Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-13T10:44:00.941Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  19 February 2010

Simon Verhulst
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Johan Bolhuis
Affiliation:
Universiteit Utrecht, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Tinbergen's Legacy
Function and Mechanism in Behavioral Biology
, pp. 197 - 227
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. (2001). Adaptationism, optimality models and tests of adaptive scenarios. In Adaptationism and Optimality, ed. Orzack, S. H. and Sober, E.. Cambridge: Cambridge University Press, pp. 273–302.CrossRefGoogle Scholar
Ainsworth, M. D. S., Blehar, M. C., Waters, E., and Wall, S. (1978). Patterns of Attachment: Assessed in the Strange Situation and at Home. Hillsdale, NJ: Erlbaum.Google Scholar
Airey, D. C. and DeVoogd, T. J. (2000). Greater song complexity is associated with augmented song system in zebra finches. NeuroReport, 11, 2339–2344.CrossRefGoogle ScholarPubMed
Airey, D. C., Buchanan, K. L., Szekely, T., Catchpole, C. K., and DeVoogd, T. J. (2000). Song, sexual selection, and song control nucleus (HVC) in the brains of European sedge warblers. J. Neurobiol., 44, 1–6.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Alcock, J. S. and Sherman, P. W. (1994). The utility of the proximate–ultimate dichotomy in ethology. Ethology, 96, 58–62.CrossRefGoogle Scholar
Altman, J. and Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in the rat. J. Comp. Neurol., 124, 319–355.CrossRefGoogle Scholar
Amundson, R. (1996). Historical development of the concept of adaptation. In Adaptation, ed. Rose, M. R. and Lauder, G. V.. San Diego, CA: Academic Press, pp. 11–53.Google Scholar
Andersson, M. (1994). Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Arnold, A. P. (2002). Concepts of genetic and hormonal induction of vertebrate sexual differentiation in the twentieth century, with special reference to the brain. In Hormones, Brain, and Behavior, ed. Pfaff, D. W., Arnold, A., Etgen, A., Fahrbach, S., Moss, R., and Rubin, R., Volume 4. New York: Academic Press, pp. 105–136.CrossRefGoogle Scholar
Aronson, L. R. (1981). Evolution of telencephalic function in lower vertebrates. In Evolution of Telencephalic Function in Lower Vertebrates, ed. Laming, P. R.. Cambridge: Cambridge University Press, pp. 33–58.Google Scholar
Atz, J. W. (1970). The application of the idea of homology to behavior. In Development and Evolution of Behavior: Essays in Honor of T.C. Schneirla, ed. Aronson, L. R.; Tobach, E., Lehrman, D. S., and Rosenblatt, J. S.. San Francisco: W.H. Freeman, pp. 53–74.Google Scholar
Autumn, K., Ryan, M. J., and Wake, D. B. (2002). Integrating historical and mechanistic biology enhances the study of adaptation. Q. Rev. Biol., 77, 383–408.CrossRefGoogle Scholar
Baerends, G. P. (1975). An evaluation of the conflict hypothesis as an explanatory principle for the evolution of displays. In Function and Evolution in Behaviour, ed. Baerends, G. P., Beer, C., and Manning, A.. London: Oxford University Press, pp. 187–227.Google Scholar
Baerends, G. P. (1976). The functional organization of behaviour. Anim. Behav., 24, 726–738.CrossRefGoogle Scholar
Baerends, G. P. and Drent, R. H., (eds.) (1982). The herring gull and its egg. Part II. Behaviour, 82, 1–416.CrossRef
Baerends, G. P. and Kruijt, J. P. (1973). Stimulus selection. In Constraints on Learning, ed. Hinde, R. A. and Stevenson-Hinde, J.. London: Academic Press, pp. 23–49.Google Scholar
Baker, J. R. (1938). The evolution of breeding seasons. In Evolution: Essays on Aspects of Evolutionary Biology, ed. Beer, G. R.. Oxford, UK: Oxford University Press, pp. 161–171.Google Scholar
Bakker, T. C. M. (1986). Aggressiveness in sticklebacks (Gasterosteus aculeatus L.).: a behaviour–genetic study. Behaviour, 98, 1–144.CrossRefGoogle Scholar
Balda, R. P., Kamil, A. C., Bednekoff, P. A., and Hile, A. G. (1997). Species differences in spatial memory performance on a three-dimensional task. Ethology, 103, 47–55.CrossRefGoogle Scholar
Ball, G. F., Riters, L. V., and Balthazart, J. (2002). Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Front. Neuroendocrin., 23, 137–178.CrossRefGoogle ScholarPubMed
