Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-24T18:35:47.120Z Has data issue: false hasContentIssue false

Chapter 17 - The Thalamus in Attention

from Section 7: - Cognition

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Selective attention is a cognitive process that enables the preferential routing of behaviorally relevant information through the brain.The associated large-scale network includes regions in all major lobes as well as subcortical structures such as the thalamus. There is mounting evidence that the visual thalamus–the lateral geniculate nucleus (LGN), thalamic reticular nucleus (TRN), and pulvinar–plays an important functional role in this process. The LGN has been traditionally viewed to be a relay of retinal information to the cortex. However, it has been shown that neural gain is amplified in LGN neurons, possibly in pathway-specific ways and via TRN-regulated inhibitory control, to amplify neural representations in the focus of attention at the expense of those that are unattended, thereby boosting attention-related information and filtering unwanted distracter information at the earliest possible processing stage of the visual pathway. The pulvinar is the largest nucleus of the primate thalamus and is almost exclusively interconnected with the cortex. Its function has remained elusive for many decades. Recent evidence suggests at least two functions that may be interdependent. First, pulvinar influences on the cortex are necessary to enable regular cortical function so that information can be processed from one area to the next. Second, the pulvinar coordinates information processing across the cortical attention network by synchronizing local population activity, thereby optimizing information transfer. Taken together, emerging views suggest roles for the LGN–TRN circuit as the gatekeeper and for the pulvinar as the timekeeper of the cortex.

Type
Chapter
Information
The Thalamus , pp. 324 - 339
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M. M., Hof, P. R., Gattass, R., Webster, M. J. & Ungerleider, L. G. Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. Journal of Comparative Neurology 419, 377393 (2000).3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Alonso, J.-M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815819 (1996).Google Scholar
Arcaro, M. J. & Livingstone, M. S. Retinotopic organization of scene areas in macaque inferior temporal cortex. Journal of Neuroscience 37, 7373 (2017).Google Scholar
Arcaro, M. J., Pinsk, M. A., Chen, J. & Kastner, S. Organizing principles of pulvino-cortical functional coupling in humans. Nature Communications 9, 5382 (2018).Google Scholar
Arcaro, M. J., Pinsk, M. A. & Kastner, S. The anatomical and functional organization of the human visual pulvinar. Journal of Neuroscience 35, 9848 (2015).Google Scholar
Arend, I., Rafal, R. & Ward, R. Spatial and temporal deficits are regionally dissociable in patients with pulvinar lesions. Brain 131, 21402152 (2008).Google Scholar
Baldwin, M. K. L., Balaram, P. & Kaas, J. H. The evolution and functions of nuclei of the visual pulvinar in primates. Journal of Comparative Neurology 525, 32073226 (2017).Google Scholar
Baleydier, C. & Mauguiere, F. Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys. Journal of Comparative Neurology 232, 219228 (1985).Google Scholar
Barron, D. S., Eickhoff, S. B., Clos, M. & Fox, P. T. Human pulvinar functional organization and connectivity. Human Brain Mapping 36, 24172431 (2015).Google Scholar
Bastos, A. M., Briggs, F., Alitto, H. J., Mangun, G. R. & Usrey, W. M. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. Journal of Neuroscience 34, 7639 (2014).Google Scholar
Battaglia‐Mayer, A. & Caminiti, R. Optic ataxia as a result of the breakdown of the global tuning fields of parietal neurones. Brain 125, 225237 (2002).Google Scholar
Bekisz, M. & Wróbel, A. 20 Hz rhythm of activity in visual system of perceiving cat. Acta Neurobiologiae Experimentalis 53, 175182 (1993).Google Scholar
Bender, D. B. Receptive-field properties of neurons in the macaque inferior pulvinar. Journal of Neurophysiology 48, 117 (1982).Google Scholar
