Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-23T17:19:00.124Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Russell Monson
Affiliation:
University of Arizona
Dennis Baldocchi
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. D. and Bazzaz, F. A. (1995) Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree. Oecologia 101: 289–298.CrossRefGoogle ScholarPubMed
Afreen, F., Zobayed, S. M. A., Armstrong, J. and Armstrong, W. (2007) Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis. Journal of Experimental Botany 58: 1651–1662.CrossRefGoogle ScholarPubMed
Albertson, J. D., Kustas, W. P. and Scanlon, T. M. (2001) Large-eddy simulation over heterogeneous terrain with remotely sensed land surface conditions. Water Resources Research 37: 1939–1953.CrossRefGoogle Scholar
Alton, P. (2009) A simple retrieval of ground albedo and vegetation absorptance from MODIS satellite data for parameterisation of global land-surface models. Agricultural and Forest Meteorology 149: 1769–1775.CrossRefGoogle Scholar
Amiro, B. D. (1990) Drag coefficients and turbulence spectra in three boreal forest canopies. Boundary-Layer Meteorology 52: 227–246.CrossRefGoogle Scholar
Amthor, J. S. (1994) Scaling CO2-photosynthesis relationships from the leaf to canopy. Photosynthesis Research 39: 321–350.CrossRefGoogle Scholar
Amthor, J. S. (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms 30 years later. Annals of Botany 86: 1–20.CrossRefGoogle Scholar
Amthor, J. S., Goulden, M. L., Munger, J. W. and Wofsy, S. C. (1994) Testing a mechanistic model of forest-canopy mass and energy exchange using eddy correlation: Carbon dioxide and ozone uptake by a mixed-oak stand. Australian Journal of Plant Physiology 21: 623–651.CrossRefGoogle Scholar
Amundson, R. (2001) The carbon budget in soils. Annual Review of Earth and Planetary Sciences 29: 535–562.CrossRefGoogle Scholar
Anderson, M. C. (1966) Stand structure and light penetration. 2: A theoretical analysis. Journal of Applied Ecology 3: 41–54.CrossRefGoogle Scholar
Anderson, R. G., Canadell, J. G., Randerson, J. T., et al. (2011) Biophysical considerations in forestry for climate protection. Frontiers in Ecology and the Environment 9: 174–182.CrossRefGoogle Scholar
Anesio, A. M., Tranvik, L. J. and Granèli, W. (1999) Production of inorganic carbon from aquatic macrophytes by solar radiation. Ecology 80: 1852–1859.CrossRefGoogle Scholar
Anten, N. P. R. (2005) Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Annals of Botany 95: 495–506.CrossRefGoogle ScholarPubMed
Aphalo, P. J. and Jarvis, P. G. (1991) Do stomata respond to relative humidity?Plant, Cell and Environment 14: 127–132.CrossRefGoogle Scholar
Archontoulis, S. V., Yin, X., Vos, J., et al. (2012) Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: How conserved are biochemical model parameters among crop species?Journal of Experimental Botany 63: 895–911.CrossRefGoogle ScholarPubMed
Armstrong, W., Armstrong, J. and Beckett, P. M. (1996a) Pressurised ventilation in emergent macrophytes: The mechanism and mathematical modelling of humidity-induced convection. Aquatic Botany 54: 121–135.CrossRefGoogle Scholar
Armstrong, J., Armstrong, W., Beckett, P. M., et al. (1996b) Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav) Trin ex Steud. Aquatic Botany 54: 177–197.CrossRefGoogle Scholar
Arneth, A., Monson, R. K., Schurgers, G., et al. (2008) Why are estimates of global isoprene emissions so similar (and why is this not so for monoterpenes)?Atmospheric Chemistry and Physics 8: 4605–4620.CrossRefGoogle Scholar
Arrhenius, S. (1908) Das Werden der Welten. Leipzig: Academic Publishing House.Google Scholar
Asner, G. P., Hughes, R. F., Mascaro, J., et al. (2011) High-resolution carbon mapping on the million-hectare island of Hawaii. Frontiers in Ecology 9: 434–439.CrossRefGoogle Scholar
Asner, G. P., Hughes, R. F., Vitousek, P. M., et al. (2008a) Invasive plants transform the three-dimensional structure of rain forests. Proceedings of the National Academy of Sciences (USA) 105: 4519–4523.CrossRefGoogle ScholarPubMed
Asner, G. P., Knapp, D. E., Kennedy-Bowdoin, T., et al. (2008b) Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. Remote Sensing of Environment 112: 1942–1955.CrossRefGoogle Scholar
Asner, G. P., Scurlock, J. M. O., and Hicke, J. A. (2003) Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology and Biogeography 12: 191–205.CrossRefGoogle Scholar
Asrar, G., Myneni, R. B. and Kanemasu, E. T. (1989) Estimation of plant canopy attributes from spectral reflectance measurements. In: Theory and Applications of Optical Remote Sensing (Asrar, G., ed.). New York: John Wiley, pp. 252–292.Google Scholar
Atkin, O. K., Bruhn, D., Hurry, V. M. and Tjoelker, M. G. (2005) The hot and the cold: Unravelling the variable response of plant respiration to temperature. Functional Plant Biology 32: 87–105.CrossRefGoogle Scholar
Atkin, O. K. and Tjoelker, M. G. (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8: 343–351.CrossRefGoogle Scholar
Atkinson, R. and Arey, J. (2003) Atmospheric degradation of volatile organic compounds. Chemical Reviews 103: 4605–4638.CrossRefGoogle ScholarPubMed
Atkinson, R. and Carter, W. P. L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chemical Reviews 84: 437–470.CrossRefGoogle Scholar
Austin, A. T. and Vivanco, L. (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442: 555–558.CrossRefGoogle Scholar
Ayers, G. P. and Cainey, J. M. (2007) The CLAW hypothesis: A review of the major developments. Environmental Chemistry 4: 366–374.CrossRefGoogle Scholar
Badger, M. R., Sharkey, T. D., and von Caemmerer, S. (1984) The relationship between steady-state gas exchange of bean leaves and the levels of carbon reduction cycle intermediates. Planta 160: 305–313.CrossRefGoogle ScholarPubMed
Baidya, S. and Avissar, R. (2000) Scales of response of the convective boundary layer to land-surface heterogeneity. Geophysical Research Letters 27: 533–536.CrossRefGoogle Scholar
Baldocchi, D. (1992) A Lagrangian random-walk model for simulating water vapor, CO2, and sensible heat flux densities and scalar profiles over and within a soybean canopy. Boundary-Layer Meteorology 61: 113–144.CrossRefGoogle Scholar
Baldocchi, D. D. (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology 9: 479–492.CrossRefGoogle Scholar
Baldocchi, D. D. and Collineau, S. (1994) The physical nature of solar radiation in heterogeneous canopies: Spatial and temporal attributes. In: Exploitation of Environmental Heterogeneity (Pearcy, R. W. and Caldwell, M. M., eds.). San Diego, CA: Academic Press, pp. 21–71.CrossRefGoogle Scholar
Baldocchi, D., Falge, E., Gu, L. H., et al. (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society 82: 2415–2434.2.3.CO;2>CrossRefGoogle Scholar
Baldocchi, D. D., Hutchinson, B. A., Matt, D. R. and McMillen, R. T. (1985) Canopy radiative transfer models for spherical and known leaf inclination distribution angles: A test in an oak-hickory forest. Journal of Applied Ecology 22: 539–555.CrossRefGoogle Scholar
Baldocchi, D. D. and Meyers, T. P. (1988) Turbulence structure in a deciduous forest. Boundary-Layer Meteorology 43: 345–364.CrossRefGoogle Scholar
Baldocchi, D. D. and Meyers, T. (1998) On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective. Agricultural and Forest Meteorology 90: 1–25.CrossRefGoogle Scholar
Ball, J. T. and Berry, J. A. (1982) The Ci/Ca ratio: A basis for predicting stomatal control of photosynthesis. Carnegie Institute of Washington Yearbook 81: 88–92.Google Scholar
Ball, J. T., Woodrow, I. E. and Berry, J. A. (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in Photosynthesis Research (Biggens, J., ed.). Dordrecht: Martinus Nijhoff Publishers, pp. IV.5.221–IV.5.224.Google Scholar
Banta, R. M., Newsom, R. K., Lundquist, J. K., et al. (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary Layer Meteorology 105: 221–252.CrossRefGoogle Scholar
Berg, B. (2000) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management 133: 13–22.CrossRefGoogle Scholar
Bergamaschi, P., Braunlich, M., Marik, T. and Brenninkmeijer, C. A. M. (2000) Measurements of the carbon and hydrogen isotopes of atmospheric methane at Izana, Tenerife: Seasonal cycles and synoptic-scale variations. Journal of Geophysical Research–Atmospheres 105: 14531–14546.CrossRefGoogle Scholar
Bernacchi, C. J., Pimentel, C. and Long, S. P. (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell and Environment 26: 1419–1430.CrossRefGoogle Scholar
Bernacchi, C. J., Singsaas, E. L., Pimentel, C., et al. (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment 24: 253–259.CrossRefGoogle Scholar
Berry, J. A. and Farquhar, G. D. (1978) The CO2 concentrating function of C4 plants: A biochemical model. In: Proceedings of the Fourth International Congress on Photosynthesis (Hall, D., Coombs, J., and Goodwin, T., eds.). London: Biochemical Society of London, pp. 119–131.Google Scholar
Bittner, S., Janott, M. and Ritter, D., et al. (2012) Functional-structural water flow model reveals differences between diffuse- and ring-porous tree species. Agricultural and Forest Meteorology 158: 80–89.CrossRefGoogle Scholar
Björkman, O. (1975) Environmental and biological control of photosynthesis: Inaugural address. In: Environmental and Biological Control of Photosynthesis (Marcelle, R., ed.). The Hague: W. Junk, pp. 1–16.Google Scholar
Blackadar, A. K. (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bulletin of the American Meteorological Society 38: 283–290.Google Scholar
Blackadar, A. K. (1997) Turbulence and Diffusion in the Atmosphere. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Blanken, P. D., Black, T. A., Yang, P. C., et al. (1997) Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. Journal of Geophysical Research – Atmospheres 102: 28915–28927.CrossRefGoogle Scholar
Bohrer, G., Mourad, H., Laursen, T. A., et al. (2005) Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics. Water Resources Research 41: Article number W11404.CrossRefGoogle Scholar
Bonan, G. B. (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320: 1444–1449.CrossRefGoogle ScholarPubMed
Bonan, G. B., Lawrence, P. J., Oleson, K. W., et al. (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. Journal of Geophysical Research – Biogeosciences 116: Article number G02014.CrossRefGoogle Scholar
Bond-Lamberty, B., Wang, C. and Gower, S. T. (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology 10: 473–487.CrossRefGoogle Scholar
Borken, W. and Matzner, E. (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology 15: 808–824.CrossRefGoogle Scholar
Bosatta, E. and Ågren, G. I. (1999) Soil organic matter quality interpreted thermodynamically. Soil Biology and Biochemistry 31: 1889–1891.CrossRefGoogle Scholar
Bosatta, E. and Ågren, G. I. (2002) Quality and irreversibility: Constraints on ecosystem development. Proceedings of the Royal Society of London, Series B 269: 203–210.CrossRefGoogle ScholarPubMed
Bowling, D. R., Bowling, N. G., Bond, B. J., et al. (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131: 113–124.CrossRefGoogle ScholarPubMed
Bowling, D. R., Burns, S. P., Conway, T. J., et al. (2005) Extensive observations of CO2 carbon isotope content in and above a high-elevation, subalpine forest. Global Biogeochemical Cycles 19: Article number GB 3023.CrossRefGoogle Scholar
Bowling, D. R., Pataki, D. E. and Randerson, J. T. (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist 178: 24–40.CrossRefGoogle ScholarPubMed
Brandt, L. A., Bohnet, C. and King, J. Y. (2009) Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. Journal of Geophysical Research 114: Article number G02004.CrossRefGoogle Scholar
Bridges, E. M. (1990) Soil Horizon Designations, Technical Paper 19, ISRIC, Wageningen.Google Scholar
Brooks, A. and Farquhar, G. D. (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165: 397–406.CrossRefGoogle ScholarPubMed
Brooks, R. H. and Corey, A. T. (1966) Properties of porous media affecting fluid flow. Journal of Irrigation Drainage Division of the American Society of Civil Engineering 92: 61–87.Google Scholar
Brown, J. H. and West, G. B. (eds.) (2000) Scaling in Biology. New York: Oxford University Press.
Brown, H. and Escombe, F. (1900) Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Philosophical Transactions of the Royal Society B193: 223–291.CrossRefGoogle Scholar
Brugnoli, E. and Björkman, O. (1992) Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynthesis Research 32: 23–35.CrossRefGoogle ScholarPubMed
Brunet, Y. and Irvine, M. R. (2000) The control of coherent eddies in vegetation canopies: Streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorology 94: 139–163.CrossRefGoogle Scholar
Brussaard, L., Behan-Pelletier, V. M., Bignell, D. E., et al. (1997) Biodiversity and ecosystem functioning in soil. Ambio 26: 563–570.Google Scholar
Buchmann, N., Kao, Y. -W. and Ehleringer, J. (1997) Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110: 109–119.CrossRefGoogle ScholarPubMed
Buck, A. L. (1981) New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology 20: 1527–1532.2.0.CO;2>CrossRefGoogle Scholar
Buckingham, E. (1907) Studies on the movement of soil moisture. Bureau of Soils Bulletin, 38, US Department of Agriculture, Washington, DC.