Baptista, L. F. and Gaunt, S. L. L. (1997). Social interaction and vocal development in birds. In Social Influences on Vocal Development, ed. Snowdon, C. T. and Hausberger, M.. Cambridge, UK: Cambridge University Press, pp. 23–40.CrossRefGoogle Scholar
Baptista, L. F. and Petrinovich, L. (1984). Social interaction, sensitive phases and the song template hypothesis in the white-crowned sparrow. Anim. Behav., 34, 1359–1371.CrossRefGoogle Scholar
Barnard, C. (2004). Animal Behaviour: Mechanism, Development, Function and Evolution. Harlow, UK: Pearson Education Ltd/Prentice Hall.Google Scholar
Barnea, A. and Nottebohm, F. (1994). Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc. Natl Acad. Sci. USA, 91, 11217–11221.CrossRefGoogle ScholarPubMed
Barnea, A. and Nottebohm, F. (1996). Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc. Natl Acad. Sci. USA, 93, 714–718.CrossRefGoogle Scholar
Basil, J. A., Kamil, A. C., Balda, R. P., and Fite, K. V. (1996). Differences in hippocampal volume among food storing corvids. Brain Behav. Evol., 47, 156–164.CrossRefGoogle ScholarPubMed
Bateson, P. (1982). Preferences for cousins in Japanese quail. Nature, 295, 236–237.CrossRefGoogle Scholar
Bateson, P. (1987). Imprinting as a process of competitive exclusion. In Imprinting and Cortical Plasticity, ed. Rauschecker, J. P. and Marler, P.. New York: Wiley, pp. 151–168.Google Scholar
Bateson, P. (2003). The promise of behavioural biology. Anim. Behav., 65, 1–17.CrossRefGoogle Scholar
Bateson, P. P. G. (1964). Effect of similarity between rearing and testing conditions on chicks' following and avoidance responses. J. Comp. Physiol. Psychol., 57, 100–103.CrossRefGoogle ScholarPubMed
Bateson, P. P. G. (1966). The characteristics and context of imprinting. Biol. Rev., 41, 177–220.CrossRefGoogle Scholar
Bateson, P. and Hinde, R. A. (1987). Developmental changes in sensitivity to experience. In Sensitive Periods in Development, ed. Bornstein, M. H.. Hillsdale, NJ: Erlbaum, pp. 19–34.Google Scholar
Bateson, P. and Horn, G. (1994). Imprinting and recognition memory: a neural net model. Anim. Behav., 48, 695–715.CrossRefGoogle Scholar
Bateson, P. and Martin, P. (2002). Design for a Life. How Behaviour Develops. London: Jonathan Cape.Google Scholar
Bateson, P. P. G. and Klopfer, P. H. (eds.) (1989). Whither Ethology? Perspectives in Ethology, vol. 8. New York: Plenum Press.
Beach, F. A. (1948). Hormones and Behavior. New York: Hoeber, Harper and Brothers.Google Scholar
Beach, F. A. and Jaynes, J. (1954). Effects of early experience upon the behavior of animals. Psych. Bull., 51, 239–263.CrossRefGoogle ScholarPubMed
Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., and Lunau, K. (1997). Ultraviolet plumage colors predict mate preferences in starlings. Proc. Natl Acad. Sci., USA, 94, 8618–8621.CrossRefGoogle ScholarPubMed
Bern, H. A. (1990). The “new” endocrinology: its scope and its impact. Amer. Zool., 30, 877–885.CrossRefGoogle Scholar
Bernard, D. J., Eens, M., and Ball, G. F. (1996). Age and behavior-related variation in the volume of song control nuclei in male European starlings. J. Neurobiol., 30, 329–339.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Berridge, K. C. (1994). The development of action patterns. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge, UK: Cambridge University Press, pp. 147–180.CrossRefGoogle Scholar
Berridge, K. C., Fentress, J. C., and Parr, H. (1987). Natural syntax rules control action sequence of rats. Behav. Brain Res., 23, 59–68.CrossRefGoogle ScholarPubMed
Bischof, H.-J. (1979). A model of imprinting evolved from neurophysiological concepts. Z. Tierpsychol., 51, 126–139.CrossRefGoogle ScholarPubMed
Bischof, H.-J. (1994). Sexual imprinting as a two-stage process. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge, UK: Cambridge University Press, pp. 82–97.CrossRefGoogle Scholar
Bischof, H.-J. (2003). Neural mechanisms of sexual imprinting. Anim. Biol., 53, 89–112.CrossRefGoogle Scholar
Blass, E. M. (1999). The ontogeny of human infant fact recognition: orogustatory, visual, and social influences. In Early Social Cognition, ed. Rochat, P.. Mahway, NJ: Erlbaum, pp. 35–65.Google Scholar
Blokhuis, H. J. (1989). The development and causation of feather pecking in the domestic fowl. Ph.D. thesis, Agricultural University, Wageningen, the Netherlands.