Bender, D. B. & Youakim, M. Effect of attentive fixation in macaque thalamus and cortex. Journal of Neurophysiology 85, 219234 (2001).Google Scholar
Bennett, C. et al. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102, 477–492.e5 (2019).Google Scholar
Bereshpolova, Y. et al. Getting drowsy? Alert/nonalert transitions and visual thalamocortical network dynamics. Journal of Neuroscience 31, 17480 (2011).Google Scholar
Bickford, M. Thalamic circuit diversity: modulation of the driver/modulator framework. Frontiers in Neural Circuits 9, 86 (2016).Google Scholar
Bourne, J. A. & Morrone, M. C. Plasticity of visual pathways and function in the developing brain: is the pulvinar a crucial player? Frontiers in Systems Neuroscience 11, 3 (2017).Google Scholar
Bridge, H., Leopold, D. A. & Bourne, J. A. Adaptive pulvinar circuitry supports visual cognition. Trends in Cognitive Sciences 20, 146157 (2016).Google Scholar
Briggs, F., Mangun, G. R. & Usrey, W. M. Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499, 476480 (2013).Google Scholar
Briggs, F. & Usrey, W. M. Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62, 135146 (2009).Google Scholar
Buschman, T. J. & Kastner, S. From behavior to neural dynamics: an integrated theory of attention. Neuron 88, 127144 (2015).CrossRefGoogle ScholarPubMed
Callaway, E. M. Structure and function of parallel pathways in the primate early visual system. Journal of Physiology 566, 1319 (2005).Google Scholar
Cameron, E. L., Tai, J. C. & Carrasco, M. Covert attention affects the psychometric function of contrast sensitivity. Vision Research 42, 949967 (2002).Google Scholar
Casagrande, V. A. & Xu, X. Parallel visual pathways: a comparative perspective. In The Visual Neurosciences (eds. Chalupa, L. M. & Werner, J. S.), 494506 (MIT Press, 2004).Google Scholar
Caspari, N., Janssens, T., Mantini, D., Vandenberghe, R. & Vanduffel, W. Covert shifts of spatial attention in the macaque monkey. Journal of Neuroscience 35, 7695 (2015).Google Scholar
Chalfin, B. P., Cheung, D. T., Muniz, J. A. P. C., de Lima Silveira, L. C. & Finlay, B. L. Scaling of neuron number and volume of the pulvinar complex in new world primates: Comparisons with humans, other primates, and mammals. Journal of Comparative Neurology 504, 265274 (2007).Google Scholar
Chalupa, L. & Abramson, B. Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex. Journal of Neuroscience 9, 347 (1989).Google Scholar
Cheong, S. K., Tailby, C., Solomon, S. G. & Martin, P. R. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. Journal of Neuroscience 33, 6864 (2013).Google Scholar
Cohen, M. R. & Maunsell, J. H. R. Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience 12, 15941600 (2009).Google Scholar
Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761773 (1998).Google Scholar
Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z. & Sapir, A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neuroscience 8, 16031610 (2005).Google Scholar
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3, 201215 (2002).Google Scholar
Cotton, P. L. & Smith, A. T. Contralateral visual hemifield representations in the human pulvinar nucleus. Journal of Neurophysiology 98, 16001609 (2007).Google Scholar
Crick, F. Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81, 4586 (1984).Google Scholar
Crick, F. & Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245250 (1998).Google Scholar
Danziger, S., Ward, R., Owen, V. & Rafal, R. The effects of unilateral pulvinar damage in humans on reflexive orienting and filtering of irrelevant information. Behavioural Neurology 13, 917570 (2002).Google Scholar
Danziger, S., Ward, R., Owen, V. & Rafal, R. Contributions of the human pulvinar to linking vision and action. Cognitive, Affective, & Behavioral Neuroscience 4, 8999 (2004).Google Scholar
Darian-Smith, C., Tan, A. & Edwards, S. Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. Journal of Comparative Neurology 410, 211234 (1999).Google Scholar