Buckley, T. N., Mott, K. A. and Farquhar, G. D. (2003) A hydromechanical and biochemical model of stomatal conductance. Plant, Cell and Environment 26: 1767–1785.CrossRefGoogle Scholar
Buckley, T. N., Sack, L. and Gilbert, M. E. (2011) The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiology 156: 962–973.CrossRefGoogle ScholarPubMed
Budyko, M. I. (1974) Climate and Life. New York: Academic Press.Google Scholar
Cahill, T. M., Seaman, V. Y., Charles, M. J., et al. (2006) Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California. Journal of Geophysical Research – Atmospheres 111: Article number D16312.CrossRefGoogle Scholar
Campbell, G. S. and Norman, J. M. (1998) An Introduction to Environmental Biophysics. New York: Springer-Verlag.CrossRefGoogle Scholar
Canadell, J. G., Canadell, C., Raupach, M. R., et al. (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences (USA) 104: 18866–18870.CrossRefGoogle ScholarPubMed
Canadell, J. G. and Raupach, M. R. (2008) Managing forests for climate change mitigation. Science 320: 1456–1457.CrossRefGoogle ScholarPubMed
Carter, G. A., Bahadur, R. and Norby, R. J. (2000) Effects of elevated atmospheric CO2 and temperature on leaf optical properties in Acer saccharum. Environmental and Experimental Botany 43: 267–273.CrossRefGoogle Scholar
Cava, D. and Katul, G. G. (2008) Spectral short-circuiting and wake production within the canopy trunk space of an alpine hardwood forest. Boundary-Layer Meteorology 126: 415–431.CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158.CrossRefGoogle Scholar
Cescatti, A. (1997) Modelling the radiative transfer in discontinuous canopies of asymmetric crowns.1: Model structure and algorithms. Ecological Modelling 101: 263–274.CrossRefGoogle Scholar
Chandrasekhar, S. (1950) Radiative Transfer. New York: Dover Publishers.Google Scholar
Chanton, J. P., Whiting, G. J., Blair, N. E., Lindau, C. W. and Bollich, P. K. (1997) Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochemical Cycles 11: 15–27.CrossRefGoogle Scholar
Chapin, F. S., McFarland, J., McGuire, A. D., et al. (2009) The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences. Journal of Ecology 97: 840–850.Google Scholar
Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, G. (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326: 655–661.CrossRefGoogle Scholar
Chen, J. L., Reynolds, J. F., Harley, P. C. and Tenhunen, J. D. (1993) Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93: 63–69.CrossRefGoogle Scholar
Chen, J. M. (1996) Optically based methods for measuring seasonal variation in leaf area index in boreal conifer stands. Agricultural and Forest Meteorology 80: 135–163.CrossRefGoogle Scholar
Chen, J. M. and Black, T. A. (1992) Defining leaf-area index for non-flat leaves. Plant, Cell and Environment 15: 421−429.CrossRefGoogle Scholar
Chen, J. M. and Leblanc, S. G. (2001) Multiple-scattering scheme useful for geometric optical modeling. IEEE Transactions on Geoscience and Remote Sensing 39: 1061–1071.CrossRefGoogle Scholar
Chen, J. M., Rich, P. M., Gower, S. T., et al. (1997) Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research 102(D24): 29429–29443.CrossRefGoogle Scholar
Cheng, Y. G., Parlange, M. B. and Brutsaert, W. (2005) Pathology of Monin–Obukhov similarity in the stable boundary layer. Journal of Geophysical Research, Atmospheres 110: Article number D06101.CrossRefGoogle Scholar
Choat, B., Jansen, S., Brodribb, T. J., et al. (2012) Global convergence in the vulnerability of forests to drought. Nature 491: 752–755.CrossRefGoogle ScholarPubMed
Christeller, J. T., Laing, W. A. and Troughton, J. H. (1976) Isotope discrimination by ribulose 1,5-diphosphate carboxylase – no effect of temperature or HCO3− concentration. Plant Physiology 57: 580–582.CrossRefGoogle ScholarPubMed
Ciais, P., Denning, A. S., Tans, P. P., et al. (1997) A three dimensional synthesis study of δ18O in atmospheric CO2. Part 1: Surface fluxes. Journal of Geophysical Research 102: 5873–5883.CrossRefGoogle Scholar
Ciais, P., Friedlingstein, P., Schimel, D. S. and Tans, P. P. (1999) A global calculation of the δ13C of soil respired carbon: Implications for the biospheric uptake of anthropogenic CO2. Global Biogeochemical Cycles 13: 519–530.CrossRefGoogle Scholar
Cihlar, J., St-Laurent, L. and Dyer, J. A. (1991) Relation between the normalized vegetation index and ecological variables. Remote Sensing of Environment 35: 279–298.CrossRefGoogle Scholar
Cochard, H., Venisse, J. S., Barigah, T. S., et al. (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiology 143: 122–133.CrossRefGoogle ScholarPubMed
Collatz, G. J., Ball, J. T., Grivet, C. and Berry, J. A. (1991) Regulation of stomatal conductance and transpiration: A physiological model of canopy processes. Agricultural and Forest Meteorology 54: 107–136.CrossRefGoogle Scholar
Collatz, G. J., Ribas-Carbo, M. and Berry, J. A. (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Australian Journal of Plant Physiology 19: 519–538.CrossRefGoogle Scholar
Comstock, J. P. and Ehleringer, J. R. (1992) Correlating genetic variation in carbon isotopic composition with complex climatic gradients. Proceedings of the National Academy of Sciences (USA) 89: 7747–7751.CrossRefGoogle ScholarPubMed
Conant, R. T., Steinweg, J. M., Haddix, M. L., et al. (2008) Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology 89: 2384–2391.CrossRefGoogle ScholarPubMed
Conen, F., Leifeld, J., Seth, B. and Alewell, C. (2006) Warming mineralises young and old soil carbon equally. Biogeosciences 3: 515–519.CrossRefGoogle Scholar
Cooper, D. I., Leclerc, M. Y., Archuleta, J., et al. (2006) Mass exchange in the stable boundary layer by coherent structures. Agricultural and Forest Meteorology 136: 114–131.CrossRefGoogle Scholar
Couteaux, M. M., Bottner, P., Anderson, J. M., et al. (2001) Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: Differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry 54: 147–170.CrossRefGoogle Scholar
Cowan, I. R. (1986) Stomatal function in relation to leaf metabolism and environment. In: On the Economy of Plant Form and Function (Givnish, T., ed.). Cambridge: Cambridge University Press, pp. 171–213.Google Scholar
Cowan, I. R. and Farquhar, G. D. (1977) Stomatal function in relation to leaf metabolism and environment. In: Society for Experimental Biology Symposium, Integration of Activity in the Higher Plant Vol. 31 (Jennings, D. H., ed.). Cambridge: Society for Experimental Biology, pp. 471–505.Google Scholar
Craig, H. (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica and Cosmochimica Acta 12: 133–149.CrossRefGoogle Scholar
Craig, H. and Gordon, L. I. (1965) Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures (Tongiorgi, E., ed.). Pisa: Lischi and Figli Publishers, pp. 9–130.Google Scholar
Craine, J. M., Fierer, N. and McLauchlan, K. K. (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience 3: 854–857.CrossRefGoogle Scholar
Cramer, W., Bondeau, A., Woodward, F. I., et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7: 357–373.CrossRefGoogle Scholar
Crimaldi, J. P., Cadwell, J. R. and Weiss, J. B. (2008) Reaction enhancement of isolated scalars by vortex stirring. Physics of Fluids 20: Article number 073605.CrossRefGoogle Scholar
Culf, A. D., Fisch, G. and Hodnett, M. G. (1995) The albedo of Amazonian forest and rangeland. Journal of Climate 8: 1544–1554.2.0.CO;2>CrossRefGoogle Scholar
Cunningham, R. E. and Williams, R. J. J. (1980) Diffusion in Gases and Porous Media. New York: Plenum Press.CrossRefGoogle Scholar
Czimczik, C. I. and Trumbore, S. E. (2007) Short-term controls on the age of microbial carbon sources in boreal forest soils. Journal of Geophysical Research – Biogeosciences 112: Article number G03001.CrossRefGoogle Scholar
Dacey, J. W. H. (1987) Knudsen-transitional flow and gas pressurization in leaves of Nelumbo. Plant Physiology 85: 199–203.CrossRefGoogle ScholarPubMed
Dalias, P., Anderson, J. M., Bottner, P. and Couteaux, M. M. (2001) Long-term effects of temperature on carbon mineralisation processes. Soil Biology and Biochemistry 33: 1049–1057.CrossRefGoogle Scholar
Dalton, J. (1802) Experimental essays on the constitution of mixed gases; on the force of steam or vapour from water and other liquids in different temperatures; both in a Torricellian vacuum and in air; on evaporation; and on the expansion of gases by heat. Memoirs of the Proceedings of the Literature Philosophical Society of Manchester Part 2, 535–602.Google Scholar
Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. and Veldkamp, E. (2000b) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50: 667–680.CrossRefGoogle Scholar
Davidson, E. A., Trumbore, S. E. and Amundson, R. (2000a) Biogeochemistry – soil warming and organic carbon content. Nature 408: 789–790.CrossRefGoogle Scholar
Davidson, E. A. and Verchot, L. V. (2000) Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database. Global Biogeochemical Cycles 14: 1035–1043.CrossRefGoogle Scholar
Davis, K. J., Lenschow, D. H., Oncley, S. P., et al. (1997) Role of entrainment in surface-atmosphere interactions over the boreal forest. Journal of Geophysical Research – Atmospheres 102: 29219–29230.CrossRefGoogle Scholar
De Bort, L. T. (1902) Variations of temperature of the free air in the zone between 8 km and 13 km of the altitude. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 134: 987–989.Google Scholar
Denholm, J. V. (1981) The influence of penumbra on canopy photosynthesis: Theoretical considerations. Agricultural Meteorology 25: 145–166.CrossRefGoogle Scholar
Denmead, O. T. and Bradley, E. F. (1985) Flux-gradient relationships in a forest canopy. In: The Forest-Atmosphere Interaction (Hutchinson, B. A. and Hicks, B. B., eds.). Dordrecht: D. Reidel Publishing Co., pp. 421–442.CrossRefGoogle Scholar
Denmead, O. T. and Bradley, E. F. (1987) On scalar transport in plant canopies. Irrigation Science 8: 131–149.CrossRefGoogle Scholar
Denmead, O. T., Raupach, M. R., Dunin, F. X., et al. (1996) Boundary layer budgets for regional estimates of scalar fluxes. Global Change Biology 2: 255–264.CrossRefGoogle Scholar
DePury, D. G. G. and Farquhar, G. D. (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big leaf models. Plant, Cell and Environment 20: 537–557.CrossRefGoogle Scholar
Dewar, R. C. (1992) Inverse modeling and the global carbon cycle. Trends in Ecology and Evolution 7: 105–107.CrossRefGoogle Scholar
Dewar, R. C. (1995) Interpretation of an empirical model for stomatal conductance in terms of guard cell function. Plant, Cell and Environment 18: 365–372.CrossRefGoogle Scholar
Dewar, R. C. (2002) The Ball-Berry-Leuning and Tardieu-Davies stomatal models: Synthesis and extension within a spatially aggregated picture of guard cell function. Plant, Cell and Environment 25: 1383–1398.CrossRefGoogle Scholar
Dewar, R. C., Tarvainen, L., Parker, K., et al. (2012) Why does leaf nitrogen decline within tree canopies less rapidly than light? An explanation from optimization subject to a lower bound on leaf mass per area. Tree Physiology 32: 520–534.CrossRefGoogle ScholarPubMed
Di Marco, G., Manes, F., Tricoli, D. and Vitale, E. (1990) Fluorescence parameters measured concurrently with net photosynthesis to investigate chloroplastic CO2 concentration in leaves of Quercus ilex L. Journal of Plant Physiology 136: 538–543.CrossRefGoogle Scholar
Dickinson, R. E. (1983) Land surface processes and climate-surface albedos and energy balance. Advances in Geophysics 25: 305–353.CrossRefGoogle Scholar
Disney, M. I., Lewis, P. and North, P. R. J. (2000) Monte Carlo ray tracing in optical canopy reflectance modelling. Remote Sensing Reviews 18: 163–196.CrossRefGoogle Scholar
Dlugocencky, E. J., Masarie, K. A., Lang, P. M. and Tans, P. P. (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393: 447–450.CrossRefGoogle Scholar
Dlugokencky, E. J., Nisbet, E. G., Fisher, R. and Lowry, D. (2011) Global atmospheric methane: Budget, changes and dangers. Philosophical Transactions of the Royal Society, Series A 369: 2058–2072.CrossRefGoogle ScholarPubMed
Doerr, S. H., Ritsema, C. J., Dekker, L. W., et al. (2007) Water repellence of soils: New insights and emerging research needs. Hydrological Processes 21: 2223–2228.CrossRefGoogle Scholar
Doornbos, R. F., Loon, L. C. and Bakker, P. A. H. M. (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: A review. Agronomy for Sustainable Development 32: 227–243.CrossRefGoogle Scholar
Dupont, S. and Patton, E. G. (2012) Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: The CHATS experiment. Atmospheric Chemistry and Physics 12: 5913–5935.CrossRefGoogle Scholar
Dutaur, L. and Verchot, L. V. (2007) A global inventory of the soil CH4 sink. Global Biogeochemical Cycles 21: Article number GB 4013.CrossRefGoogle Scholar
Dwyer, M. J., Patton, E. G. and Shaw, R. H. (1997) Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorology 84: 23–43.CrossRefGoogle Scholar
Edwards, E. J., Osborne, C. P., Stromberg, C. A. E., et al. (2010) The origins of C4 grasslands: Integrating evolutionary and ecosystem science. Science 328: 587–591.CrossRefGoogle ScholarPubMed
Ehleringer, J. R. and Björkman, O. (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36: 151–162.CrossRefGoogle Scholar
Ehleringer, J. R. and Monson, R. K. (1993) Ecology and evolution of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24: 411–439.CrossRefGoogle Scholar
Ehleringer, J. R., Buchmann, N. and Flanagan, L. B. (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications 10: 412–422.CrossRefGoogle Scholar
Einstein, A. (1905) On the motion – required by the molecular kinetic theory of heat – of small particles suspended in a stationary liquid. Annalen der Physik 17: 549–560.CrossRefGoogle Scholar
Evans, J. R., Sharkey, T. D., Berry, J. A. and Farquhar, G. D. (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Australian Journal of Plant Physiology 13: 281–292.CrossRefGoogle Scholar
Evans, J. R. and von Caemmerer, S. (1996) Carbon dioxide diffusion inside leaves. Plant Physiology 110: 339–346.CrossRefGoogle ScholarPubMed
Eyring, H. (1935) The activated complex in chemical reactions. Journal of Chemical Physics 3: 107–115.CrossRefGoogle Scholar
Fall, R. (2003) Abundant oxygenates in the atmosphere: A biochemical perspective. Chemical Reviews 103: 4941–4951.CrossRefGoogle ScholarPubMed
Fang, C. and Moncrieff, J. B. (2001) The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry 33: 155–165.CrossRefGoogle Scholar
Fang, C., Smith, P., Moncrieff, J. and Smith, J. U. (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433: 57–59.CrossRefGoogle ScholarPubMed
Farquhar, G. D. (1989) Models of integrated photosynthesis of cells and leaves. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 323: 357–367.CrossRefGoogle Scholar