Blokhuis, H. J. and Arkes, J. G. (1984). Some observations on the development of feather-pecking in poultry. Appl. Anim. Behav. Sci., 12, 145–157.CrossRefGoogle Scholar
Blomberg, S. P. and Garland, T. J. (2002). Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol., 15, 899–910.CrossRefGoogle Scholar
Bock, W. J. and Wahlert, G. (1965). Adaptation and the form–function complex. Evolution, 19, 269–299.CrossRefGoogle Scholar
Boesch, C. and Boesch, H. (1984). Mental maps in wild chimpanzees: an analysis of hammer transports for nut cracking. Primates, 25, 160–170.CrossRefGoogle Scholar
Bolhuis, J. J. (1991). Mechanisms of avian imprinting: a review. Biol. Rev., 66, 303–345.CrossRefGoogle ScholarPubMed
Bolhuis, J. J. (1996). Development of perceptual mechanisms in birds: predispositions and imprinting. In Neuroethological Studies of Cognitive and Perceptual Processes. ed. Moss, C. F. and Shettleworth, S. J.. Boulder, CO: Westview Press, pp. 158–184.Google Scholar
Bolhuis, J. J. (1999). The development of animal behaviour. From Lorenz to neural nets. Naturwissenschaften, 86, 101–111.CrossRefGoogle ScholarPubMed
Bolhuis, J. J. (ed.). (2000). Brain, Perception, Memory. Advances in Cognitive Neuroscience. Oxford: Oxford University Press.CrossRef
Bolhuis, J. J. (2005a). Development of behavior. In The Behavior of Animals. Mechanisms, Function, and Evolution, ed. Bolhuis, J. J. and Giraldeau, L.-A.. Oxford: Blackwell Publishing, pp. 119–145.Google Scholar
Bolhuis, J. J. (2005b). Function and mechanism in neuroecology: looking for clues. Anim. Biol. 55, 457–490. (Chapter 9 in this volume).CrossRefGoogle Scholar
Bolhuis, J. J. (2008). Chasin' the trace: the neural substrate of bird song memory. In The Neuroscience of Birdsong, (ed. Zeigler, H. P. and Marler, P.. Cambridge, UK: Cambridge University Press).Google Scholar
Bolhuis, J. J. and Eda-Fujiwara, H. (2003). Bird brains and songs: neural mechanisms of birdsong perception and memory. Anim. Biol. 53, 129–145.CrossRefGoogle Scholar
Bolhuis, J. J. and Gahr, M. (2006). Neural mechanisms of birdsong memory. Nature Rev. Neurosci., 7, 347–357.CrossRefGoogle ScholarPubMed
Bolhuis, J. J. and Giraldeau, L.-A. (2005). The study of animal behavior. In The Behavior of Animals. Mechanisms, Function, and Evolution, ed. Bolhuis, J. J. and Giraldeau, L.-A.. Oxford: Blackwell Publishing, pp. 1–9.Google Scholar
Bolhuis, J. J. and Hogan, J. A. (eds.) (1999). The Development of Animal Behavior: A Reader. Oxford, UK: Blackwell.
Bolhuis, J. J. and Honey, R. C. (1994). Within-event learning during filial imprinting. J. Exp. Psychol.: Anim. Behav. Processes, 20, 240–248.Google ScholarPubMed
Bolhuis, J. J. and Honey, R. C. (1998). Imprinting, learning, and development: from behaviour to brain and back. Trends Neurosci., 21, 306–311.CrossRefGoogle Scholar
Bolhuis, J. J. and Macphail, E. M. (2001). A critique of the neuroecology of learning and memory. Trends Cogn. Sci., 5, 426–433.CrossRefGoogle ScholarPubMed
Bolhuis, J. J. and Macphail, E. M. (2002). Everything in neuroecology makes sense in the light of evolution. Trends Cogn. Sci., 6, 7–8.CrossRefGoogle Scholar
Bolhuis, J. J., Vos, G. J., and Kruijt, J. P. (1990). Filial imprinting and associative learning. Q. J. Exp. Psychol., 42B, 313–329.Google Scholar
Bolhuis, J. J., Zijlstra, G. G. O., Boer-Visser, A. M., and Zee, E. A. (2000). Localized neuronal activation in the zebra finch brain is related to the strength of song learning, Proc. Natl Acad. Sci. USA, 97, 2282–2285.CrossRefGoogle ScholarPubMed
Bolhuis, J. J., Hetebrij, E., Boer-Visser, A. M., Groot, J. H., and Zijlstra, G. G. O. (2001). Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches, Eur. J. Neurosci., 13, 2165–2170.CrossRefGoogle ScholarPubMed
Booth, D. A. (ed.) (1978). Hunger Models. London: Academic Press.