de Souza, B. O. F., Cortes, N. & Casanova, C. Pulvinar modulates contrast responses in the visual cortex as a function of cortical hierarchy. Cerebral Cortex 30, 10681086 (2019).Google Scholar
Denison, R. N., Vu, A. T., Yacoub, E., Feinberg, D. A. & Silver, M. A. Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. NeuroImage 102, 358369 (2014).Google Scholar
Derrington, A. M. & Lennie, P. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology 357, 219240 (1984).Google Scholar
DeSimone, K., Viviano, J. D. & Schneider, K. A. Population receptive field estimation reveals new retinotopic maps in human subcortex. Journal of Neuroscience 35, 9836 (2015).Google Scholar
DeWeerd, P., Peralta, M. R., Desimone, R. & Ungerleider, L. G. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nature Neuroscience 2, 753758 (1999).Google Scholar
Dominguez-Vargas, A.-U., Schneider, L., Wilke, M. & Kagan, I. Electrical microstimulation of the pulvinar biases saccade choices and reaction times in a time-dependent manner. Journal of Neuroscience 37, 2234 (2017).Google Scholar
Eradath, M. K., Pinsk, M. A. & Kastner, S. Causal role of pulvinar in resting state cortico-cortical interactions. Journal of Comparative Neurology 529, 37723784 (2020).Google Scholar
Felsten, G. Different approaches to physiological psychology. Psyccritiques 28, 3840 (1983).Google Scholar
Fiebelkorn, I. C. & Kastner, S. A rhythmic theory of attention. Trends in Cognitive Sciences 23, 87101 (2019).Google Scholar
Fiebelkorn, I. C. & Kastner, S. Functional specialization in the attention network. Annual Review of Psychology 71, 221249 (2020).Google Scholar
Fiebelkorn, I. C., Pinsk, M. A. & Kastner, S. A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron 99, 842–853.e8 (2018).Google Scholar
Fiebelkorn, I. C., Pinsk, M. A. & Kastner, S. The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nature Communications 10, 215 (2019).Google Scholar
Fiebelkorn, I. C., Saalmann, Y. B. & Kastner, S. Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology 23, 25532558 (2013).Google Scholar
Fischer, J. & Whitney, D. Attention gates visual coding in the human pulvinar. Nature Communications 3, 1051 (2012).Google Scholar
Foxe, J. & Snyder, A. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology 2, 154 (2011).Google Scholar
Friedman-Hill, S. R., Robertson, L. C., Desimone, R. & Ungerleider, L. G. Posterior parietal cortex and the filtering of distractors. Proceedings of the National Academy of Sciences of the United States of America 100, 4263 (2003).Google Scholar
Friedman-Hill, S. R., Robertson, L. C., & Treisman, A. Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269, 853 (1995).Google Scholar
Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560 (2001).ssGoogle Scholar
Gallant, J. L., Shoup, R. E. & Mazer, J. A. A human extrastriate area functionally homologous to macaque V4. Neuron 27, 227235 (2000).Google Scholar
Ganguli, S. et al. One-dimensional dynamics of attention and decision making in LIP. Neuron 58, 1525 (2008).Google Scholar
Gottlieb, J. & Balan, P. Attention as a decision in information space. Trends in Cognitive Sciences 14, 240248 (2010).Google Scholar
Gouws, A. D. et al. On the role of suppression in spatial attention: evidence from negative BOLD in human subcortical and cortical structures. Journal of Neuroscience 34, 1034710360 (2014).Google Scholar
Gregoriou, G. G., Gotts, S. J. & Desimone, R. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron 73, 581594 (2012).Google Scholar
Grieve, K. L., Acuña, C. & Cudeiro, J. The primate pulvinar nuclei: vision and action. Trends in Neurosciences 23, 3539 (2000).Google Scholar
Guedj, C. & Vuilleumier, P. Functional connectivity fingerprints of the human pulvinar: Decoding its role in cognition. NeuroImage 221, 117162 (2020).Google Scholar
Gutierrez, C., Yaun, A. & Cusick, C. G. Neurochemical subdivisions of the inferior pulvinar in macaque monkeys. Journal of Comparative Neurology 363, 545562 (1995).Google Scholar
Haegens, S., Nácher, V., Luna, R., Romo, R. & Jensen, O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proceedings of the National Academy of Sciences of the United States of America 108, 19377 (2011).Google Scholar