Farquhar, G. D., Ehleringer, J. R. and Hubick, K. T. (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Molecular Biology 40: 503–537.CrossRefGoogle Scholar
Farquhar, G. D., Firth, P. M., Wetselaar, R. and Weir, B. (1980a) On the gaseous exchange of ammonia between leaves and the environment: Determination of the ammonia compensation point. Plant Physiology 66: 710–714.CrossRefGoogle ScholarPubMed
Farquhar, G. D., Lloyd, J., Taylor, J. A., et al. (1993) Vegetation effects on the isotope composition of oxygen in atmospheric carbon dioxide. Nature 363: 439–443.CrossRefGoogle Scholar
Farquhar, G. D., O’Leary, M. H. and Berry, J. A. (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9: 121–137.CrossRefGoogle Scholar
Farquhar, G. D. and von Caemmerer, S. (1982) Modelling of photosynthetic response to environmental conditions. In: Physiological Plant Ecology II. Water Relations and Carbon Assimilation (Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., eds.). Berlin: Springer-Verlag, pp. 549–588.Google Scholar
Farquhar, G. D., von Caemmerer, S. and Berry, J. A. (1980b) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149: 78–90.CrossRefGoogle Scholar
Farquhar, G. D., von Caemmerer, S. and Berry, J. A. (2001) Models of photosynthesis. Plant Physiology 125: 42–45.CrossRefGoogle ScholarPubMed
Farquhar, G. D. and Wong, S. C. (1984) An empirical model of stomatal conductance. Australian Journal of Plant Physiology 11: 191–209.CrossRefGoogle Scholar
Fassnacht, K. S., Gower, S. T., Norman, J. M. and McMurtrie, R. E. (1994) A comparison of optical and direct methods for estimating foliage surface area index in forests. Agricultural and Forest Meteorology 71: 183–207.CrossRefGoogle Scholar
Fell, D. A. (1992) Metabolic control analysis: A survey of its theoretical and experimental development. Biochemical Journal 286: 313–330.CrossRefGoogle ScholarPubMed
Fernàndez, N., Paruelo, J. M., Delibes, M., et al. (2010) Ecosystem functioning of protected and altered Mediterranean environments: A remote sensing classification in Donana, Spain. Remote Sensing of Environment 114: 211–220.CrossRefGoogle Scholar
Fernie, A. R., Carrari, F. and Sweetlove, L. J. (2004) Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology 7: 254–261.CrossRefGoogle ScholarPubMed
Fick, A. (1855) On liquid diffusion. Philosophical Magazine and Journal of Science 10: 31–39.CrossRefGoogle Scholar
Field, C. B. (1983) Allocating leaf nitrogen for the maximisation of carbon gain: Leaf age as a control on the allocation programme. Oecologia 56: 341–347.CrossRefGoogle Scholar
Field, C. B., Lobell, D. B., Peters, H. A. and Chiariello, N. R. (2007) Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources 32: 1–29.CrossRefGoogle Scholar
Fierer, N., Craine, J. M., McLauchlan, K. and Schimel, J. P. (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86: 320–326.CrossRefGoogle Scholar
Finlayson-Pitts, B. J. and Pitts, J. N. (2000) Chemistry of the Upper and Lower Atmosphere. San Diego, CA: Academic Press.Google Scholar
Finnigan, J. J. (2000) Turbulence in plant canopies. Annual Review of Fluid Mechanics 32: 519–571.CrossRefGoogle Scholar
Finnigan, J. J., Einaudi, F. and Fua, D. (1984) The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. Journal of Atmospheric Science 41: 2409–2436.2.0.CO;2>CrossRefGoogle Scholar
Finnigan, J. J., Shaw, R. H. and Patton, E. G. (2009) Turbulence structure above a vegetation canopy. Journal of Fluid Mechanics 637: 387–424.CrossRefGoogle Scholar
Firestone, M. K. and Davidson, E. A. (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (Andreae, M. O. and Schimel, D. S., eds.). New York: John Wiley & Sons, pp. 7–21.Google Scholar
Fitzjarrald, D. R. and Moore, K. E. (1990) Mechanisms of nocturnal exchange between the rain forest and atmosphere. Journal of Geophysical Research 95: 16839–16850.CrossRefGoogle Scholar
FitzPatrick, E. A. (1993) Soil horizons. Catena 20: 361–430.CrossRefGoogle Scholar
Flanagan, L. B., Comstock, J. P. and Ehleringer, J. R. (1991) Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology 96: 588–596.CrossRefGoogle ScholarPubMed
Flexas, J., Barbour, M. M., Brendel, O., et al. (2012) Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Science 193–194: 70–84.CrossRefGoogle ScholarPubMed
Foken, T. (2008) The energy balance closure problem: An overview. Ecological Applications 18: 1351–1367.CrossRefGoogle ScholarPubMed
Foken, T. (2008) Micrometeorology. Heidelberg: Springer-Verlag.Google Scholar
Francey, R. J., Allison, C. E., Etheridge, D. M., et al. (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus (B) 51: 170–193.CrossRefGoogle Scholar
Franks, P. J., Cowan, I. R. and Farquhar, G. D. (1998) A study of stomatal mechanics using the cell pressure probe. Plant, Cell and Environment 21: 94–100.CrossRefGoogle Scholar
Franks, P. J., Cowan, I. R., Tyerman, S. D., et al. (1995) Guard-cell pressure aperture characteristics measured with the pressure probe. Plant, Cell and Environment 18: 795–800.CrossRefGoogle Scholar
Franks, P. J. and Farquhar, G. D. (2001) The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiology 125: 935–942.CrossRefGoogle ScholarPubMed
Frenzen, P. and Vogel, C. A. (1992) The turbulent kinetic energy budget in the atmospheric surface layer: A review and an experimental reexamination in the field. Boundary-Layer Meteorology 60: 49–76.CrossRefGoogle Scholar
Friend, A. D. (1991) Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning. Plant, Cell and Environment 14: 895–905.CrossRefGoogle Scholar
Friend, A. D., Woodward, F. I. and Switsur, V. R. (1989) Field measurements of photosynthesis, stomatal conductance, leaf nitrogen and δ13C along altitudinal gradients in Scotland. Functional Ecology 3: 117–122.CrossRefGoogle Scholar
Fuentes, J. D., Wang, D., Bowling, D. R., et al. (2007) Biogenic hydrocarbon chemistry within and above a mixed deciduous forest. Journal of Atmospheric Chemistry 56: 165–185.CrossRefGoogle Scholar
Fuller, E. N., Schetter, P. D. and Giddings, J. C. (1966) A new method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry 58: 19–27.Google Scholar
Fung, I., Field, C. B., Berry, J. A., et al. (1997) Carbon 13 exchanges between the atmosphere and the biosphere. Global Biogeochemical Cycles 11: 507–533.CrossRefGoogle Scholar
Gale, J. (1973) Availability of carbon dioxide for photosynthesis at high altitudes: theoretical considerations. Ecology 53: 494–497.CrossRefGoogle Scholar
Gao, W., Shaw, R. H. and Paw, U. K. T. (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorology 47: 349–377.CrossRefGoogle Scholar
Gardiner, B. A. (1994) Wind and wind forces in a plantation spruce forest. Boundary-Layer Meteorology 67: 161–186.CrossRefGoogle Scholar
Gates, D. M. (1980) Biophysical Ecology. New York: Springer-Verlag.CrossRefGoogle Scholar
Gates, D. M., Alderfer, R. and Taylor, E. (1968) Leaf temperatures of desert plants. Science 159: 994–995.CrossRefGoogle ScholarPubMed
Gaudinski, J. B., Trumbore, S. E., Davidson, E. A. and Zheng, S. H. (2000) Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51: 33–69.CrossRefGoogle Scholar
Gausman, H. W. (1985) Plant Leaf Optical Properties in Visible and Near-Infrared Light. Lubbock, TX: Texas Tech. Press.Google Scholar
Ghashghaie, J., Badeck, F.-W., Lanigan, G., et al. (2003) Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochemistry Reviews 2: 145–161.CrossRefGoogle Scholar
Ghirardo, A., Koch, K., Taipale, R., et al. (2010) Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant, Cell and Environment 33: 781–792.Google ScholarPubMed
Giardina, C. P. and Ryan, M. G. (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404: 858–861.CrossRefGoogle Scholar
Gifford, R. M. (1994) The global carbon cycle: A viewpoint on the missing sink. Australian Journal of Plant Physiology 21: 1–15.CrossRefGoogle Scholar
Gillon, J. and Yakir, D. (2000) Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiology 123: 201–213.CrossRefGoogle Scholar
Gillon, J. and Yakir, D. (2001) Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science 291: 2584–2587.CrossRefGoogle ScholarPubMed
Givnish, T. J. (1986) Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. In: On the Economy of Plant Form and Function (Givnish, T., ed.), pp. 171–213.
Gleixner, G. and Schmidt, H. L. (1997) Carbon isotope effects on the fructose-1,6-bisphosphate aldolase reaction, origin for non-statistical 13C distributions in carbohydrates. Journal of Biological Chemistry 272: 5382–5387.CrossRefGoogle ScholarPubMed
Goh, K. M., Rafter, T. A., Stout, J. D. and Walker, T. W. (1976) Accumulation of soil organic matter and its carbon isotope content in a chronosequence of soils developed on aeolian sand in New Zealand. Journal of Soil Science 27: 89–100.CrossRefGoogle Scholar
Goldstein, A. H. and Galbally, I. E. (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environmental Science and Technology 41: 1514–1521.CrossRefGoogle Scholar
Gonzalez, J. M., Simo, R., Massana, R., et al. (2000) Bacterial community structure associated with a dimethyl sulfoniopropionate-producing North Atlantic algal bloom. Applied Environmental Microbiology 66: 4237–4246.CrossRefGoogle ScholarPubMed
Gorton, H. L., Herbert, S. K. and Vogelmann, T. C. (2003) Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. Plant Physiology 132: 1529–1539.CrossRefGoogle Scholar
Gorton, H. L., Williams, W. E. and Vogelmann, T. C. (1999) Chloroplast movement in Alocasia macrorrhiza. Physiologia Plantarum 106: 421–428.CrossRefGoogle Scholar
Gower, S. T. and Norman, J. M. (1990) Rapid estimation of leaf area index in forests using the LiCor LA1 2000. Ecology 72: 1896–1900.CrossRefGoogle Scholar
Grosse, W., Armstrong, J. and Armstrong, W. (1996) A history of pressurised gas-flow studies in plants. Aquatic Botany 54: 87–100.CrossRefGoogle Scholar
Grote, R., Mayrhofer, S., Fischbach, R. J., et al. (2006) Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmospheric Environment 40:152–165.CrossRefGoogle Scholar
Guenther, A. B., Jiang, X., Heald, C. L., et al. (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 5: 1471–1492.CrossRefGoogle Scholar
Gutschick, V. P. (1991) Joining leaf photosynthesis models and canopy photon-transport models. In: Photon-Vegetation Interaction: Applications in Optical Remote Sensing and Plant Ecology (Myneni, R. B. and Ross, J., eds.). Berlin: Springer-Verlag, pp. 501–535.CrossRefGoogle Scholar
Gutschick, V. P. and Simonneau, T. (2002) Modelling stomatal conductanceof field-grown sunflower under varying soil water content and leaf environment: Comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid-based model of stomatal response to soil drying. Plant, Cell and Environment 25: 1423–1434.CrossRefGoogle Scholar
Gutschick, V. P. and Weigel, F. W. (1984) Radiation transfer in vegetative canopies and layered media: Rapidly solvable exact integral equation not requiring Fourier resolution. Journal of Quantitative Spectroscopy and Radiation Transfer 31: 71–82.CrossRefGoogle Scholar
Gutteridge, S. and Pierce, J. (2006) A unified theory for the basis of the limitations of the primary reaction of photosynthetic CO2 fixation: Was Dr. Pangloss right?Proceedings of the National Academy of Science (USA) 103: 7203–7204.CrossRefGoogle Scholar
Guy, R. D., Fogel, M. L. and Berry, J. A. (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiology 101: 37–47.CrossRefGoogle ScholarPubMed
Guyot, G., Scoffoni, C. and Sack, L. (2012) Combined impacts of irradiance and dehydration on leaf hydraulic conductance: Insights into vulnerability and stomatal control. Plant, Cell and Environment 35: 857–871.CrossRefGoogle ScholarPubMed
Haefner, J. W., Buckley, T. N. and Mott, K. A. (1997) A spatially explicit model of patchy stomatal responses to humidity. Plant, Cell and Environment 20: 1087–1097.CrossRefGoogle Scholar
Ham, J. M. and Heilman, J. L. (2003) Experimental test of density and energy-balance corrections on carbon dioxide flux as measured using open-path eddy covariance. Agronomy Journal 95: 1393–1403.CrossRefGoogle Scholar
Hansen, L. D., Hopkin, M. S., Rank, D. R., et al. (1994) The relation between plant growth and respiration: A thermodynamic model. Planta 194: 77–85.CrossRefGoogle Scholar
Harding, D. J., Lefsky, M. A., Parker, G. G. and Blair, J. B. (2001) Laser altimeter canopy height profiles: Methods and validation for closed-canopy, broadleaf forests. Remote Sensing of Environment 76: 283–297.CrossRefGoogle Scholar
Hari, P., Makela, A., Berninger, F. and Pohja, T. (1999) Field evidence for the optimality hypothesis of gas exchange in plants. Australian Journal of Plant Physiology 26: 239–244.CrossRefGoogle Scholar
Harley, P. C., Loreto, F., Di Marco, G. and Sharkey, T. D. (1992a) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology 98: 1429–1436.CrossRefGoogle Scholar
Harley, P. C., Monson, R. K. and Lerdau, M. T. (1999) Ecological and evolutionary aspects of isoprene emission from plants. Oecologia 118: 109–123.CrossRefGoogle ScholarPubMed
Harley, P. C. and Sharkey, T. D. (1991) An improved model of C3 photosynthesis at high CO2 – reversed O2 sensitivity explained by lack of glycerate re-entry into the chloroplast. Photosynthesis Research 27: 169–178.Google Scholar
Harley, P. C., Thomas, R. B., Reynolds, J. F. and Strain, B. R. (1992b) Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell and Environment 15: 271–282.CrossRefGoogle Scholar
Harrison, S. P., Morfopoulos, C., Srikanta-Dani, S., et al. (2012) Volatile isoprenoid emissions from plastid to planet. New Phytologist 197: 49–57.CrossRefGoogle ScholarPubMed
Hartley, I. P. and Ineson, P. (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology and Biochemistry 40: 1567–1574.CrossRefGoogle Scholar
Heiden, A. C., Kobel, K., Langebartels, C., et al. (2003) Emissions of oxygenated volatile organic compounds from plants – Part I: Emissions from lipoxygenase activity. Journal of Atmospheric Chemistry 45: 143–172.CrossRefGoogle Scholar
Heinrich, R. and Rapoport, T. A. (1974) A linear steady-state treatment of enzymatic chains: General properties, control and effector strength. European Journal of Biochemistry 42: 107–120.Google ScholarPubMed
Heinsch, F. A., Zhao, M. S., Running, S. W., et al. (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing 44: 1908–1925.CrossRefGoogle Scholar
Henry, H. A. L., Brizgys, K. and Field, C. B. (2008) Litter decomposition in a California annual grassland: Interactions between photodegradation and litter layer thickness. Ecosystems 11: 545–554.CrossRefGoogle Scholar
Henze, D. K. and Seinfeld, J. H. (2006) Global secondary organic aerosol from isoprene oxidation. Geophysical Research Letters 33: Article number L09812.CrossRefGoogle Scholar
Henze, D. K., Seinfeld, J. H., Ng, N. L., et al. (2008) Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: High- vs. low-yield pathways. Atmospheric Chemistry and Physics 8: 2405–2420.CrossRefGoogle Scholar