Borbély, A. A. (1982). A two-process model of sleep regulation. Hum. Neurobiol., 1, 195–204.Google ScholarPubMed
Borbély, A. A. and Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms, 14, 557–568.Google ScholarPubMed
Bornstein, M. H. (ed). (1987). Sensitive Periods in Development. Hilldale, NJ: Erlbaum.
Bottjer, S. W. and Arnold, A. P. (1997). Developmental plasticity in neural circuits for a learned behavior. Annu. Rev. Neurosci., 20, 459–481.CrossRefGoogle ScholarPubMed
Bottjer, S. W., Miesner, E. A., and Arnold, A. P. (1984). Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science, 224, 901–903.CrossRefGoogle ScholarPubMed
Boul, K. E. and Ryan, M. J. (2004). Population variation of complex advertisement calls in Physalaemus petersi and comparative laryngeal morphology. Copeia, 3, 624–631.CrossRefGoogle Scholar
Bourne, G. R. (1993). Proximate costs and benefits of mate acquisition at leks of the frog Ololygon rubra. Anim. Behav., 45, 1051–1059.CrossRefGoogle Scholar
Bowlby, J. (1969). Attachment and Loss, Vol. 1. Attachment. London: Hogarth Press.Google Scholar
Bowlby, J. (1991). Ethology and psychoanalysis. In The Development and Integration of Behavior, ed. Bateson, P.. Cambridge, UK: Cambridge University Press, pp. 301–313.Google Scholar
Bowmaker, J. K. (1998). Evolution of colour vision in vertebrates. Eye, 12, 541–547.CrossRefGoogle ScholarPubMed
Brainard, M. S. and Doupe, A. J. (2000). Auditory feedback in learning and maintenance of vocal behaviour. Nature Rev. Neurosci., 1, 31–40.CrossRefGoogle ScholarPubMed
Brainard, M. S. and Doupe, A. J. (2002). What songbirds teach us about learning. Nature, 417, 351–358.CrossRefGoogle ScholarPubMed
Brandon, R. N. (1990). Adaptation and Environment. Princeton, NJ: Princeton University Press.Google Scholar
Brenowitz, E. A. (1991). Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science, 251, 303–304.CrossRefGoogle Scholar
Brenowitz, E. A. and Beecher, M. D. (2005). Song learning in birds: diversity and plasticity, opportunities and challenges. Trends Neurosci., 28, 127–132.CrossRefGoogle ScholarPubMed
Brenowitz, E. A. and Kroodsma, D. E. (1996). The neuroethology of birdsong. In Ecology and Evolution of Acoustic Communication in Birds, ed. Kroodsma, D. E. and Miller, E. H.. London: Cornell University Press, pp. 285–304.Google Scholar
Brenowitz, E. A., Nalls, B., Wingfield, J., and Kroodsma, D. (1991). Seasonal changes in avian song nuclei without seasonal changes in song repertoire. J. Neurosci., 11, 1367–1374.CrossRefGoogle ScholarPubMed
Brenowitz, E. A., Lent, K., and Kroodsma, D. E. (1995). Brain space for learned song develops independently of song learning. J. Neurosci. 15, 6281–6286.CrossRefGoogle ScholarPubMed
Brodin, A. (2005). Hippocampus volume does not correlate to food hoarding rates in the field in two closely related bird species, the black-capped chickadee Poecile atricapillus and the willow tit Parus montanus. Auk, 122, 819–828.CrossRefGoogle Scholar
Brodin, A. and Lundborg, K. (2003). Is hippocampus volume affected by specialisation for food hoarding in birds? Proc. Roy. Soc. Lond. B, 270, 1555–1563.CrossRefGoogle ScholarPubMed
Brooks, D. R. and McLennan, D. A. (1991). Phylogeny, Ecology, and Behavior. Chicago: University of Chicago Press.Google Scholar
Brooks, D. R. and McLennan, D. A. (2002). The Nature of Diversity. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Brown, M. W. (2000). Neuronal correlates of recognition memory. In Brain, Perception, Memory. Advances in Cognitive Neuroscience, ed. Bolhuis, J. J.. Oxford: Oxford University Press, pp. 185–208.CrossRefGoogle Scholar
Bucher, T. L., Ryan, M. J., and Bartholomew, G. W. (1982). Oxygen consumption during resting, calling and nest building in the frog Physalaemus pustulosus. Physiological Zoology, 55, 10–22.CrossRefGoogle Scholar
