functions that a circuit performs rather than with its electronic structure or behavior. Special attention will be given to the design of high-speed binary adders. These examples will introduce us to some practical aspects of logic design in which the speed of operation and area limitations require ingenuity in arriving at a proper compromise.

Design with basic logic gates

Although modern digital systems are composed of a large number of components, they usually employ only a small number of different kinds of elementary circuits, called gates, whose task is to perform logic operations on input signals. In Section 3.2, we showed that in order to implement any switching function, it is necessary to have a set of two-valued switching devices capable of implementing a functionally complete set of operations. The objective of this section is to present some commonly used devices of this type.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Logic design
  • Zvi Kohavi, Technion - Israel Institute of Technology, Haifa, Niraj K. Jha, Princeton University, New Jersey
  • Book: Switching and Finite Automata Theory
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816239.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Logic design
  • Zvi Kohavi, Technion - Israel Institute of Technology, Haifa, Niraj K. Jha, Princeton University, New Jersey
  • Book: Switching and Finite Automata Theory
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816239.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Logic design
  • Zvi Kohavi, Technion - Israel Institute of Technology, Haifa, Niraj K. Jha, Princeton University, New Jersey
  • Book: Switching and Finite Automata Theory
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816239.006
Available formats
×