Hereid, D. P. and Monson, R. K. (2001) Nitrogen oxide fluxes between corn (Zea mays L.) leaves and the atmosphere. Atmospheric Environment 35: 975–983.CrossRefGoogle Scholar
Hirose, T. and Werger, M. J. A. (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72: 520–526.CrossRefGoogle ScholarPubMed
Högberg, P., Högberg, M. N., Gottlicher, S. G., et al. (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytologist 177: 220–228.Google ScholarPubMed
Högberg, P. and Read, D. J. (2006) Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution 21: 548–554.CrossRefGoogle ScholarPubMed
Hogstrom, U. (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer – a re-evaluation. Boundary-Layer Meteorology 42: 55–78.CrossRefGoogle Scholar
Holbrook, N. M. and Zwieniecki, M. A. (1999) Embolism repair and xylem tension: Do we need a miracle?Plant Physiology 120: 7–10.CrossRefGoogle Scholar
Hollinger, D. Y., Ollinger, S. V., Richardson, A. D., et al. (2010) Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Global Change Biology 16: 696–710.CrossRefGoogle Scholar
Holtslag, A. A. M. and Nieuwstadt, F. T. M. (1986) Scaling the atmospheric boundary layer. Boundary-Layer Meteorology 36: 201–209.CrossRefGoogle Scholar
Holzapfel-Pschorn, A., Conrad, R. and Seiler, W. (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiology Letters 31: 343–351.CrossRefGoogle Scholar
Holzapfel-Pschorn, A. and Seiler, W. (1986) Methane emission during a cultivation period from an Italian rice paddy. Journal of Geophysical Research 91: 11803–11814.CrossRefGoogle Scholar
Hopkins, F. M., Torn, M. S. and Trumbore, S. E. (2012) Warming accelerates decomposition of decades-old carbon in forest soils. Proceedings of the National Academy of Sciences (USA) 109: E1753–E1761.CrossRefGoogle ScholarPubMed
Houweling, S., Dentener, F. and Lelieveld, J. (2000) Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands. Journal of Geophysical Research – Atmospheres 105:17243–17255.CrossRefGoogle Scholar
Hrmova, M. and Fincher, G. B. (2001) Plant enzyme structure: Explaining substrate specificity and the evolution of function. Plant Physiology 125: 54–57.CrossRefGoogle ScholarPubMed
Hubick, K. T., Farquhar, G. D. and Shorter, R. (1896) Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm. Australian Journal of Plant Physiology 13: 803–816.CrossRefGoogle Scholar
Hudak, A. T., Crookston, N. L., Evans, J. S., et al. (2008) Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Ennvironment 112: 2232–2245.CrossRefGoogle Scholar
Huijnen, V., Williams, J., van Weele, M., et al. (2010) The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geoscientific Model Development 3: 445–473.CrossRefGoogle Scholar
Hunt, J. C. R., Kaimal, J. C. and Gaynor, J. E. (1988) Eddy structure in the convective boundary layer – new measurements and new concepts. Quarterly Journal of the Royal Meteorological Society 114: 827–858.Google Scholar
Huxman, T. E., Snyder, K. A., Tissue, D., et al. (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141: 254–268.CrossRefGoogle ScholarPubMed
IPCC (2001) Intergovernmental Panel on Climate Change, Third Assessment Report. Geneva: United Nations Environmental Program.Google Scholar
IPCC (2007) Climate Change 2007: The Physical Science Basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Ishii, H. T., Jennings, G. M., Sillett, S. C. and Koch, G. W. (2008) Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees. Oecologia 156: 751–763.CrossRefGoogle ScholarPubMed
Jacob, D., Field, B. D., Jin, E. M., et al. (2002) Atmospheric budget of acetone. Journal of Geophysical Research – Atmospheres 107: Article number 4100.CrossRefGoogle Scholar
Jacob, D., Field, B. D., Li, Q. B., et al. (2005) Global budget of methanol: constraints from atmospheric observations. Journal of Geophysical Research – Atmospheres 110: Article number D08303.CrossRefGoogle Scholar
Jacob, D. J. and Wofsy, S. C. (1990) Budgets of reactive nitrogen, hydrocarbons and ozone over the Amazon forest during the wet season. Journal of Geophysical Research – Atmospheres 95: 16737–16754.CrossRefGoogle Scholar
Janott, M., Gayler, S., Gessler, A., et al. (2011) A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant and Soil 341: 233–256.CrossRefGoogle Scholar
Jarman, P. D. (1974) The diffusion of carbon dioxide and water vapour through stomata. Journal of Experimental Botany 25: 927–936.CrossRefGoogle Scholar
Jarvis, P. G. (1971) The estimation of resistances to carbon dioxide transfer. In: Plant Photosynthetic Production Manual of Methods (Sestàk, J., Catsky, J. and Jarvis, P. G., eds.). The Hague: W. Junk, pp. 566–631.Google Scholar
Jarvis, P. G. (1995) Scaling processes and problems. Plant, Cell and Environment 18: 1079–1089.CrossRefGoogle Scholar
Jarvis, P. G. and Leverenz, J. (1983) Productivity of temperate, deciduous and evergreen forests. In: Encyclopedia of Plant Physiology (Lange, O. L., Nobel, P. S., Osmond, C. B. and Ziegler, H., eds.). Berlin: Springer-Verlag, pp. 233–280.Google Scholar
Jarvis, P. G. and McNaughton, K. G. (1986) Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research 15: 1–49.CrossRefGoogle Scholar
Jarvis, P., Rey, A., Petsikos, C., et al. (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: The “Birch effect.”Tree Physiology 27: 929–940.CrossRefGoogle ScholarPubMed
Jenny, H. (1980) The Soil Resource: Origin and Behaviour. New York: Springer-Verlag.CrossRefGoogle Scholar
Jensen, H. W. (2001) Realistic Image Synthesis Using Photon Mapping. Wellesley, MA: AK Peters.CrossRefGoogle Scholar
Jin, Z. H., Charlock, T. P., Smith, W. L., et al. (2004) A parameterization of ocean surface albedo. Geophysical Research Letters 31: Article number L22301.CrossRefGoogle Scholar
Jobbágy, E. G. and Jackson, R. B. (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423–436.CrossRefGoogle Scholar
Joffre, S. M., Kangas, M., Heikinheimo, M. and Kitaigorodskii, S. A. (2001) Variability of the stable and unstable atmospheric boundary-layer height and its scales over a boreal forest. Boundary-Layer Meteorology 99: 429–450.CrossRefGoogle Scholar
Johnson, F. H., Eyring, H. and Williams, R. W. (1942) The nature of enzyme inhibitions in bacterial luminescence: Sulfanilamide, urethane, temperature and pressure. Journal of Cellular and Comparative Physiology 20: 247–268.CrossRefGoogle Scholar
Jones, D. L., Nguyen, C. and Finlay, R. D. (2009) Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant and Soil 321: 5–33.CrossRefGoogle Scholar
Jones, H. G. (1998) Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany 49: 387–398.CrossRefGoogle Scholar
Jordan, D. B. and Ogren, W. L. (1981) Species variation in the specificity of ribulose-bisphosphate carboxlase-oxygenase. Nature 291: 513–515.CrossRefGoogle Scholar
Jordan, D. B. and Ogren, W. L. (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase oxygenase – dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161: 308–313.CrossRefGoogle ScholarPubMed
June, T., Evans, J. R. and Farquhar, G. D. (2004) A simple new equation for the reversible temperature dependence of photosynthetic electron transport: A study on soybean leaf. Functional Plant Biology 31: 275–283.CrossRefGoogle Scholar
Kacser, H. and Burns, J. A. (1973) The control of flux. Society of Experimental Biology Symposium 27: 65–104.Google ScholarPubMed
Kaimal, J. C. and Finnigan, J. J. (1994) Atmospheric Boundary Flows: Their Structure and Measurement. New York: Oxford University Press.Google Scholar
Kaimal, J. C. and Wyngaard, J. C. (1990) The Kansas and Minnesota Experiments. Boundary-Layer Meteorology 50: 31–47.CrossRefGoogle Scholar
Kaimal, J. C., Wyngaard, J. C., Izumi, Y. and Coté, O. R. (1972) Spectral characteristics of surface layer turbulence. Quarterly Journal of the Royal Meteorological Society 98: 563–589.CrossRefGoogle Scholar
Karl, T., Curtis, A. J., Rosenstiel, T. N., et al. (2002) Transient releases of acetaldehyde from tree leaves – products of a pyruvate bypass mechanism?Plant, Cell and Environment 25: 1121–1131.CrossRefGoogle Scholar
Katul, G. G., Ellsworth, D. S. and Lai, C. T. (2000) Modelling assimilation and intercellular CO2 from measured conductance: A synthesis of approaches. Plant, Cell and Environment 23: 1313–1328.CrossRefGoogle Scholar
Kattge, J., Knorr, W., Raddatz, T., et al. (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology 15: 976–991.CrossRefGoogle Scholar
Keeley, J. E. and Rundel, P. W. (2005) Fire and the Miocene expansion of C4 grasslands. Ecology Letters 8: 683–690.CrossRefGoogle Scholar
Keeling, C. D. (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta 13: 322–334.CrossRefGoogle Scholar
Keeling, C. D. (1961) The concentration and isotopic abundance of carbon dioxide in rural and marine air. Geochimica et Cosmochimica Acta 24: 277–298.CrossRefGoogle Scholar
Keeling, C. D. (1979) The Suess effect: 13Carbon–14Carbon interrelations. Environment International 2: 229–300.CrossRefGoogle Scholar
Kemmitt, S. J., Lanyon, C. V., Waite, I. S., et al. (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass – a new perspective. Soil Biology and Biochemistry 40: 61–73.CrossRefGoogle Scholar
Kim, J., Verma, S. B., Billesbach, D. P. and Clement, R. J. (1998) Diel variation in methane emission from a midlatitude prairie wetland: Significance of convective through flow in Phragmites australis. Journal of Geophysical Research – Atmospheres 103: 28029–28039.CrossRefGoogle Scholar
Kim, K. -H., and Andreae, M. O. (1987) Carbon disulfide in seawater and the marine atmosphere over the North Atlantic. Journal of Geophysical Research 92: 14733–14738.CrossRefGoogle Scholar
Kirschbaum, M. U. F. (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27: 753–760.CrossRefGoogle Scholar
Kirschbaum, M. U. F. (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming?Biogeochemistry 48: 21–51.CrossRefGoogle Scholar
Knorr, W., Prentice, I. C., House, J. I. and Holland, E. A. (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433: 298–301.CrossRefGoogle ScholarPubMed
Kokhanovsky, A. and Schreier, M. (2009) The determination of snow specific surface area, albedo and effective grain size using AATSR space-borne measurements. International Journal of Remote Sensing 30: 919–933.CrossRefGoogle Scholar
Kolmogorov, A. (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Doklady Akademiia Nauk SSSR 30: 301–305.Google Scholar
Körner, C. and Diemer, M. (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology 1: 179–194.CrossRefGoogle Scholar
Kraut, D. A., Carroll, K. S. and Herschlag, D. (2003) Challenges in enzyme mechanism and energetics. Annual Review of Biochemistry 72: 517–571.CrossRefGoogle ScholarPubMed
Kreim, M. and Giersch, C. (2007) Measuring in vivo elasticities of Calvin cycle enzymes: Network structure and patterns of modulations. Phytochemistry 68: 2152–2162.CrossRefGoogle ScholarPubMed
Kreuzwieser, J., Papadopoulou, E. and Rennenberg, H. (2004) Interaction of flooding with carbon metabolism of forest trees. Plant Biology 6: 299–306.CrossRefGoogle ScholarPubMed
Kroll, J. H., Ng, N. L., Murphy, S. M., et al. (2006) Secondary organic aerosol formation from isoprene photooxidation. Environmental Science and Technology 40: 1869–1877.CrossRefGoogle ScholarPubMed
Krupa, S. V. (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environmental Pollution 124:179–221.CrossRefGoogle ScholarPubMed
Kruse, J. and Adams, M. A. (2008) Sensitivity of respiratory metabolism and efficiency to foliar nitrogen during growth and maintenance. Global Change Biology 14: 1233–1251.CrossRefGoogle Scholar
Kuzyakov, Y. (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38: 425–448.CrossRefGoogle Scholar
Kuzyakov, Y., Friedel, J. K. and Stahr, K. (2000) Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry 32: 1485–1498.CrossRefGoogle Scholar
Kuzyakov, Y. and Gavrichkova, O. (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: A review of mechanisms and controls. Global Change Biology 16: 3386–3406.CrossRefGoogle Scholar
Laidler, K. J. and King, M. C. (1983) The development of transition state theory. Journal of Physical Chemistry 87: 2657–2664.CrossRefGoogle Scholar
Lambers, H., Mougel, C., Jaillard, B. and Hinsinger, P. (2009) Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant and Soil 321: 83–115.CrossRefGoogle Scholar
Langford, A. O. and Fehsenfeld, F. C. (1992) Natural vegetation as a source or sink for atmospheric ammonia – a case study. Science 255: 581–583.CrossRefGoogle ScholarPubMed
Lanigan, G. J., Betson, N., Griffiths, H. and Seibt, U. (2008) Carbon isotope fractionation during photorespiration and carboxylation in Senecio. Plant Physiology 148: 2013–2020.CrossRefGoogle ScholarPubMed
Laothawornkitkul, J., Taylor, J. E., Paul, N. D. and Hewitt, C. N. (2009) Biogenic volatile organic compounds in the Earth system. New Phytologist 183: 27–51.CrossRefGoogle ScholarPubMed
Le Mer, J. and Roger, P. (2001) Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37: 25–50.CrossRefGoogle Scholar
Leclerc, M. Y., Beissner, K. C., Shaw, R. H., et al. (1990) The influence of atmospheric stability on the budgets of the Reynolds stress and turblent kinetic energy within and above a deciduous forest. Journal of Applied Meteorology 29: 916–933.2.0.CO;2>CrossRefGoogle Scholar
Leclerc, M. Y., Thurtell, G. W. and Kidd, G. E. (1988) Measurements and Langevin simulations of mean tracer concentration fields downwind from a circular line source inside an alfalfa canopy. Boundary-Layer Meteorology 43: 287–308.CrossRefGoogle Scholar
Lee, A., Goldstein, A. H., Kroll, J. H., et al. (2006) Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. Journal of Geophysical Research – Atmospheres 111: Article number D17305.Google Scholar
Lee, X., Goulden, M. L., Hollinger, D. Y., et al. (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479: 384–387.CrossRefGoogle ScholarPubMed
Lee, X., Neumann, H. H., DenHartog, G., et al. (1997) Observation of gravity waves in a boreal forest. Boundary-Layer Meteorology 84: 383–398.CrossRefGoogle Scholar
Lefsky, M. A., Cohen, W. B., Parker, G. G. and Harding, D. J. (2002) Lidar remote sensing for ecosystem studies. Bioscience 52: 19–30.CrossRefGoogle Scholar
Legg, B. J. and Raupach, M. R. (1982) Markov chain simulation of particle dispersion in inhomogeneous flows – the mean drift velocity induced by a gradient in Eulerian velocity variance. Boundary-Layer Meteorology 24: 3–13.CrossRefGoogle Scholar
Lelieveld, J., Butler, T. M., Crowley, J. N., et al. (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452: 737–740.CrossRefGoogle ScholarPubMed
Lemeur, R. and Blad, B. L. (1974) Critical review of light models for estimating shortwave radiation regime of plant canopies. Agricultural Meteorology 14: 255–286.CrossRefGoogle Scholar
Lenschow, D. H. (1995) Micrometeorological techniques for measuring biosphere-atmosphere trace gas exchange. In: Biogenic Trace Gases: Measuring Emissions from Soil and Water (Matson, P. A. and Harriss, R. C., eds.). Oxford: Blackwell Scientific, pp. 126–163.Google Scholar