Buckley, M. J. and Gaffan, D. (2000). The hippocampus, perirhinal cortex and memory in the monkey. In Brain, Perception, Memory. Advances in Cognitive Neuroscience, ed. Bolhuis, J. J.. Oxford, UK: Oxford University Press, pp. 279–298.CrossRefGoogle Scholar
Buller, D. J. (2005). Adapting Minds. Evolutionary Psychology and the Persistent Quest for Human Nature. Cambridge, MA and London: MIT Press.Google Scholar
Burghardt, G. M. and Gittleman, J. G. (1990). Comparative and phylogenetic analyses: new wine, old bottles. In Interpretation and Explanation in the Study of Behavior: Vol. 2. Comparative Perspectives, ed. Bekoff, M. and Jamieson, D.. Boulder, CO: Westview Press, pp. 192–225.Google Scholar
Burkhardt, R. W.. (2005). Patterns of Behavior. Konrad Lorenz, Niko Tinbergen and the Founding of Ethology. Chicago and London: University of Chicago Press.Google Scholar
Byrne, R. W. (2007). Animal cognition: bring me my spear. Current Biol., 17, R164–R165.CrossRefGoogle ScholarPubMed
Cannatella, D. C. and Duellman, W. E. (1984). Leptodactylid frogs of the Physalaemus pustulosus group. Copeia 4, 902–921.CrossRefGoogle Scholar
Cannatella, D. C., Hillis, D. M., Chippinendale, P., Weigt, L., Rand, A. S., and Ryan, M. J. (1998). Phylogeny of frogs of the Physalaemus pustulosus species group, with an examination of data incongruence. Syst. Biol., 47, 311–335.CrossRefGoogle ScholarPubMed
Capranica, R. R. (1977). Auditory processing in anurans. Fed. Proc., 37, 2324–2328.Google Scholar
Carew, T. J. (2000). Behavioral Neurobiology: The Cellular Organization of Natural Behavior. Sunderland, MA: Sinauer.Google Scholar
Carr, C. E. and Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci., 10, 3227–3246.CrossRefGoogle ScholarPubMed
Catchpole, C. K. and Slater, P. J. B. (1995). Bird Song: Biological Themes and Variations. Cambridge, UK: Cambridge University Press.Google Scholar
Cheney, D. L. and Seyfarth, R. M. (1990). How Monkeys See the World: Inside the Mind of Another Species. Chicago: University of Chicago Press.Google Scholar
Chittka, L. (1996). Does bee color vision predate the evolution of flower color? Naturwissenschaften, 83, 136–138.CrossRefGoogle Scholar
Chittka, L. and Briscoe, A. (2001). Why sensory ecology needs to become more evolutionary – insect color vision as a case in point. In Ecology of Sensing, ed. Barth, F. G. and Schmid, A.. Berlin: Springer-Verlag, pp. 19–37.CrossRefGoogle Scholar
Chittka, L. and Menzel, R. (1992). The evolutionary adaptation of flower colours and the insect pollinators' colour vision. J. Comp. Physiol. A, 171, 171–181.CrossRefGoogle Scholar
Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.Google Scholar
Chow, A. and Hogan, J. A. (2005). The development of feather pecking in Burmese red junglefowl: the influence of early experience with exploratory-rich environments. Appl. Anim. Behav. Sci., 93, 283–294.CrossRefGoogle Scholar
Clark, M. M. and Galef, B. G. (1995). Prenatal influences on reproductive life history strategies. Trends Ecol. Evol., 10, 151–153.CrossRefGoogle ScholarPubMed
Clark, M. M., Crews, D., and Galef, B. G. (1991a). Concentrations of sex steroid hormones in pregnant and fetal mongolian gerbils. Physiol. Behav., 49, 239–243.CrossRefGoogle ScholarPubMed
Clark, M. M., Galef, B. G., and vom Saal, F. S. (1991b). Nonrandom sex composition of gerbil mouse and hamster litters before and after bird. Devel. Psychobiol., 24, 81–90.CrossRefGoogle Scholar
Clayton, D. F. (2000). The neural basis of avian song learning and perception. In Brain, Perception, Memory. Advances in Cognitive Neuroscience, ed. Bolhuis, J. J.. Oxford University Press, Oxford: pp. 113–125.CrossRefGoogle Scholar
Clayton, N. S. (1994). The influence of social interactions on the development of song and sexual preferences in birds. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge, UK: Cambridge University Press, pp. 98–115.CrossRefGoogle Scholar
Clayton, N. S. and Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274.CrossRefGoogle ScholarPubMed