Halassa, M. M. & Acsády, L. Thalamic inhibition: diverse sources, diverse scales. Trends in Neurosciences 39, 680693 (2016).Google Scholar
Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nature Neuroscience 20, 16691679 (2017).Google Scholar
Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195202 (2019). 1.Google Scholar
Haynes, J.-D., Deichmann, R. & Rees, G. Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438, 496499 (2005).Google Scholar
Helfrich, R. F. et al. Neural mechanisms of sustained attention are rhythmic. Neuron 99, 854–865.e5 (2018).Google Scholar
Hendry, S. H. C. & Reid, R. C. The koniocellular pathway in primate vision. Annual Review of Neuroscience 23, 127153 (2000).Google Scholar
Hickey, T. L. & Guillery, R. W. Variability of laminar patterns in the human lateral geniculate nucleus. Journal of Comparative Neurology 183, 221246 (1979).Google Scholar
Hirsch, J. A., Wang, X., Sommer, F. T. & Martinez, L. M. How inhibitory circuits in the thalamus serve vision. Annual Review of Neuroscience 38, 309329 (2015).Google Scholar
Homman-Ludiye, J., Mundinano, I. C., Kwan, W. C. & Bourne, J. A. Extensive connectivity between the medial pulvinar and the cortex revealed in the marmoset monkey. Cerebral Cortex 30, 17971812 (2019).Google Scholar
Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160, 106154 (1962).Google Scholar
Jaramillo, J., Mejias, J. F. & Wang, X.-J. Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations. Neuron 101, 321–336.e9 (2019).Google Scholar
Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience 4, 186 (2010).Google Scholar
Jones, E. G. The thalamus (Springer Science & Business Media, 2007).Google Scholar
Kaas, J. H. & Lyon, D. C. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Research Reviews 55, 285296 (2007).Google Scholar
Karnath, H., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125, 350360 (2002).Google Scholar
Kastner, S. et al. Functional imaging of the human lateral geniculate nucleus and pulvinar. Journal of Neurophysiology 91, 438448 (2004).Google Scholar
Kastner, S., Chen, Q., Jeong, S. K. & Mruczek, R. E. B. A brief comparative review of primate posterior parietal cortex: a novel hypothesis on the human toolmaker. Neuropsychologia 105, 123134 (2017).Google Scholar
Kastner, S., Fiebelkorn, I. C., & Eradath, M. K. Dynamic pulvino-cortical interactions in the primate attention network. Current Opinion in Neurobiology 65, 10–19 (2020).Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751761 (1999).Google Scholar
Kastner, S., & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience 23, 315341 (2000).Google Scholar
Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nature Neuroscience 16, 749755 (2013).Google Scholar
Lakatos, P., O’Connell, M. N. & Barczak, A. Pondering the pulvinar. Neuron 89, 57 (2016).Google Scholar
Landau, A. N. & Fries, P. Attention samples stimuli rhythmically. Current Biology 22, 10001004 (2012).Google Scholar
Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience 16, 16621670 (2013).Google Scholar
Lehky, S. R. & Maunsell, J. H. R. No binocular rivalry in the LGN of alert macaque monkeys. Vision Research 36, 12251234 (1996).Google Scholar
Ling, S., Pratte, M. S. & Tong, F. Attention alters orientation processing in the human lateral geniculate nucleus. Nature Neuroscience 18, 496498 (2015).CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740 (1988).Google Scholar
Livingstone, M. S. & Hubel, D. H. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554561 (1981).Google Scholar
Lu, Z.-L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vision Research 38, 11831198 (1998).Google Scholar
Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology 77, 2442 (1997).Google Scholar
Lückmann, H. C., Jacobs, H. I. L. & Sack, A. T. The cross-functional role of frontoparietal regions in cognition: internal attention as the overarching mechanism. Progress in Neurobiology 116, 6686 (2014).Google Scholar
Lyon, D. C., Nassi, J. J. & Callaway, E. M. A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65, 270279 (2010).Google Scholar