Lerdau, M., Guenther, A. and Monson, R. (1997) Plant production and emission of volatile organic compounds. Bioscience 47: 373–383.CrossRefGoogle Scholar
Lerdau, M. T., Munger, W. and Jacob, D. J. (2000) The NO2 flux conundrum. Science 289: 2291–2293.CrossRefGoogle Scholar
Leuning, R. (1983) Transport of gases into leaves. Plant, Cell and Environment 6: 181–194.Google Scholar
Leuning, R. (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell and Environment 18: 339–355.CrossRefGoogle Scholar
Leuning, R., Kelliher, F. M., DePury, D. G. G. and Schulze, E. -D. (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell and Environment 18: 1183–1200.CrossRefGoogle Scholar
Li, J. and Dobbie, J. S. (1998) Four-stream isosector approximation for solar radiative transfer. Journal of Atmospheric Science 55: 558–567.2.0.CO;2>CrossRefGoogle Scholar
Li, X. and Strahler, A. H. (1995) A hybrid geometric optical radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies. IEEE Transactions on Geoscience and Remote Sensing 33: 466–480.Google Scholar
Liesack, W., Schnell, S. and Revsbech, N. P. (2000) Microbiology of flooded rice paddies. FEMS Microbiology Reviews 24: 625–645.CrossRefGoogle ScholarPubMed
Lipson, D. and Näsholm, T. (2001) The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128: 305–316.CrossRefGoogle ScholarPubMed
Liu, S. H., Liu, H. P., Xu, M., et al. (2001) Turbulence spectra and dissipation rates above and within a forest canopy. Boundary-Layer Meteorology 98: 83–102.CrossRefGoogle Scholar
Liu, X. Z., Wan, S. Q., Su, B., et al. (2002) Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil 240: 213–223.CrossRefGoogle Scholar
Lloyd, J. (1991) Modelling stomatal responses to environment in Macademia integrifolia (L.) Batsch. Australian Journal of Plant Physiology 18: 649–660.CrossRefGoogle Scholar
Lloyd, J. and Farquhar, G. D. (1994) 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99: 201–215.CrossRefGoogle ScholarPubMed
Lloyd, J., Grace, J., Miranda, A. C., et al. (1995) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell and Environment 18: 1129–1145.CrossRefGoogle Scholar
Lloyd, J., Patino, S., Paiva, R. Q., et al. (2010) Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7: 1833–1859.CrossRefGoogle Scholar
Lloyd, J. and Taylor, J. A. (1994) On the temperature dependence of soil respiration. Functional Ecology 8: 315–323.CrossRefGoogle Scholar
Lohammer, T., Larsson, S., Linder, S. and Falk, S. O. (1980) FAST – Simulation models of gaseous exchange in Scots pine. Ecological Bulletin 32: 505–523.Google Scholar
Long, S. P., Ainsworth, E. A., Rogers, A. and Ort, D. R. (2004) Rising atmospheric carbon dioxide: Plants FACE the future. Annual Review of Plant Biology 55: 591–628.CrossRefGoogle ScholarPubMed
Long, S. P. and Bernacchi, C. J. (2003) Gas exchange measurements, what can they tell us about the underlying limitations of photosynthesis? Procedures and sources of error. Journal of Experimental Botany 54: 2393–2401.CrossRefGoogle ScholarPubMed
Long, S. P. and Drake, B. G. (1992) Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations. In: Crop Photosynthesis: Spatial and Temporal Determinants (Baker, N. and Thomas, H., eds.). Amsterdam: Elsevier Scientific, pp. 69–103.CrossRefGoogle Scholar
Lothon, M., Lenschow, D. H. and Mayor, S. D. (2009) Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Boundary-Layer Meteorology 132: 205–226.CrossRefGoogle Scholar
Lovelock, J. E. and Margulis, L. (1974) Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26: 1–10.CrossRefGoogle Scholar
Lumley, J. L. and Panofsky, H. A. (1964) The Structure of Atmospheric Turbulence. Monographs and Texts in Physics and Astronomy, Vol. XII. New York: John Wiley & Sons.Google Scholar
Luo, Y. Q. (2007) Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology and Systematics 38: 683–712.CrossRefGoogle Scholar
Lusk, C. H., Reich, P. B., Montgomery, R. A., et al. (2008) Why are evergreen leaves so contrary about shade?Trends in Ecology and Evolution 23: 299–303.CrossRefGoogle ScholarPubMed
Mahecha, M. D., Reichstein, M., Carvalhais, N., et al. (2010) Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329: 838–840.CrossRefGoogle ScholarPubMed
Mahrt, L., Vickers, D., Nakamura, R., et al. (2001) Shallow drainage flows. Boundary-Layer Meteorology 101: 243–260.CrossRefGoogle Scholar
Majeau, N. and Coleman, J. R. (1996) Effect of CO2 concentration on carbonic anhydrase and ribulose 1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiology 112: 569–574.CrossRefGoogle ScholarPubMed
Malcher, J. and Kraus, H. (1983) Low-level jet phenomena described by an integrated dynamical PBL model. Boundary-Layer Meteorology 27: 327–343.CrossRefGoogle Scholar
Marin-Spiotta, E., Silver, W. L., Swanston, C. W. and Ostertag, R. (2009) Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Global Change Biology 15: 1584–1597.CrossRefGoogle Scholar
Massman, W. J. (1998) A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment 32: 1111–1127.CrossRefGoogle Scholar
Massman, W. J. and Weil, J. C. (1999) An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Boundary-Layer Meteorology 94: 81–107.CrossRefGoogle Scholar
Matzner, S. and Comstock, J. (2001) The temperature dependence of shoot hydraulic resistance: implications for stomatal behaviour and hydraulic limitation. Plant, Cell and Environment 24: 1299–1307.CrossRefGoogle Scholar
Maurel, C., Verdoucq, L., Luu, D. -T. and Santoni, V. (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology 59: 595–624.CrossRefGoogle ScholarPubMed
McCree, K. J. (1970) An equation for the rate of respiration of white clover plants grown under controlled conditions. In: Prediction and Measurement of Photosynthetic Productivity (Setlik, I., ed.). Wageningen: Pudoc Publishers, pp. 221–229.Google Scholar
McCulloh, K. A., Sperry, J. S. and Adler, F. R. (2003) Water transport in plants obeys Murray’s law. Nature 421: 939–942.CrossRefGoogle ScholarPubMed
McCulloh, K., Sperry, J. S., Lachenbruch, B., et al. (2010) Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytologist 186: 439–450.CrossRefGoogle ScholarPubMed
McGill, W. B. (1996) Review and classification of ten soil organic matter (SOM) models. In: Evaluation of Soil Organic Matter Models (Smith, U. J, ed.). Berlin: Springer-Verlag, pp. 111–132.CrossRefGoogle Scholar
McNaughton, K. G. (1989) Regional interactions between canopies and the atmosphere. In: Plant Canopies: their Growth, Form and Function (Russell, G., Marshall, B. and Jarvis, P. G., eds.). Society for Experimental Biology Seminar Series 31. Cambridge: Cambridge University Press, pp. 63–81.CrossRefGoogle Scholar
McNevin, D. B., Badger, M. R., Whitney, S. M., et al. (2007) Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. Journal of Biological Chemistry 282: 36068–36076.CrossRefGoogle ScholarPubMed
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft, A., Wang, K. and Loustau, D. (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II: A review of experimental data. Plant, Cell and Environment 25: 1167–1179.CrossRefGoogle Scholar
Meidner, H. and Mansfield, T. A. (1968) Physiology of Stomata. London: McGraw-Hill.Google Scholar
Meinzer, F. C., McCulloh, K. A., Lachenbruch, B., Woodruff, D. R. and Johnson, D. M. (2010) The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 164: 287–296.CrossRefGoogle ScholarPubMed
Meir, P., Kruijit, B., Broadmeadow, M., Barbosa, E., Kull, O., Carswell, F., Nobre, A. and Jarvis, P. G. (2002) Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment 25: 343–357.CrossRefGoogle Scholar
Merlivat, L. (1978) Molecular diffusivities of H218O in gases. Journal of Chemistry and Physics 69: 2864–2871.CrossRefGoogle Scholar
Meyers, T. P and Baldocchi, D. D. (1991) The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agricultural and Forest Meteorology 53: 207–222.CrossRefGoogle Scholar
Miller, E. E. and Norman, J. M. (1971) Sunfleck theory for plant canopies. 2. Penumbra effect – intensity distributions along sunfleck segments. Agronomy Journal 63: 739–743.CrossRefGoogle Scholar
Millet, D. B., Jacob, D. J., Custer, T. G., et al. (2008) New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmospheric Chemistry and Physics 8: 6887–6905.CrossRefGoogle Scholar
Monin, A. S. and Obukhov, A. M. (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere. Transactions of the Geophysical Institute of the Akademie Nauk, USSR 151: 163–187.Google Scholar
Monson, R. K. (2010) Reactions of biogenic volatile organic compounds in the atmosphere. In: An introduction to the Chemistry and Biology of Volatiles (Hermann, A., ed.). Chichester: John Wiley & Sons, pp. 363–388.CrossRefGoogle Scholar
Monson, R. K., and Collatz, G. J. (2012) The ecophysiology and global biology of C4 photosynthesis. In: Terrestrial Photosynthesis in a Changing Environment: A Molecular, Physiological and Ecological Approach (Flexas, J., Loreto, F. and Medrano, H., eds.). Cambridge: Cambridge University Press, pp. 54–70.CrossRefGoogle Scholar
Monson, R. K. and Fall, R. (1989) Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration. Plant Physiology 90: 267–274.CrossRefGoogle ScholarPubMed
Monson, R. K.Grote, R., Niinemets, U. and Schnitzler, J. P. (2012) Modeling the isoprene emission rate from leaves. New Phytologist 195: 541–559.CrossRefGoogle ScholarPubMed
Monson, R. K. and Holland, E. A. (2001) Biospheric trace gas fluxes and their control over tropospheric chemistry. Annual Review of Ecology and Systematics 32: 547–576.CrossRefGoogle Scholar
Monson, R. K., Stidham, M. A., Williams, G. J., et al. (1982) Temperature dependence of photosynthesis in Agropyron smithii Rydb. I. Factors affecting net CO2 uptake in intact leaves and contribution from ribulose 1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiology 69: 921–928.CrossRefGoogle Scholar
Monson, R. K., Trahan, N., Rosenstiel, T. N., et al. (2007) Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philosophical Transactions of the Royal Society, Series A 365: 1677–1695.CrossRefGoogle ScholarPubMed
Monteith, J. L. (1972) Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9: 747–766.CrossRefGoogle Scholar
Monteith, J. L. (1981) Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society 107: 1–27.CrossRefGoogle Scholar
Monteith, J. L. (1995) A reinterpretation of stomatal responses to humidity. Plant, Cell and Environment 18: 357–364.CrossRefGoogle Scholar
Monteith, J. L. and Unsworth, M. H. (1990) Principles of Environmental Physics, 2nd edn. New York: Edward Arnold.Google Scholar
Montgomery, R. A. (2004) Effects of understory foliage on patterns of light attenuation near the forest floor. Biotropica 36: 33–39.Google Scholar
Mooney, H. A., Gulmon, S. L., Rundel, P. W. and Ehleringer, J. (1980) Further observations of the water relations of Prosopis tamarugo of the northern Atacama Desert. Oecologia 44: 177–180.CrossRefGoogle ScholarPubMed
Moore, B. D., Cheng, S. -H., Rice, J. and Seemann, J. R. (1998) Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell and Environment 21: 905–915.CrossRefGoogle Scholar
Moore, B. D., Cheng, S. -H., Sims, D. and Seemann, J. R. (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell and Environment 22: 567–582.CrossRefGoogle Scholar
Moorhead, D. L. and Sinsabaugh, R. L. (2006) A theoretical model of litter decay and microbial interaction. Ecological Monographs 76: 151–174.CrossRefGoogle Scholar
Moorhead, D. L., Sinsabaugh, R. L., Linkins, A. E. and Reynolds, J. F. (1996) Decomposition processes: Modelling approaches and applications. Science of the Total Environment 183: 137–149.CrossRefGoogle Scholar
Morell, M. K., Paul, K., Kane, H. J. and Andrews, T. J. (1992) Rubisco – maladapted or misunderstood. Australian Journal of Botany 40: 431–441.CrossRefGoogle Scholar
Mori, S., Yamaji, K., Ishida, A., et al. (2010) Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proceedings of the National Academy of Sciences (USA) 107: 1447–1451.CrossRefGoogle ScholarPubMed
Mott, K. A. (1988) Do stomata respond to CO2 concentrations other than intercellular?Plant Physiology 86: 200–203.CrossRefGoogle Scholar
Mott, K. A. (2009) Opinion: Stomatal responses to light and CO2 depend on the mesophyll. Plant, Cell and Environment 32: 1479–1486.CrossRefGoogle Scholar
Mott, K. A. and Franks, P. J. (2001) The role of epidermal turgor in stomatal interactions following a local perturbation in humidity. Plant, Cell and Environment 24: 657–662.CrossRefGoogle Scholar
Mott, K. A. and Parkhurst, D. F. (1990) Stomatal responses to humidity in air and helox. Plant, Cell and Environment 14: 509–515.CrossRefGoogle Scholar
Mott, K. A. and Peak, D. (2010) Stomatal responses to humidity and temperature in darkness. Plant, Cell and Environment 33: 1084–1090.Google ScholarPubMed
Mõttus, M. (2004) Measurement and modelling of the vertical distribution of sunflecks, penumbra and umbra in willow coppice. Agricultural and Forest Meteorology 121: 79–91.CrossRefGoogle Scholar
Mõttus, M. (2007) Photon recollision probability in discrete crown canopies. Remote Sensing of Environment 110: 176–185.CrossRefGoogle Scholar
Mu, Q., Heinsch, F. A., Zhao, M. and Running, S. W. (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment 111: 519–536.CrossRefGoogle Scholar
Myneni, R. B. (1991) Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies. Agricultural and Forest Meteorology 55: 323–344.CrossRefGoogle Scholar
Myneni, R. B., Hoffman, S., Knyazikhin, , et al. (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment 83: 214–231.CrossRefGoogle Scholar
Myneni, R. B., Maggion, S., Iaquinta, J., Privette, J. L., Gobron, N., Pinty, B., et al. (1995) Optical remote sensing of vegetation: Modeling, caveats, and algorithms. Remote Sensing of Environment 51: 169–188.CrossRefGoogle Scholar
Myneni, R. B., Ross, J. and Asrar, G. (1989) A review of the theory of photon transport in leaf canopies. Agricultural and Forest Meteorology 45: 1–153.CrossRefGoogle Scholar
Nadelhoffer, K. J. and Fry, B. (1988) Controls on natural 15N and 13C abundances in forest soil organic matter. Soil Science Society of America Journal 52: 1633–1640.CrossRefGoogle Scholar
Nave, L. E., Vance, E. D., Swanston, C. W. and Curtis, P. S. (2009) Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153: 231–240.CrossRefGoogle Scholar
Nemecek-Marshall, M., Macdonald, R. C., Franzen, J. J., Wojciechowski, C. and Fall, R. (1995) Methanol emission from leaves. Enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiology 108: 1359–1368.CrossRefGoogle ScholarPubMed
Neumann, R. B. and Cardon, Z. G. (2012) The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies. New Phytologist 134: 337–352.CrossRefGoogle Scholar
Nie, G. Y., Hendrix, D. L., Webber, A. N., Kimball, B. A. and Long, S. P. (1995a) Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO2 concentration in the field. Plant Physiology 108: 975–983.CrossRefGoogle ScholarPubMed