Clayton, N. S. and Krebs, J. R. (1995a). Memory in food-storing birds: from behaviour to brain. Curr. Opin. Neurobiol. 5, 149–154.CrossRefGoogle Scholar
Clayton, N. S. and Krebs, J. R. (1995b). Lateralization in memory and the avian hippocampus in food-storing birds. In Behavioural Brain Research in Naturalistic and Semi-naturalistic Settings, ed. Alleva, E., Fasolo, A., Lipp, H. P., Nadel, L., and Ricceri, L.. Dordrecht: Kluwer Academic Publishers, pp. 139–157.CrossRefGoogle Scholar
Clayton, N. S., Bussey, T. J., and Dickinson, A. (2003). Can animals recall the past and plan for the future?Nature Rev. Neurosci., 4, 685–691.CrossRefGoogle ScholarPubMed
Clayton, N. W., Salwiczek, L. H., and Dickinson, A. (2007). Episodic memory. Current Biol., 17, R189–R191.CrossRefGoogle ScholarPubMed
Cleveland, A., Rocca, A. M., Wendt, E. L., and Westergaard, G. C. (2004). Transport of tools to food sites in tufted capuchin monkeys (Cebus apella). Anim. Cogn., 7, 193–198.CrossRefGoogle Scholar
Clotfelter, E. D., O'Neal, D. M., Gaudioso, J. M.et al. (2004). Consequences of elevating plasma testosterone in females of a socially monogamous songbird: evidence of constraints on male evolution?Horm. Behav., 46, 171–178.CrossRefGoogle ScholarPubMed
Colombo, M. and Broadbent, N. (2000). Is the avian hippocampus a functional homologue of the mammalian hippocampus?Neurosci. Biobehav. Rev., 24, 465–484.CrossRefGoogle ScholarPubMed
Colonnese, M. T., Stallman, E. L., and Berridge, K. C. (1996). Ontogeny of action syntax in altricial and precocial rodents: grooming sequences of rat and guinea pig pups. Behaviour, 133, 1165–1195.CrossRefGoogle Scholar
Coomber, P., Crews, D., and Gonzalez-Lima, F. (1997). Independent effects of incubation temperature and gonadal sex on the volume and metabolic capacity of brain nuclei in the leopard gecko, Eublepharis macularius, a lizard with temperature-dependent sex determination. J. Comp. Neurol., 380, 409–421.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Cosmides, L. and Tooby, J. (1994). Origins of domain specificity: the evolution of functional organization. In Mapping the Mind, Hirschfeld, L. A. and Gelman, S. A.. Cambridge, UK: Cambridge University Press, pp. 85–116.CrossRefGoogle Scholar
Cosmides, L. and Tooby, J. (1995). From function to structure: the role of evolutionary biology and computational theories in cognitive neuroscience. In The Cognitive Neurosciences, ed. Gazzaniga, M.. Cambridge, MA, MIT Press, pp. 1199–1210.Google Scholar
Crews, D. (1992). 2-DG and neuroethology: Metabolic mapping of brain activity during sexual and aggressive species typical behaviors. In Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions, ed. Gonzalez-Lima, F., Finkenstaedt, T., and Scheich, H.. Dordrecht, the Netherlands: Kluwer Academic Publishers B.V., pp. 367–387.CrossRefGoogle Scholar
Crews, D. (1993). The Organizational Concept and vertebrates without sex chromosomes. Brain, Behav. Evol., 42, 202–214.CrossRefGoogle ScholarPubMed
Crews, D. (1996). Temperature-dependent sex determination: the interplay of steroid hormones and temperature. Zool. Science, 13, 1–13.CrossRefGoogle ScholarPubMed
Crews, D. (1999). Sexuality: the environmental organization of phenotypic plasticity. In Reproduction in Context, Wallen, K. and Schneider, J.. Cambridge: MIT Press, pp. 473–499.Google Scholar
Crews, D. (2002). Diversity and evolution of neuroendocrine mechanisms underlying reproductive behavior. In Behavioral Endocrinology, 2nd edn. ed. Becker, J., Breedlove, S. M., Crews, D., and McCarthy, M.. Cambridge: MIT Press, pp. 223–288.Google Scholar
Crews, D. and Groothuis, T. (2005). Tinbergen's fourth question, ontogeny: sexual and individual differentiation. Anim. Biol., 55, 343–370 (Chapter 4 this volume).CrossRefGoogle ScholarPubMed