Malpeli, J. G., Lee, D. & Baker, F. H. Laminar and retinotopic organization of the macaque lateral geniculate nucleus: magnocellular and parvocellular magnification functions. Journal of Comparative Neurology 375, 363377 (1996).Google Scholar
Marion, R., Li, K., Purushothaman, G., Jiang, Y. & Casagrande, V. A. Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. Journal of Comparative Neurology 521, 813832 (2013).Google Scholar
Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. Journal of Comparative Neurology 522, 225259 (2014).Google Scholar
Martin, A. B. et al. Temporal dynamics and response modulation across the human visual system in a spatial attention task: an ECoG study. Journal of Neuroscience 39, 333352 (2019).Google Scholar
Martin, P. R., White, A. J. R., Goodchild, A. K., Wilder, H. D. & Sefton, A. E. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience 9, 15361541 (1997).Google Scholar
McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Attentional modulation of thalamic reticular neurons. Journal of Neuroscience 26, 4444 (2006).Google Scholar
McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Guarding the gateway to cortex with attention in visual thalamus. Nature 456, 391394 (2008).Google Scholar
McCormick, D. A., McGinley, M. J. & Salkoff, D. B. Brain state dependent activity in the cortex and thalamus. Current Opinion in Neurobiology 31, 133140 (2015).Google Scholar
Mehta, A. D., Ulbert, I. & Schroeder, C. E. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex 10, 343358 (2000).Google Scholar
Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63, 879888 (2009).Google Scholar
Murray, J. D., Jaramillo, J. & Wang, X.-J. Working memory and decision-making in a frontoparietal circuit model. Journal of Neuroscience 37, 12167 (2017).Google Scholar
Moore, T., & Fallah, M. Control of eye movements and spatial attention. Proceedings of the national Academy of Sciences of the United States of America 98, 12731276 (2001).Google Scholar
O’Connor, D. H., Fukui, M. M., Pinsk, M. A. & Kastner, S. Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience 5, 12031209 (2002).Google Scholar
Parvizi, J. Corticocentric myopia: old bias in new cognitive sciences. Trends in Cognitive Sciences 13, 354359 (2009).Google Scholar
Petersen, S. E., Robinson, D. L. & Keys, W. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. Journal of Neurophysiology 54, 867886 (1985).CrossRefGoogle ScholarPubMed
Petersen, S. E., Robinson, D. L. & Morris, J. D. Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25, 97105 (1987).Google Scholar
Phillips, J. M. et al. Topographic organization of connections between prefrontal cortex and mediodorsal thalamus: evidence for a general principle of indirect thalamic pathways between directly connected cortical areas. NeuroImage 189, 832846 (2019).Google Scholar
Pogosyan, A., Gaynor, L. D., Eusebio, A. & Brown, P. Boosting cortical activity at beta-band frequencies slows movement in humans. Current Biology 19, 16371641 (2009).Google Scholar
Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annual Review of Neuroscience 13, 2542 (1990).Google Scholar
Posner, M. I., Snyder, C. R. & Davidson, B. J. Attention and the detection of signals. Journal of Experimental Psychology: General 109, 160174 (1980).Google Scholar
Purushothaman, G., Marion, R., Li, K. & Casagrande, V. A. Gating and control of primary visual cortex by pulvinar. Nature Neuroscience 15, 905912 (2012).Google Scholar
Qian, Y. et al. Robust functional mapping of layer-selective responses in human lateral geniculate nucleus with high-resolution 7T fMRI. Proceedings of the Royal Society B: Biological Sciences 287, 20200245 (2020).Google Scholar
Quax, S., Jensen, O. & Tiesinga, P. Top-down control of cortical gamma-band communication via pulvinar induced phase shifts in the alpha rhythm. PLOS Computational Biology 13, e1005519 (2017).CrossRefGoogle ScholarPubMed
Rafal, R. D. & Posner, M. I. Deficits in human visual spatial attention following thalamic lesions. Proceedings of the National Academy of Sciences of the United States of America 84, 7349 (1987).Google Scholar