Nie, G. Y., Long, S. P., Garcia, R. L., Kimball, B. A., Lamorte, R. A., Pinter, P. J., Wall, G. W. and Webber, A. N. (1995a) Effects of free air CO2 enrichment on the development of the photosynthetic apparatus in wheat as indicated by changes in leaf proteins. Plant, Cell and Environment 18: 855–864.CrossRefGoogle Scholar
Nier, A. O. and Gulbransen, E. A. (1939) Variations in the relative abundance of the carbon isotopes. Journal of the American Chemical Society 61: 697–698.CrossRefGoogle Scholar
Niinemets, U. (2007) Photosynthesis and resource distribution through plant canopies. Plant, Cell and Environment 30: 1052–1071.CrossRefGoogle ScholarPubMed
Niinemets, U., Loreto, F. and Reichstein, M. (2004) Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends in Plant Science 9: 180–186.CrossRefGoogle ScholarPubMed
Niinemets, U., Tenhunen, J. D., Harley, P. C. and Steinbrecher, R. (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant, Cell and Environment 22: 1319–1335.CrossRefGoogle Scholar
Nilson, T. (1971) A theoretical analysis of the frequency of gaps in plant stands. Agricultural Meteorology 8: 25–38.CrossRefGoogle Scholar
Nisbet, E. G., Grassineau, N. V., Howe, C. J., Abell, P. I., Regelous, M. and Nisbet, R. E. R. (2007) The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5: 311–335.CrossRefGoogle Scholar
Nobel, P. S. (1999) Physicochemical and Environmental Plant Physiology, 2nd edn. San Diego, CA: Academic Press.Google Scholar
Nobel, P. S., Zaragoza, L. J. and Smith, W. K. (1975) Relation between mesophyll surface area, photosynthetic rate, and illumination of Plectranthus parviflorus Henckel. Plant Physiology 55: 1067–1070.CrossRefGoogle ScholarPubMed
Nonami, H. and Schulze, E. D. (1989) Cell water potential, osmotic potential and turgor in the epidermis and mesophyll of transpiring leaves – combined measurements with the cell pressure probe and nanoliter osmometer. Planta 177: 35–46.CrossRefGoogle ScholarPubMed
Norman, J. M. (1981) Interfacing leaf and canopy light interception models. In: Predicting Photosynthesis for Ecosystem Models (Hesketh, J. D. and Jones, J. W., eds.). Boca Raton, FL: CRC Press, pp. 49–67.Google Scholar
Norman, J. M. and Campbell, G. S. (1989) Canopy structure. In: Plant Physiological Ecology: Field Methods and Instrumentation (Pearcy, R. W., Ehleringer, J., Mooney, H. A. and Rundel, P. W., eds.). New York: Chapman and Hall, pp. 301–326.CrossRefGoogle Scholar
Norman, J. M. and Welles, J. M. (1983) Radiative transfer in an array of canopies. Agronomy Journal 75: 481–488.CrossRefGoogle Scholar
Nowak, R. S., Ellsworth, D. S. and Smith, S. D. (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions?New Phytologist 162: 253–280.CrossRefGoogle Scholar
O’Leary, M. H. (1993) Biochemical basis of carbon isotope fractionation. In: Isotopes and Plant Carbon-Water Relations (Stable, J. R., Saranga, Y., Flash, I. and Yakir, D., eds.). New York: Academic Press, Inc., pp. 19–28.CrossRefGoogle Scholar
Oades, J. M. (1988) The retention of organic matter in soils. Biogeochemistry 5: 35–70.CrossRefGoogle Scholar
Ögren, E. and Evans, J. R. (1993) Photosynthetic light response curves. I. The influence of CO2 partial pressure and leaf inversion. Planta 189: 180–190.CrossRefGoogle Scholar
Oke, T. R. (1987) Boundary Layer Climates, 2nd edn. London: Routledge.Google Scholar
Oker-Blom, P. (1984) Penumbral effects of within-plant and between-plant shading on radiation distributions and leaf photosynthesis: a Monte-Carlo simulation. Photosynthetica 18: 522–528.Google Scholar
Ollinger, S. V., Richardson, A. D., Martin, M. E., et al. (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences (USA) 105: 19336–19341.CrossRefGoogle ScholarPubMed
Osono, T. and Takeda, H. (2006) Fungal decomposition of Abies needle and Betula leaf litter. Mycologia 98: 172–179.CrossRefGoogle ScholarPubMed
Ow, L. F., Griffin, K. L., Whitehead, D., Walcroft, A. S. and Turnbull, M. H. (2008) Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides x nigra. New Phytologist 178: 123–134.CrossRefGoogle Scholar
Oya, V. and Laisk, A. (1976) Adaptation of the photosynthetic apparatus to the profile of light in the leaf. Fiziologia Rastenii 23: 445–451.Google Scholar
Pacala, S. and Socolow, R. (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305: 968–972.CrossRefGoogle ScholarPubMed
Parkhurst, D. F. (1994) Diffusion of CO2 and other gases inside leaves. New Phytologist 126: 449–479.CrossRefGoogle Scholar
Parkhurst, D. F., Wong, S. -C., Farquhar, G. D., and Cowan, I. R. (1988) Gradients of intercellular CO2 levels across the leaf mesophyll. Plant Physiology 86: 1032–1037.CrossRefGoogle Scholar
Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51: 1173–1179.CrossRefGoogle Scholar
Pataki, D. E. (2005) Emerging topics in stable isotope ecology: are there isotope effects in plant respiration?New Phytologist 167: 321–323.CrossRefGoogle ScholarPubMed
Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., et al. (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles 17: Article number 1022.CrossRefGoogle Scholar
Patra, P. K., Takigawa, M., Ishijima, K., et al. (2009) Growth rate, seasonal, synoptic, diurnal variations and budget of methane in the lower atmosphere. Journal of the Meteorological Society of Japan 87: 635–663.CrossRefGoogle Scholar
Paul, E. A. (1984) Dynamics of organic matter in soils. Plant and Soil 76: 275–285.CrossRefGoogle Scholar
Paul, E. A. and Clark, F. E. (1996) Soil Microbiology and Biochemistry, 2nd edn. San Diego, CA: Academic Press.Google Scholar
Paulson, S. E., Flagan, R. C. and Seinfeld, J. H. (1992) Atmospheric photooxidation of isoprene part II: The ozone-isoprene reaction. International Journal of Chemical Kinetics 24: 103–125.CrossRefGoogle Scholar
Peak, D. and Mott, K. A. (2011) A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant, Cell and Environment 34: 162–178.CrossRefGoogle ScholarPubMed
Pearman, G. I., Tanner, C. B. and Weaver, H. L. (1972) Boundary-layer heat transfer coefficients under field conditions. Agricultural Meteorology 10: 83–92.CrossRefGoogle Scholar
Penman, H. L. (1948) Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London A 193: 120–145.CrossRefGoogle Scholar
Penning de Vries, F. W. T., (1975) The cost of maintenance processes in plant cells. Annals of Botany 39: 77–92.CrossRefGoogle Scholar
Pfister, G. G., Emmons, L. K., Hess, P. G., et al. (2008) Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZART-4. Journal of Geophysical Research – Atmospheres 113: Article number D05308.CrossRefGoogle Scholar
Philip, J. R. (1966) Plant water relations: some physical aspects. Annual Review of Plant Physiology 17: 245–268.CrossRefGoogle Scholar
Pielke, R. A., Avissar, R., Raupach, M., Dolman, A. J., Zeng, X., Denning, A. S. (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biology 4: 461–475.CrossRefGoogle Scholar
Pielke, R. A., Dalu, G. A., Snook, J. S., Lee, T. J. and Kittel, T. G. F. (1991) Nonlinear influence of mesoscale land use on weather and climate. Journal of Climate 4: 1053–1069.2.0.CO;2>CrossRefGoogle Scholar
Pierce, J., Lorimer, G. H. and Reddy, G. S. (1986) Kinetic mechanism of ribulosebisphosphate carboxylase: Evidence for sequential, ordered reaction. Biochemistry 25: 1636–1644.CrossRefGoogle Scholar
Pieruschka, R., Huber, G. and Berry, J. A. (2010) Control of transpiration by radiation. Proceedings of the National Academy of Sciences (USA) 107: 13371–13377.CrossRefGoogle ScholarPubMed
Pinhassi, J., Simo, R., Gonzalez, J. M., et al. (2005) Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom. Applied and Environmental Microbiology 71: 7650–7660.CrossRefGoogle ScholarPubMed
Pinty, B. and Verstraete, M. M. (1998) Modeling and scattering of light by homogeneous vegetation in optical remote sensing. Journal of the Atmospheric Sciences 55: 137–150.2.0.CO;2>CrossRefGoogle Scholar
Pittermann, J., Sperry, J. S., Hacke, U. G., Wheeler, J. K. and Sikkema, E. H. (2005) Torus-margo pits help conifers compete with angiosperms. Science 310: 1924.CrossRefGoogle ScholarPubMed
Plaxton, W. C. (1996) The organization and regulation of plant glycolysis. Annual Review of Plant Physiology and Plant Molecular Biology 47: 185–214.CrossRefGoogle ScholarPubMed
Poggi, D. and Katul, G. G. (2006) Two-dimensional scalar spectra in the deeper layers of a dense and uniform model canopy. Boundary-Layer Meteorology 121: 267–281.CrossRefGoogle Scholar
Poggi, D., Porporato, A., Ridolfi, L., et al. (2004) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorology 111: 565–587.CrossRefGoogle Scholar
Poolman, M. G., Fell, D. A. and Thomas, S. (2000) Modelling photosynthesis and its control. Journal of Experimental Botany 51: 319–328.CrossRefGoogle ScholarPubMed
Poorter, L., Oberbauer, S. F. and Clark, D. B. (1995) Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. American Journal of Botany 82: 1257–1263.CrossRefGoogle Scholar
Portis, A. R. and Parry, M. A. J. (2007) Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): A historical perspective. Photosynthesis Research 94: 121–143.CrossRefGoogle ScholarPubMed
Prandtl, L. (1925) A report on testing for built-up turbulence. Zeitschrift für Angewandte Mathematik und Mechanik 5: 136–139.Google Scholar
Priestley, C. H. B. and Taylor, R. J. (1972) Assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100: 81–92.2.3.CO;2>CrossRefGoogle Scholar
Raich, J. W. and Potter, C. S. (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles 9: 23–36.CrossRefGoogle Scholar
Raich, J. W. and Schlesinger, W. H. (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, Series B 44: 81–99.CrossRefGoogle Scholar
Ramier, D., Boulain, N., Cappelaere, B., et al. (2009) Towards an understanding of coupled physical and biological processes in the cultivated Sahel – 1: Energy and water. Journal of Hydrology 375: 204–216.CrossRefGoogle Scholar
Randerson, J. T., Thompson, M. V. and Field, C. B. (1999) Linking 13C-based estimates of land and ocean sinks with predictions of carbon storage from CO2 fertilization of plant growth. Tellus, Series B 51: 668–678.CrossRefGoogle Scholar
Raschke, K. (1960) Heat transfer between the plant and the environment. Annual Review of Plant Physiology 11: 111–126.CrossRefGoogle Scholar
Raschke, K. (1976) How stomata resolve the dilemma of opposing priorities. Philosophical Transactions of the Royal Society of London, Series B 273: 551–560.CrossRefGoogle Scholar
Rasse, D. P, Rumpel, C. and Dignac, M. F. (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil 269: 341–356.CrossRefGoogle Scholar
Rassmussen, R. A. and Went, F. W. (1965) Volatile organic material of plant origin in atmosphere. Proceedings of the National Academy of Sciences (USA) 53: 215–220.CrossRefGoogle Scholar
Raupach, M. R. (1988) Canopy transport processes. In: Flow and Transport in the Natural Environment: Advances and Applications (Steffen, W. C. and Denmead, O. T., eds.). Berlin: Springer-Verlag, pp. 95–132.CrossRefGoogle Scholar
Raupach, M. R. (1989a) Stand overstorey processes. Philosphical Transactions of the Royal Society of London, Series B 324: 175–190.CrossRefGoogle Scholar
Raupach, M. R. (1989b) Turbulent transfer in plant canopy. In: Plant Canopies: Their Growth, Form and Function (Russell, G., Marshall, B. and Jarvis, P. G., eds.). Cambridge: Cambridge University Press, pp. 41–62.CrossRefGoogle Scholar
Raupach, M. R. (1991) Vegetation-atmosphere interaction in homogeneous and heterogeneous terrain: Some implications of mixed-layer dynamics. Vegetatio 91: 105–120.CrossRefGoogle Scholar
Raupach, M. R. (1992) Drag and drag partition on rough surfaces. Boundary-Layer Meteorology 60: 375–395.CrossRefGoogle Scholar
Raupach, M. R. (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-Layer Meteorology 71: 211–216.CrossRefGoogle Scholar
Raupach, M. R. and Finnigan, J. J. (1988) “Single-layer models of evaporation from plant canopies are incorrect but useful, whereas multilayer models are correct but useless”: Discuss. Australian Journal of Plant Physiology 15: 705–716.CrossRefGoogle Scholar
Raupach, M. R., Finnigan, J. J. and Brunet, Y. (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorology 78: 351–382.CrossRefGoogle Scholar
Raupach, M. R. and Thom, A. S. (1981) Turbulence in and above plant canopies. Annual Review of Fluid Mechanics 13: 97–129.CrossRefGoogle Scholar
Rautiainen, M., Mottus, M., Stenberg, P. and Ervasti, S. (2008) Crown envelope shape measurements and models. Silva Fennica 42: 19–33.CrossRefGoogle Scholar
Reich, P. B., Tjoelker, M. G., Machado, J. L. and Oleksyn, J. (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439: 457–461.CrossRefGoogle ScholarPubMed
Reich, P. B., Tjoelker, M. G., Pregitzer, K. S., Wright, I. J., Oleksyn, J. and Machado, J. L. (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters 11: 793–801.CrossRefGoogle ScholarPubMed
Reich, P. B., Walters, M. B. and Ellsworth, D. S. (1997) From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Science, USA 94: 13730–13734.CrossRefGoogle ScholarPubMed
Reich, P. B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M. and Walters, M. B. (2003) The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences 164: S143–S164.CrossRefGoogle Scholar
Reich, P. B., Wright, I. J. and Lusk, C. H. (2007) Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis. Ecological Applications 17: 1982–1988.CrossRefGoogle ScholarPubMed
Rey, A. and Jarvis, P. (2006) Modelling the effect of temperature on carbon mineralization rates across a network of European forest sites (FORCAST). Global Change Biology 12: 1894–1908.CrossRefGoogle Scholar
Richter, D. D., Markewitz, D., Trumbore, S. E. and Wells, C. G. (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400: 56–58.CrossRefGoogle Scholar
Roberts, D. A., Nelson, B. W., Adams, J. B. and Palmer, F. (1998) Spectral changes with leaf aging in Amazon caatinga. Trees – Structure and Function 12: 315–325.CrossRefGoogle Scholar
Roberts, J. M., Langford, A. O., Goldan, P. and Fehsenfeld, F. C. (1988) Ammonia measurements at Niwot Ridge, Colorado and Point Arena, California using the tungsten-oxide denuder tube technique. Journal of Atmospheric Chemistry 7: 137–152.CrossRefGoogle Scholar
Rocha, A. V. and Shaver, G. R. (2009) Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology 149: 1560–1563.CrossRefGoogle Scholar
Rodean, H. C. (1996) Stochastic Lagrangian models of turbulent diffusion. Meteorological Monographs 26: 1–84.CrossRefGoogle Scholar
Roden, J. S. and Pearcy, R. W. (1993) Effect of leaf flutter on the light environment of poplars. Oecologia 93: 201–207.CrossRefGoogle ScholarPubMed
Roeske, C. A. and O’Leary, M. H. (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23: 6275–6284.CrossRefGoogle Scholar
Rogers, A. (2013) The use and misuse of Vcmax in earth system models. Photosynthesis Research, .