Crews, D. and Silver, R. (1985). Reproductive physiology and behavior interactions in nonmammalian vertebrates. In Handbook of Behavioral Neurobiology, Vol. 7: Reproduction, ed. Adler, N. T., Pfaff, D., and Goy, R. W.. New York: Plenum, pp. 101–182.Google Scholar
Crews, D., Wibbels, T., and Gutzke, W. H. N. (1989). Action of sex steroid hormones on temperature-induced sex determination in the snapping turtle (Chelydra serpentina). Gen. Comp. Endocr., 76, 159–166.CrossRefGoogle Scholar
Crews, D., Sakata, J. T., and Rhen, T. (1998). Developmental effects on intersexual and intrasexual variation in growth and reproduction in a lizard with temperature-dependent sex determination. Comp. Biochem. Physiol. (Part C)., 119, 229–241.Google Scholar
Crews, D., Fuller, T., Mirasol, E. G., Pfaff, D. W., and Ogawa, S. (2004). Postnatal environment affects behavior of adult transgenic mice. Exper. Biol. Med., 229, 935–939.CrossRefGoogle ScholarPubMed
Crook, J. H. (1964). The evolution of social organization and visual communication in the weaver birds (Ploceinae). Behaviour Suppl., 10, 1–178.Google Scholar
Cullen, E. (1957). Adaptation in the Kittiwake to cliff-nesting. Ibis, 99, 275–302.CrossRefGoogle Scholar
Cuthill, I. C. (2002). Review of Barth, F.G. and Schmid, A. 2001: Ecology of Sensing. Springer-Verlag, Berlin. Ethology, 108, 566.Google Scholar
Cuthill, I. C. (2005). The study of function in behavioural ecology. Anim. Biol. 55, 399–417. (Chapter 6 this volume.)CrossRefGoogle Scholar
Cuthill, I. C., Partridge, J. C., Bennett, A. T. D., Church, S. C., Hart, N. S., and Hunt, S. (2000). Ultraviolet vision in birds. Adv. Stud. Behav., 29, 159–214.CrossRefGoogle Scholar
Czeisler, C. A., Dijk, D-J., and Duffy, J. F. (1994). Entrained phase of the circadian pacemaker serves to stabilize alertness and performance throughout the habitual waking day. In Sleep Onset: Normal and Abnormal Processes, ed. Ogilvie, R. D. and Harsh, J. R.. Washington, DC: Amer. Psychol. Assn., pp. 89–110.CrossRefGoogle Scholar
Daan, S., Beersma, D. G. M., and Borbély, A. A. (1984). Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol., 246, R161–R183.Google ScholarPubMed
Daly, M. and Wilson, M. (1978). Sex, Evolution, and Behavior. North Scituate, MA: Duxbury Press.Google Scholar
Daly, M. and Wilson, M. (2005). Human behavior as animal behavior. In The Behavior of Animals. Mechanisms, Function, and Evolution, ed. Bolhuis, J. J. and Giraldeau, L.-A.. Oxford: Blackwell Publishing, pp. 393–408.Google Scholar
Daly, M. and Wilson, M. I. (1999). Human evolutionary psychology and animal behaviour. Anim. Behav., 57. 509–519.CrossRefGoogle ScholarPubMed
Darwin, C. (1871). The Descent of Man and Selection in Relation to Sex. London: Murray.Google Scholar
Davies, N. B. (1992). Dunnock Behaviour and Evolution. Oxford: Oxford University Press.Google Scholar
Davies, N. B. and Halliday, T. R. (1978). Deep croaks and fighting assessment in toads Bufo bufo. Nature, 274, 683–685.CrossRefGoogle Scholar
Dawkins, M. S. (1986). Unravelling Animal behaviour. Harlow, UK: Longman.Google Scholar
Dawkins, M. S. (1989). The future of ethology: how many legs are we standing on? In Whither Ethology? Perspectives in Ethology, vol. 8. ed. Bateson, P. P. G. and Klopfer, P. H.. New York: Plenum Press, pp. 47–54.Google Scholar
Dawkins, M. S. (1990). From an animal's point of view – motivation, fitness, and animal-welfare. Behav. Brain Sci., 13, 1–61.CrossRefGoogle Scholar
Dawkins, M. S. (2006). A user's guide to animal welfare science. Trends Ecol. Evol., 21, 77–82.CrossRefGoogle ScholarPubMed
Dawkins, M. S. and Guilford, T. (1995). An exaggerated preference for simple neural network models of signal evolution?Proc. Roy. Soc. Lond. B, 261, 357–360.CrossRefGoogle ScholarPubMed
Dawkins, R. (1986). The Blind Watchmaker. Harlow, UK: Longman.Google Scholar
Dawkins, R. (1996). Climbing Mount Improbable. London: Viking.Google Scholar
