Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-21T19:18:37.552Z Has data issue: false hasContentIssue false

24 - Autonomic dysfunction

from Section B2 - Vegetative and autonomic dysfunctions

Published online by Cambridge University Press:  04 August 2010

Michael Selzer
Affiliation:
University of Pennsylvania
Stephanie Clarke
Affiliation:
Université de Lausanne, Switzerland
Leonardo Cohen
Affiliation:
National Institute of Mental Health, Bethesda, Maryland
Pamela Duncan
Affiliation:
University of Florida
Fred Gage
Affiliation:
Salk Institute for Biological Studies, San Diego
Get access

Summary

That “humans absolutely require a functionally intact sympathetic nervous system to tolerate the ‘nonemergency’ behavior of simply standing up” is testimony to the importance of the autonomic nervous system (ANS) and although orthostatic intolerance is the hallmark of sympathetic neurocirculatory failure it is but one manifestation among many of autonomic dysfunction (Goldstein et al., 2002). Clinical manifestations of ANS dysfunction can result from the disordered autonomic control of the cardiovascular, sudomotor, alimentary, urinary, and sexual systems. The etiology of autonomic dysfunction may be primary, such as pure autonomic failure (PAF), secondary, such as that due to cervical spinal cord injury (SCI) or due to drugs and chemical toxins (Mathias, 2003). An understanding of the components of the ANS, their function and their supraspinal, spinal and peripheral organization is essential to appreciate autonomic dysfunction. Additionally, the disturbance of ANS function such as that seen in persons with cervical SCI results not only from the loss of normal supraspinal control of the ANS, but also from changes caused by synaptic reorganization and neuronal plasticity in the damaged spinal cord.

Anatomy and physiology

The ANS has three peripheral components (the sympathetic, parasympathetic, and enteric nervous systems) and a supraspinal and spinal organization that is essential to its regulation of visceral function and maintenance of internal homeostasis. The control systems of the ANS involve: (1) supraspinal controlling and integrative neuronal centers; (2) supraspinal, spinal, ganglionic, and peripheral interneurons; and (3) afferent neurons (Shields Jr., 1993).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×