Romàn, M. O., Schaaf, C. B., Woodcock, C. E., et al. (2009) The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sensing of Environment 113: 2476–2498.CrossRefGoogle Scholar
Rondon, A., Johansson, C. and Granat, L. (1993) Dry deposition of nitrogen dioxide and ozone to coniferous forests. Journal of Geophysical Research – Atmospheres 98: 5159–5172.CrossRefGoogle Scholar
Rosenstiel, T., Potosnak, M., Griffen, K., et al. (2003) Elevated CO2 uncouples growth and isoprene emission in a model agriforest ecosystem. Nature 421: 256–259.CrossRefGoogle Scholar
Rosenthal, D. M., Locke, A. M., Khozaei, M., Raines, C. A., Long, S. P. and Ort, D. R. (2011) Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1–7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biology 11: Article number 123.CrossRefGoogle Scholar
Ross, J. K. (1981) The Radiation Regime and Architecture of the Plant Stand. The Hague: W. Junk.CrossRefGoogle Scholar
Ross, J. and Môttus, M. (2000) Statistical treatment of umbra length inside willow coppice. Agricultural and Forest Meteorology 100: 89–102.CrossRefGoogle Scholar
Ross, J. and Nilson, T. (1968) A mathematical model of radiation regime of plant cover. In: Actinometry and Atmospheric Optics. Tallin, Estonia: Valus Publications, pp. 263–281.Google Scholar
Rossmann, A., Butzenlechner, M. and Schmidt, H. -L. (1991) Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiology 96: 609–614.CrossRefGoogle ScholarPubMed
Rotenberg, E. and Yakir, D. (2010) Contribution of semi-arid forests to the climate system. Science 327: 451–454.CrossRefGoogle ScholarPubMed
Ruel, J. J. and Ayers, M. P. (1999) Jensen’s inequality predicts effects of environmental variation. Trends in Ecology and Evolution 14: 361–366.CrossRefGoogle ScholarPubMed
Rundel, P. W., Ehleringer, J. R. and Nagy, K. A. (eds.) (1989) Stable Isotopes in Ecological Research. New York: Springer-Verlag.CrossRef
Running, S. W. and Nemani, R. R. (1988) Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sensing of Environment 24: 347–367.CrossRefGoogle Scholar
Running, S. W., Nemani, R. R., Heinsch, F. A., et al. (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54: 547–560.CrossRefGoogle Scholar
Rutledge, S., Campbell, D. I., Baldocchi, D. and Schipper, L. A. (2010) Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Global Change Biology 16: 3065–3074.Google Scholar
Ryan, M. G. (1995) Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content. Plant, Cell and Environment 18: 765–772.CrossRefGoogle Scholar
Sabine, C., Heimann, M., Artaxo, P. et al. (2003) Current status and past trends of the carbon cycle. In: The Global Carbon Cycle: Integrating Humans, Climate and the Natural World (Field, C. B. and Raupach, M. R., eds.). Washington, DC: Island Press, pp. 17–44.Google Scholar
Sack, L. and Holbrook, N. M. (2006) Leaf hydraulics. Annual Review of Plant Biology 57: 361–381.CrossRefGoogle ScholarPubMed
Sage, R. F., Christin, P. A. and Edwards, E. J. (2011) The C4 plant lineages of planet earth. Journal of Experimental Botany 62: 3155–3169.CrossRefGoogle Scholar
Sage, R. F. and Reid, C. D. (1994) Photosynthetic response mechanisms to environmental change in C3 plants. In: Plant-Environment Interactions (Wilkinson, R. E., ed.). New York: Marcel Dekker, pp. 413–499.Google Scholar
Sage, R. F., Sharkey, T. D. and Seemann, J. R. (1989) Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiology 89: 590–596.CrossRefGoogle Scholar
Sage, R. F., Way, D. A. and Kubien, D. S. (2008) Rubisco, Rubisco activase, and global climate change. Journal of Experimental Botany 59: 1581–1595.CrossRefGoogle ScholarPubMed
Santiago, L. S. and Wright, S. J. (2007) Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology 21: 19–27.CrossRefGoogle Scholar
Sayre, J. D. (1926) Physiology of stomata of Rumex patientia. Ohio Journal of Science 26: 233–266.Google Scholar
Schade, G. W. and Crutzen, P. J. (1999) CO emissions from degrading plant matter. II: Estimate of a global source strength. Tellus 51: 908–919.Google Scholar
Schäffner, A. R. (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations?Planta 204: 131–139.Google ScholarPubMed
Scheffer, M., Holmgren, M., Brovkin, V., et al. (2005) Synergy between small- and large-scale feedbacks of vegetation on the water cycle. Global Change Biology 11: 1003–1012.CrossRefGoogle Scholar
Schimel, J. P. and Weintraub, M. N. (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry 35: 549–563.CrossRefGoogle Scholar
Schink, B. (1999) Prokaryotes and the biosphere. In: Biology of the Prokaryotes (Lengeler, J. W., Drews, G. and Schlegel, H. G., eds.). Stuttgart: Georg Thieme Verlag, pp. 1028–1049.Google Scholar
Schlichting, H. and Gersten, K. (2004) Boundary-Layer Theory, 8th edn. New York: McGraw-Hill.Google Scholar
Scholze, M., Ciais, P. and Heimann, M. (2008) Modeling terrestrial 13C cycling: Climate, land use and fire. Global Biogeochemical Cycles 22: Article number GB1009.CrossRefGoogle Scholar
Schulze, E.-D., Kelliher, F. M., et al. (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annual Review of Ecology and Systematics 25: 629–660.CrossRefGoogle Scholar
Seco, R., Penuelas, J. and Filella, I. (2007) Sort-chain oxygenated VOCs: emissions and uptake by plants and atmospheric sources, sinks and concentrations. Atmospheric Environment 41: 2477–2499.CrossRefGoogle Scholar
Sellers, P. J., Berry, J. A., Collatz, G. J., et al. (1992) Canopy reflectance, photosynthesis and transpiration. III: A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sensing of Environment 42: 187–216.CrossRefGoogle Scholar
Sellers, P. J., Randall, D. A., et al. (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. Journal of Climate 9: 676–705.2.0.CO;2>CrossRefGoogle Scholar
Sharkey, T. D. (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Botanical Review 51: 53–105.CrossRefGoogle Scholar
Sharkey, T. D. and Yeh, S. S. (2001) Isoprene emission from plants. Annual Review of Plant Physiology and Plant Molecular Biology 52: 407–436.CrossRefGoogle ScholarPubMed
Sharpe, P. J. and De Michelle, D. W. (1977) Reaction kinetics of poikilotherm development. Journal of Theoretical Biology 64: 649–670.CrossRefGoogle ScholarPubMed
Shaw, R. H. and Patton, E. G. (2003) Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation. Agricultural and Forest Meteorology 115: 5–17.CrossRefGoogle Scholar
Shaw, R. H. and Pereira, A. R. (1982) Aerodynamic roughness of a plant canopy: A numerical experiment. Agricultural Meteorology 26: 51–65.CrossRefGoogle Scholar
Shaw, R. H. and Schumann, U. (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorology 61: 47–64.CrossRefGoogle Scholar
Shen, S. H. and Leclerc, M. Y. (1997) Modelling the turbulence structure in the canopy layer. Agricultural and Forest Meteorology 87: 3–25.CrossRefGoogle Scholar
Shimazaki, K., Doi, M., Assmann, S. M. and Kinoshita, T. (2007) Light regulation of stomatal movement. Annual Review of Plant Biology 58: 219–247.CrossRefGoogle ScholarPubMed
Sinclair, T. R., Murphy, C. E. and Knoerr, K. R. (1976) Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. Journal of Applied Ecology 13: 813–829.CrossRefGoogle Scholar
Sinclair, T. R., Tanner, C. B. and Bennet, J. M. (1984) Water-use efficiency in crop production. Bioscience 34: 36–40.CrossRefGoogle Scholar
Singh, H. B., Chen, Y., Staudt, A., Jacob, D., Blake, D., Heikes, B. and Snow, J. (2001) Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature 410: 1078–1081.CrossRefGoogle ScholarPubMed
Sinoquet, H., Stephan, J., Sonohat, G., et al. (2007) Simple equations to estimate light interception by isolated trees from canopy structure features: Assessment with three-dimensional digitized apple trees. New Phytologist 175: 94–106.CrossRefGoogle ScholarPubMed
Sinsabaugh, R. L. (1994) Enzymatic analysis of microbial pattern and process. Biology and Fertility of Soils 17: 69–74.CrossRefGoogle Scholar
Sinsabaugh, R. L., Antibus, R. K. and Linkins, A. E. (1991) An enzymatic approach to the analysis of microbial activity during plant litter decomposition. Agriculture Ecosystems and Environment 34: 43–54.CrossRefGoogle Scholar
Siqueira, M., Katul, G. and Porporato, A. (2009) Soil moisture feedbacks on convection triggers: The role of soil-plant hydrodynamics. Journal of Hydrometeorology 10: 96–112.CrossRefGoogle Scholar
Smith, W. K. (1978) Temperature of desert plants – another perspective on adaptability of leaf size. Science 201: 614–616.CrossRefGoogle ScholarPubMed
Smith, W. K., Knapp, A. K. and Reiners, W. A. (1989) Penumbral effects on sunlight penetration in plant communities. Ecology 70: 1603–1609.CrossRefGoogle Scholar
Smolander, S. and Stenberg, P. (2001) A method for estimating light interception by a conifer shoot. Tree Physiology 21: 797–803.CrossRefGoogle ScholarPubMed
Smolander, S. and Stenberg, P. (2003) A method to account for shoot scale clumping in coniferous canopy reflectance models. Remote Sensing of Environment 88: 363–373.CrossRefGoogle Scholar
Smoluchowski, M. (1906) Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Annalen der Physik 21: 756–780.CrossRefGoogle Scholar
Sparks, J. P. (2009) Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 159: 1–13.CrossRefGoogle ScholarPubMed
Sparks, J. P., Monson, R. K., Sparks, K. L. and Lerdau, M. T. (2001) Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest: implications for tropospheric chemistry. Oecologia 127: 214–221.CrossRefGoogle Scholar
Sperry, J. S. (2003) Evolution of water transport and xylem structure. International Journal of Plant Sciences 164: S115–S127.CrossRefGoogle Scholar
Sperry, J. S., Alder, N. N. and Eastlack, S. E. (1993) The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. Journal of Experimental Botany 44: 1075–1082.CrossRefGoogle Scholar
Sperry, J. S., Meinzer, F. C. and McCulloh, K. A. (2008) Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell and Environment 31: 632–645.CrossRefGoogle ScholarPubMed
Spreitzer, R. J. and Salvucci, M. E. (2002) Rubisco: Structure, regulatory interactions and possibilities for a better enzyme. Annual Review of Plant Physiology and Plant Molecular Biology 53: 449–475.CrossRefGoogle ScholarPubMed
Stenberg, P. (1995) Penumbra in within-shoot and between-shoot shading in conifers and its significance for photosynthesis. Ecological Modelling 77: 215–231.CrossRefGoogle Scholar
Stenberg, P. (1996) Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. Agricultural and Forest Meteorology 79: 1–8.CrossRefGoogle Scholar
Stenberg, P. (2007) Simple analytical formula for calculating average photon recollision probability in vegetation canopies. Remote Sensing of Environment 109: 221–224.CrossRefGoogle Scholar
Steudle, E. and Peterson, C. A. (1998) How does water get through roots?Journal of Experimental Botany 49: 775–788.Google Scholar
Steuer, R. (2007) Computational approaches to the topology, stability and dynamics of metabolic networks. Phytochemistry 68: 2139–2151.CrossRefGoogle ScholarPubMed
Stevenson, R. J. (1982) Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley & Sons.Google Scholar
Still, C. J., Berry, J. A., Collatz, G. J. and DeFries, R. S. (2003) Global distribution of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles 17: Article number 1006.CrossRefGoogle Scholar
Stitt, M. (1994) Flux control at the level of the pathway: studies with mutants and transgenic plants having a decreased activity of enzymes involved in photosynthesis partitioning. In: Flux Control in Biological Systems (Schulze, E.-D., ed.). New York: Academic Press, Inc., pp. 13–36.CrossRefGoogle Scholar
Stitt, M. (1996) Metabolic regulation of photosynthesis. In: Photosynthesis and the Environment (Baker, N., ed.). Dordrecht: Kluwer Academic Publishers, pp. 151–190.Google Scholar
Stoy, P. C., Richardson, A. D., Baldocchi, D. D., et al. (2009) Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences 6: 2297–2312.CrossRefGoogle Scholar
Stull, R. B. (1988) An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Stump, L. M. and Binkley, D. (1993) relationships between litter quality and nitrogen availability in Rocky Mountain forests. Canadian Journal of Forest Research 23: 492–502.CrossRefGoogle Scholar
Su, H. B., Schmid, H. P., Grimmond, C. S. B., et al. (2004) Spectral characteristics and correction of long-term eddy-covariance measurements over two mixed hardwood forests in non-flat terrain. Boundary-Layer Meteorology 110: 213–253.CrossRefGoogle Scholar
Su, H. -B., Schmid, H. P., Vogel, C. S. and Curtis, P. S. (2008) Effects of canopy morphology and thermal stability on mean flow and turbulence statistics observed inside a mixed hardwood forest. Agricultural and Forest Meteorology 148: 862–882.CrossRefGoogle Scholar
Sun, J., Lenschow, D. H., Burns, S. P., et al. (2004) Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorology 110: 255–279.CrossRefGoogle Scholar
Sun, J. L., Lenschow, D. H., Mahrt, L., et al. (1997) Lake induced atmospheric circulations during BOREAS. Journal of Geophysical Research 102: 29155–29166.CrossRefGoogle Scholar
Suntharalingam, P., Kettle, A. J., Montzka, S. M. and Jacob, D. J. (2008) Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake. Geophysical Research Letters 35: Article number L19801.CrossRefGoogle Scholar
Sweetlove, L. J. and Fernie, A. R. (2005) Regulation of metabolic networks: Understanding metabolic complexity in the systems biology era. New Phytologist 168: 9–24.CrossRefGoogle ScholarPubMed
Taneda, S. (1965) Experimental investigation of vortex streets. Journal of the Physical Society of Japan 20: 714–721.CrossRefGoogle Scholar
Tans, P. P., de Jong, A. F. M. and Mook, W. G. (1979) Natural atmospheric 14C variation and the Suess effect. Nature 280: 826–828.CrossRefGoogle Scholar
Taraborrelli, D., Lawrence, M. G., Crowley, J. N., et al. (2012) Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nature Geosciences 5: 190–193.CrossRefGoogle Scholar
Tarr, M. A., Miller, W. L. and Zepp, R. G. (1995) Direct carbon monoxide production from plant matter. Journal of Geophysical Research 100: 11403–11413.CrossRefGoogle Scholar
Taylor, C. M., Gounou, A., Guichard, F., et al. (2011) Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nature Geoscience 4: 430–433.CrossRefGoogle Scholar
Taylor, G. I. (1938) The spectrum of turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 164: 476–490.CrossRefGoogle Scholar
Tcherkez, G., Farquhar, G. D. and Andrews, T. J. (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proceedings of the National Academy of Sciences (USA) 103: 7246–7251.CrossRefGoogle ScholarPubMed
Tcherkez, G., Farquhar, G., Badeck, F. and Ghashghaie, J. (2004) Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Functional Plant Biology 31: 857–877.CrossRefGoogle Scholar
Tcherkez, G., Schaufele, R., Nogues, S., et al. (2010) On the 13C/12C isotopic signal of day and night respiration at the mesocosm level. Plant, Cell and Environment 33: 900–913.CrossRefGoogle ScholarPubMed
Tenhunen, J. D., Hanano, R., Abril, M., et al. (1994) Above- and below-ground environmental influences on leaf conductance of Ceanothus thyrsiflorus growing in a chaparral environment: Drought responses and the role of abscisic acid. Oecologia 99: 306–314.CrossRefGoogle Scholar
Terashima, I. and Hikosaka, K. (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell and Environment 18: 1111–1128.CrossRefGoogle Scholar
Terashima, I. and Inoue, Y. (1984) Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camilla japonica L.: Functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant and Cell Physiology 25: 555–563.Google Scholar
Terashima, I., Masuzawa, T., Ohba, H. and Yokoi, Y. (1995) Is photosynthesis suppressed at higher elevations due to low CO2 pressure?Ecology 76: 2663–2668.CrossRefGoogle Scholar
Terashima, I., Miyazawa, S. I. and Hanba, Y. T. (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. Journal of Plant Research 114: 93–105.CrossRefGoogle Scholar
Terashima, I. and Saeki, T. (1983) Light environment within a leaf. I. Optical properties of paradermal sections of Camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant and Cell Physiology 24: 1493–1501.CrossRefGoogle Scholar
Terashima, I. and Saeki, T. (1985) A new model for leaf photosynthesis incorporating the gradients of light environment and of photosynthetic properties of chloroplasts within a leaf. Annals of Botany 56: 489–499.CrossRefGoogle Scholar
Terashima, I., Wong, S. C., Osmond, C. B. and Farquhar, G. D. (1988) Characterization of non-uniform photosynthesis induced by abscisic-acid in leaves having different mesophyll anatomies. Plant and Cell Physiology 29: 385–394.Google Scholar
Tholen, D., Boom, C., Noguchi, K., et al. (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabdopsis thaliana leaves. Plant, Cell and Environment 31: 1688–1700.CrossRefGoogle Scholar
Thom, A. S., Stewart, J. B., Oliver, H. R. and Gash, J. H. C. (1975) Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest. Quarterly Journal of the Royal Meteorological Society 101: 93–105.CrossRefGoogle Scholar
Thomas, C. and Foken, T. (2007) Organised motion in a tall spruce canopy: Temporal scales, structure spacing and terrain effects. Boundary-Layer Meteorology 122: 123–147.CrossRefGoogle Scholar
Thomson, D. J. (1987) Random walk models of atmospheric dispersion. Meteorological Magazine 116: 142–150.Google Scholar
Thornley, J. H. M. (1970) Respiration, growth and maintenance in plants. Nature 227: 304–305.CrossRefGoogle ScholarPubMed
Thornley, J. H. M. (1971) Energy, respiration and growth in plants. Annals of Botany 35: 721–728.CrossRefGoogle Scholar
Thuille, A., Buchmann, N. and Schulze, E. D. (2000) Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiology 20: 849–857.CrossRefGoogle ScholarPubMed
Thuille, A. and Schulze, E. D. (2005) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology 12: 325–342.CrossRefGoogle Scholar
Torn, M. S., Lapenis, A. G., Timofeev, A., et al. (2002) Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Global Change Biology 8: 941–953.CrossRefGoogle Scholar
Trumbore, S. (2000) Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications 10: 399–411.CrossRefGoogle Scholar
Trumbore, S. E., Chadwick, O. A. and Amundson, R. (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272: 393–396.CrossRefGoogle Scholar
Tsigaridis, K. and Kanakidou, M. (2007) Secondary organic aerosol importance in the future atmosphere. Atmospheric Environment 41: 4682–4692.CrossRefGoogle Scholar
Tuomi, M., Thum, T., Jarvinen, H., et al. (2009) Leaf litter decomposition: Estimates of global variability based on Yasso07 model. Ecological Modelling 220: 3362–3371.CrossRefGoogle Scholar
Turner, D. P., Ritts, W. D., Cohen, W. B. et al. (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing of Environment 102: 282–292.CrossRefGoogle Scholar
Turnipseed, A. A., Anderson, D. E., Blanken, P. D. et al. (2003) Airflows and turbulent flux measurements in mountainous terrain. Part 1: Canopy and local effects. Agricultural and Forest Meteorology 119: 1–21.CrossRefGoogle Scholar
Turnipseed, A. A., Anderson, D. E., Burns, S., et al. (2004) Airflows and turbulent flux measurements in mountainous terrain Part 2: Mesoscale effects. Agricultural and Forest Meteorology 125: 187–205.CrossRefGoogle Scholar
Tyerman, S. D., Bohnert, H. J., Maurel, C., et al. (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. Journal of Experimental Botany 50: 1055–1071.Google Scholar
Tyree, M. T. and Ewers, F. (1991) Tansley Review: The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345–360.CrossRefGoogle Scholar
Tyree, M. T. and Sperry, J. S. (1989) Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology 40: 19–38.CrossRefGoogle Scholar
Vallina, S. M. and Simo, R. (2007) Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315: 506–508.CrossRefGoogle ScholarPubMed
van Genuchten, M. T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892–898.CrossRefGoogle Scholar
van Oosten, J. -J., Wilkens, D. and Besford, R. T. (1994) Regulation of the expression of photosynthetic nuclear genes by high CO2 is mimicked by carbohydrates: a mechanism for the acclimation of photosynthesis to high CO2. Plant, Cell and Environment 17: 913–923.CrossRefGoogle Scholar
van’t Hoff, J. H. (1884) Études de Dynamique Chimique [Studies in Chemical Dynamics]. Amsterdam: F. Muller & Co.Google Scholar
Vandenhurk, B. J. J. M. and McNaughton, K. G. (1995) Implementation of near-field dispersion in a simple 2-layer surface resistance model. Journal of Hydrology 166: 293–311.CrossRefGoogle Scholar
Vanhala, P., Karhu, K., Tuomi, M., et al. (2007) Old soil carbon is more temperature sensitive than young in an agricultural field. Soil Biology and Biochemistry 39: 2967–2970.CrossRefGoogle Scholar
Vargas, R., Detto, M., Baldocchi, D. D. and Allen, M. F. (2010) Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology 16: 1589–1605.CrossRefGoogle Scholar
Varutbangkul, V., Brechtel, F. J., Bahreini, R., et al. (2006) Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmospheric Chemistry and Physics 6: 2367–2388.CrossRefGoogle Scholar
Veneklaas, E. J. and Poorter, L. (1998) Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. In: Inherent Variation in Plant Growth: Physiological Mechanisms and Ecological Consequences (Lambers, H., Poorter, H. and Van Vuuren, M. M. I., eds.). Leiden: Backhuys Publishers, pp. 337–361.Google Scholar
Vernadsky, V. (1938) Problems of biogeochemistry II: On the fundamental material-energetic distinction between living and non-living natural bodies of the biosphere. (Translated from Russian by Tennenbaum, Jonathan and Douglas, Rachel, 21st Century, Winter 2000–2001, pp. 20–39.)