Rockland, K. S. Convergence and branching patterns of round, type 2 corticopulvinar axons. Journal of Comparative Neurology 390, 515536 (1998).Google Scholar
Rockland, K. S., Andresen, J., Cowie, R. J. & Robinson, D. L. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. Journal of Comparative Neurology 406, 221250 (1999).Google Scholar
Romanski, L. M., Giguere, M., Bates, J. F. & Goldman-Rakic, P. S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology 379, 313332 (1997).Google Scholar
Rovó, Z., Ulbert, I. & Acsády, L. Drivers of the primate thalamus. Journal of Neuroscience 32, 17894 (2012).CrossRefGoogle ScholarPubMed
Roy, S. et al. Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus. European Journal of Neuroscience 30, 15171526 (2009).CrossRefGoogle ScholarPubMed
Saalmann, Y. B. & Kastner, S. Cognitive and perceptual functions of the visual thalamus. Neuron 71, 209223 (2011).Google Scholar
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753 (2012).Google Scholar
Schmahmann, J. D. & Pandya, D. N. Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. Journal of Comparative Neurology 295, 299326 (1990).Google Scholar
Schneider, K. A. Subcortical mechanisms of feature-based attention. Journal of Neuroscience 31, 8643 (2011).Google Scholar
Schneider, K. A. & Kastner, S. Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. Journal of Neuroscience 29, 1784 (2009).Google Scholar
Schneider, K. A., Richter, M. C. & Kastner, S. Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. Journal of Neuroscience 24, 8975 (2004).Google Scholar
Sclar, G., Maunsell, J. H. R. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30, 110 (1990).Google Scholar
Sherman, S. M. & Guillery, R. W. On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators.Proceedings of the National Academy of Sciences of the United States of America 95, 7121 (1998).CrossRefGoogle ScholarPubMed
Sherman, S. M. & Guillery, R. W. Functional connections of cortical areas: a new view from the thalamus (MIT Press, 2013).CrossRefGoogle Scholar
Sherman, S. M. & Koch, C. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research 63, 120 (1986).CrossRefGoogle ScholarPubMed
Shipp, S. The functional logic of cortico–pulvinar connections. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, 16051624 (2003).Google Scholar
Shiu, L.-P. & Pashler, H. Spatial attention and vernier acuity. Vision Research 35, 337343 (1995).Google Scholar
Smaers, J. B., Gómez-Robles, A., Parks, A. N. & Sherwood, C. C. Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Current Biology 27, 714720 (2017).Google Scholar
Smith, A. T., Cotton, P. L., Bruno, A. & Moutsiana, C. Dissociating vision and visual attention in the human pulvinar. Journal of Neurophysiology 101, 917925 (2009).Google Scholar
Smith, P. L. & Ratcliff, R. An integrated theory of attention and decision making in visual signal detection. Psychological Review 116, 283317 (2009).Google Scholar
Snow, J. C., Allen, H. A., Rafal, R. D. & Humphreys, G. W. Impaired attentional selection following lesions to human pulvinar: evidence for homology between human and monkey. Proceedings of the National Academy of Sciences of the United States of America 106, 4054 (2009).Google Scholar
Song, K., Meng, M., Chen, L., Zhou, K. & Luo, H. Behavioral oscillations in attention: rhythmic α pulses mediated through θ band. Journal of Neuroscience 34, 4837 (2014).Google Scholar
Stepniewska, I. & Kaas, J. H. Architectonic subdivisions of the inferior pulvinar in New World and Old World monkeys. Visual Neuroscience 14, 10431060 (1997).Google Scholar
Steriade, M. Acetylcholine systems and rhythmic activities during the waking–sleep cycle. Progress in Brain Research 145, 179196 (2004).Google Scholar
Strumpf, H. et al. The role of the pulvinar in distractor processing and visual search. Human Brain Mapping 34, 11151132 (2013).Google Scholar
Szczepanski, S. M. & Kastner, S. Shifting attentional priorities: control of spatial attention through hemispheric competition. Journal of Neuroscience 33, 5411 (2013).Google Scholar
Szczepanski, S. M., Konen, C. S. & Kastner, S. Mechanisms of spatial attention control in frontal and parietal cortex. Journal of Neuroscience 30, 148 (2010).Google Scholar
Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neuroscience 13, 8488 (2010).Google Scholar
Thompson, K. G., Biscoe, K. L. & Sato, T. R. Neuronal basis of covert spatial attention in the frontal eye field. Journal of Neuroscience 25, 9479 (2005).Google Scholar
Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cognitive Psychology 12, 97136 (1980).Google Scholar
Ungerleider, L. G., Desimone, R., Galkin, T. W. & Mishkin, M. Subcortical projections of area MT in the macaque. Journal of Comparative Neurology 223, 368386 (1984).CrossRefGoogle ScholarPubMed
Usrey, W. M. & Alitto, H. J. Visual functions of the thalamus. Annual Review of Vision Science 1, 351371 (2015).Google Scholar
Usrey, W. M., Reppas, J. B. & Reid, R. C. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395, 384387 (1998).CrossRefGoogle Scholar
VanRullen, R. Perceptual cycles. Trends in Cognitive Sciences 20, 723735 (2016).Google Scholar
VanRullen, R., Carlson, T. & Cavanagh, P. The blinking spotlight of attention. Proceedings of the National Academy of Sciences of the United States of America 104, 19204 (2007).Google Scholar
Ward, R., Danziger, S., Owen, V. & Rafal, R. Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar. Nature Neuroscience 5, 99100 (2002).Google Scholar
Warner, C. E., Kwan, W. C. & Bourne, J. A. The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. Journal of Neuroscience 32, 17073 (2012).Google Scholar
Wells, M. F., Wimmer, R. D., Schmitt, L. I., Feng, G. & Halassa, M. M. Thalamic reticular impairment underlies attention deficit in Ptchd1Y/− mice. Nature 532, 5863 (2016).Google Scholar
Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B. & Buhl, E. H. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International Journal of Psychophysiology 38, 315336 (2000).Google Scholar
Wiesel, T. N. & Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology 29, 11151156 (1966).Google Scholar
Wilke, M., Turchi, J., Smith, K., Mishkin, M. & Leopold, D. A. Pulvinar inactivation disrupts selection of movement plans. Journal of Neuroscience 30, 8650 (2010).Google Scholar
Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705709 (2015).Google Scholar
Womelsdorf, T. et al. Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609 (2007).Google Scholar
Wróbel, A., Bekisz, M. & Waleszczyk, W. 20 Hz bursts of activity in the cortico-thalamic pathway during attentive perception. In Oscillatory Event-Related Brain Dynamics (eds. Pantev, C., Elbert, T. & Lütkenhöner, B.), 311324 (Springer US, 1994).Google Scholar
Wunderlich, K., Schneider, K. A. & Kastner, S. Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nature Neuroscience 8, 15951602 (2005).Google Scholar
Xu, X. et al. A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Journal of Physiology 531, 203218 (2001).Google Scholar
Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 7275 (1998).Google Scholar
Yeterian, E. H. & Pandya, D. N. Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. Journal of Comparative Neurology 237, 408426 (1985).Google Scholar
Zeater, N., Cheong, S. K., Solomon, S. G., Dreher, B. & Martin, P. R. Binocular visual responses in the primate lateral geniculate nucleus. Current Biology 25, 31903195 (2015).Google Scholar
Zhang, P., Zhou, H., Wen, W. & He, S. Layer-specific response properties of the human lateral geniculate nucleus and superior colliculus. NeuroImage 111, 159166 (2015).Google Scholar
Zhang, Y., Chen, Y., Bressler, S. L. & Ding, M. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 156, 238246 (2008).Google Scholar
Zhou, H., Schafer, R. J. & Desimone, R. Pulvinar-cortex interactions in vision and attention. Neuron 89, 209220 (2016).CrossRefGoogle ScholarPubMed
Zikopoulos, B. & Barbas, H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience 26, 7348 (2006).Google Scholar
Zikopoulos, B. & Barbas, H. Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. Journal of Neuroscience 32, 5338 (2012).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×