Vogelmann, T. C., Bornman, J. F. and Josserand, S. (1989) Photosynthetic light gradients and spectral regime within leaves of Medicago sativa. Philosophical Transactions of the Royal Society of London, Series B 323: 411–421.CrossRefGoogle Scholar
Vogelman, T. C. and Martin, G. (1993) The functional significance of palisade tissue – penetration of directional versus diffuse light. Plant, Cell and Environment 16: 65–72.CrossRefGoogle Scholar
von Caemmerer, S., Evans, J. R., Hudson, G. S. and Andrews, T. J. (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195: 88–97.CrossRefGoogle Scholar
von Caemmerer, S. and Farquhar, G. D. (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387.CrossRefGoogle ScholarPubMed
von Caemmerer, S., Lawson, T., Oxborough, K., et al. (2004) Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. Journal of Experimental Botany 55: 1157–1166.CrossRefGoogle Scholar
von Lutzöw, M., Kögel-Knabner, I., Ekschmitt, K., et al. (2006) Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science 57: 426–445.CrossRefGoogle Scholar
Wagner, W., Hollaus, M., Briese, C. and Ducic, V. (2008) 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. International Journal of Remote Sensing 29: 1433–1452.CrossRefGoogle Scholar
Wallenstein, M. D., Hess, A. M., Lewis, M. R., et al. (2010) Decomposition of aspen leaf litter results in unique metabolomes when decomposed under different tree species. Soil Biology and Biochemistry 42: 484–490.CrossRefGoogle Scholar
Wallenstein, M. D. and Weintraub, M. N. (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biology and Biochemistry 40: 2098–2106.CrossRefGoogle Scholar
Walter, K. M., Smith, L. C. and Chapin, F. S. (2007) Methane bubbling from northern lakes: Present and future contributions to the global methane budget. Philosophical Transactions of the Royal Society, Series A 365: 1657–1676.CrossRefGoogle ScholarPubMed
Walter-Shea, E. A., Norman, J. M. and Blad, B. L. (1989) Leaf bidirectional reflectance and transmittance in corn and soybean. Remote Sensing of Environment 29: 161–174.CrossRefGoogle Scholar
Wang, G. L., Kim, Y. and Wang, D. G. (2007) Quantifying the strength of soil moisture-precipitation coupling and its sensitivity to changes in surface water budget. Journal of Hydrometeorology 8: 551–570.CrossRefGoogle Scholar
Wang, Y. P. and Jarvis, P. G. (1990) Description and validation of an array model. Agricultural and Forest Meteorology 51: 257–280.CrossRefGoogle Scholar
Warland, J. S. and Thurtell, G. W. (2000) A Lagrangian solution to the relationship between a distributed source and concentration profile. Boundary-Layer Meteorology 96: 453–471.CrossRefGoogle Scholar
Warren, C. (2006) Estimating the internal conductance to CO2 movement. Functional Plant Biology 33: 431–442.CrossRefGoogle Scholar
Warren, J. M., Brooks, J. R., Dragila, M. I. and Meinzer, F. C. (2011) In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport. Oecologia 166: 899–911.CrossRefGoogle ScholarPubMed
Webb, E. K., Pearman, G. I. and Leuning, R. (1980) Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society 106: 85–100.CrossRefGoogle Scholar
Weber, P. and Rennenberg, H. (1996) Dependency of nitrogen dioxide (NO2) fluxes to wheat (Triticum aestivum L.) leaves on NO2 concentration, light intensity, temperature and relative humidity determined from controlled dynamic chamber experiments. Atmospheric Environment 30: 3001–3009.CrossRefGoogle Scholar
Went, F. W. (1960) Blue hazes in the atmosphere. Nature 187: 641–643.CrossRefGoogle Scholar
Westgate, M. E. and Steudle, E. (1985) Water transport in the midrib tissue of maize leaves – direct measurement of the propagation of changes in cell turgor across a plant tissue. Plant Physiology 78: 183–191.CrossRefGoogle ScholarPubMed
Whitney, S. M., von Caemmerer, S., Hudson, G. S. and Andrews, T. J. (1999) Directed mutation of the Rubisco large subunit of tobacco influences photorespiration and growth. Plant Physiology 121: 579–588.CrossRefGoogle Scholar
Wickman, F. E. (1952) Variations in the relative abundance of the carbon isotopes in plants. Geochimica et Cosmochimica Acta 2: 243–254.CrossRefGoogle Scholar
Wieringa, J. (1993) Representative roughness parameters for homogeneous terrain. Boundary-Layer Meteorology 63: 323–363.CrossRefGoogle Scholar
Wigley, G. and Clark, J. A. (1974) Heat transfer coefficients for constant energy flux models of broad leaves. Boundary-Layer Meteorology 7: 139–150.CrossRefGoogle Scholar
Williams, W. E. (1983) Optimal water-use efficiency in a California shrub. Plant, Cell and Environment 6: 145–151.CrossRefGoogle Scholar
Wilson, K. B., Baldocchi, D. D., and Hanson, P. J. (2000) Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiology 20: 787–797.CrossRefGoogle ScholarPubMed
Wilson, J. D., Thurtell, G. E. and Kidd, G. E. (1981) Numerical simulation of particle trajectories in inhomogeneous turbulence. 2: Systems with variable turbulent velocity scale. Boundary-Layer Meteorology 21: 423–441.CrossRefGoogle Scholar
Wong, S. -C., Cowan, I. R. and Farquhar, G. D. (1978) Leaf conductance in relation to assimilation in Eucalyptus pauciflora Sieb. Ex Spreng: Influence of irradiance and partial pressure of carbon dioxide. Plant Physiology 62: 670–674.CrossRefGoogle ScholarPubMed
Wong, S. -C., Cowan, I. R. and Farquhar, G. D. (1985) Leaf conductance in relation to rate of CO2 assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. Plant Physiology 78: 821–825.CrossRefGoogle Scholar
Woodrow, I. E. (1986) Control of the rate of photosynthetic carbon dioxide fixation. Biochemica et Biophysica Acta 851: 181–192.CrossRefGoogle Scholar
Woodrow, I. E., Ball, J. T. and Berry, J. A. (1990) Control of photosynthetic carbon dioxide fixation by the boundary layer, stomata, and ribulose 1,5-bisphosphate carboxylase-oxygenase. Plant, Cell and Environment 13: 339–347.CrossRefGoogle Scholar
Woodrow, I. E. and Berry, J. A. (1988) Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annual Review of Plant Physiology and Plant Molecular Biology 39: 533–594.CrossRefGoogle Scholar
Woodrow, I. E. and Mott, K. A. (1993) Modelling C3 photosynthesis: a sensitivity analysis of the photosynthetic carbon-reduction cycle. Planta 191: 421–432.CrossRefGoogle Scholar
Woodward, F. I. (1987) Climate and Plant Distribution. Cambridge: Cambridge University Press.Google Scholar
Wright, I. J., Reich, P. B. and Westoby, M. (2001) Strategy-shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitats. Functional Ecology 15: 423–434.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Westoby, M., et al. (2004) The worldwide leaf economics spectrum. Nature 428: 821–827.CrossRefGoogle ScholarPubMed
Wright, I. J., Westoby, M. and Reich, P. B. (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology 90: 534–543.CrossRefGoogle Scholar
Wu, H., Sharpe, P. J. H. and Spence, R. D. (1985) Stomatal mechanics. 3: Geometric interpretation of the mechanical advantage. Plant, Cell and Environment 8: 269–274.Google Scholar
Wuebbles, D. J. and Hayhoe, K. (2002) Atmospheric methane and global change. Earth Science Reviews 57: 177–210.CrossRefGoogle Scholar
Wullschleger, S. D. (1993) Biochemical limitations to carbon assimilation in C3 plants: A retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany 44: 907–920.CrossRefGoogle Scholar
Wyngaard, J. C. (1990) Scalar fluxes in the planetary boundary layer: Theory, modeling and measurement. Boundary-Layer Meteorology 50: 49–75.CrossRefGoogle Scholar
Wyngaard, J. C. (1992) Atmospheric turbulence. Annual Review of Fluid Mechanics 24: 205–233.CrossRefGoogle Scholar
Wyngaard, J. C. and Coté, O. R. (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. Journal of Atmospheric Science 28: 190–201.2.0.CO;2>CrossRefGoogle Scholar
Wyngaard, J. C. and Coté, O. R. (1972) Cospectral similarity in the atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society 98: 590–603.CrossRefGoogle Scholar
Xie, H. X. and Moore, R. M. (1999) Carbon disulfide in the North Atlantic and Pacific Oceans. Journal of Geophysical Research 104: 5393–5402.CrossRefGoogle Scholar
Yakir, D. (2004) The stable isotopic composition of atmospheric CO2. In: Treatise on Geochemistry, Volume 4: The Atmosphere (Keeling, R. F., ed.). Amsterdam: Elsevier, pp. 175–212.Google Scholar
Ye, Q., Holbrook, N. M. and Zwieniecki, M. A. (2008) Cell-to-cell pathway dominates xylem-epidermis hydraulic connection in Tradescantia fluminensis (Vell. Conc.) leaves. Planta 227: 1311–1319.CrossRefGoogle ScholarPubMed
Yin, X., Van Oijen, M. and Schapendonk, A. H. C. M. (2004) Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis. Plant, Cell and Environment 27: 1211–1222.CrossRefGoogle Scholar
Yoshie, F. (1986) Intercellular CO2 concentration and water-use efficiency of temperate plants with different life-forms and from different microhabitats. Oecologia 68: 370–374.CrossRefGoogle ScholarPubMed
Yuste, J. C., Janssens, I. A., Carrara, A. and Ceulemans, R. (2004) Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology 10: 161–169.CrossRefGoogle Scholar
Zeng, X. and Pielke, R. A. (1995a) Further study on the predictability of landscape-induced atmospheric flow. Journal of the Atmospheric Sciences 52: 1680–1698.2.0.CO;2>CrossRefGoogle Scholar
Zeng, X. and Pielke, R. A. (1995b) Landscape-induced atmospheric flow and its parameterization in large-scale numerical models. Journal of Climate 8: 1156–1177.2.0.CO;2>CrossRefGoogle Scholar
Zhao, M. S., Heinsch, F. A., Nemani, R. R. and Running, S. W. (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment 95: 164–176.CrossRefGoogle Scholar
Zhao, M. S., Running, S. W. and Nemani, R. R. (2006) Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. Journal of Geophysical Research – Biogeosciences 111: Article number: G01002.CrossRefGoogle Scholar
Zhou, L., Dickinson, R. E., Tian, Y., et al. (2003) A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over Northern Africa and the Arabian Peninsula. Journal of Geophysical Research – Atmospheres 108: Article number 4795.CrossRefGoogle Scholar
Zwieniecki, M. A., Brodribb, T. J. and Holbrook, N. M. (2007) Hydraulic design of leaves: insights from rehydration kinetics. Plant, Cell and Environment 30: 910–921.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Russell Monson, University of Arizona, Dennis Baldocchi, University of California, Berkeley
  • Book: Terrestrial Biosphere-Atmosphere Fluxes
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139629218.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Russell Monson, University of Arizona, Dennis Baldocchi, University of California, Berkeley
  • Book: Terrestrial Biosphere-Atmosphere Fluxes
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139629218.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Russell Monson, University of Arizona, Dennis Baldocchi, University of California, Berkeley
  • Book: Terrestrial Biosphere-Atmosphere Fluxes
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139629218.021
Available formats
×