Kort, S., Dickinson, A., and Clayton, N. S. (2005). Retrospective cognition by food-caching western scrub jays. Learning and Motivation, 36, 159–176.CrossRefGoogle Scholar
Dennett, D. C. (1987). The Intentional Stance. Cambridge, MA: MIT Press.Google Scholar
Dennett, D. C. (1995). Darwin's Dangerous Idea. Evolution and the Meaning of Life. London: Penguin Books Ltd.Google Scholar
DeQueiroz, A. and Wimberger, P. H. (1993). The usefulness of behavior for phylogeny estimation: levels of homoplasy in behavioral and morphological characters. Evolution, 47, 46–60.CrossRefGoogle Scholar
DeVoogd, T. J. (1994). The neural basis for the acquisition and production of bird song. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge: Cambridge University Press, pp. 49–81.CrossRefGoogle Scholar
DeVoogd, T. J. and Székely, T. (1998). Causes of avian song: using neurobiology to integrate proximate and ultimate levels of analysis. In Animal Cognition in Nature, ed. Balda, R. P., Pepperberg, I. M., and Kamil, A. C.. San Diego: Academic Press, pp. 337–380.CrossRefGoogle Scholar
DeVoogd, T. J., Krebs, J. R.Healy, S. D., and Purvis, A. (1993). Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. Proc. Roy. Soc. Lond. B, 254, 75–82.CrossRefGoogle Scholar
Dewsbury, D. A. (1992). On the problems studied in ethology, comparative psychology, and animal behavior. Ethology, 92, 89–107.CrossRefGoogle Scholar
Dewsbury, D. A. (1999). The proximate and the ultimate: past, present, and future. Behav. Proc., 46, 189–199.CrossRefGoogle ScholarPubMed
Dijk, D-J. and Lockley, S. W. (2002). Invited review: integration of human sleep–wake regulation and circadian rhythmicity. J. Appl. Physiol., 92, 852–862.CrossRefGoogle Scholar
Dijk, D-J., Duffy, J. F., and Czeisler, C. A. (1992). Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J. Sleep Res., 1, 112–117.CrossRefGoogle ScholarPubMed
Dingemanse, N. J. and Réale, D. (2005). Natural selection and animal personality. Behaviour, 142, 1159–1184.CrossRefGoogle Scholar
Dingemanse, N. J., Wright, J., Kazem, A. J. N., Thomas, D. K., Hickling, R., and Dawnay, N. (2007). Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J. Anim. Ecol., 76, 1128–1138.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach., 35, 125–129.CrossRefGoogle Scholar
Doupe, A. J. and Kuhl, P. K. (1999). Birdsong and human speech: common themes and mechanisms. Ann. Rev. Neurosc., 22, 567–631.CrossRefGoogle ScholarPubMed
Duchaine, B., Cosmides, L., and Tooby, J. (2001). Evolutionary psychology and the brain. Curr. Opin. Neurobiol., 11, 225–230.CrossRefGoogle Scholar
Duncan, I. J. H. (2002). Poultry welfare: science or subjectivity?Brit. Poultry Sci., 43, 643–652.CrossRefGoogle ScholarPubMed
Dwyer, D. M. and Clayton, N. S. (2002). A reply to the defenders of the faith. Trends Cogn. Sci., 6, 109–111.CrossRefGoogle ScholarPubMed
Eda-Fujiwara, H., Satoh, R., Bolhuis, J. J., and Kimura, T. (2003). Neuronal activation in female budgerigars is localized and related to male song complexity. Eur. J. Neurosci., 17, 149–154.CrossRefGoogle ScholarPubMed
Eimas, P. D., Miller, J. L., and Jusczyk, P. W. (1987). On infant speech perception and the acquisition of language. In Categorical Perception, ed. Harnad, S.. Cambridge, UK: Cambridge University Press, pp. 161–195.Google Scholar
Eimas, P. D., Siqueland, P., Jusczyk, P., and Vigorito, J. (1971). Speech perception in infants. Science, 171, 303–306.CrossRefGoogle ScholarPubMed
Eising, C. M. and Groothuis, T. G. G. (2003). Yolk androgens and begging behaviour in black-headed gull chicks: an experimental field study. Anim. Behav., 66, 1027–1034.CrossRefGoogle Scholar
Eising, C. M., Eikenaar, C., Schwabl, H., and Groothuis, T. G. G. (2001). Maternal androgens in black-headed gull eggs: consequences for chick development. Proc. R. Soc. Lond. B, 268, 839–846CrossRefGoogle ScholarPubMed
Eising, C. M., Mueller, W., and Groothuis, T. G. G. (2006). Avian mothers produce different phenotypes by hormone deposition in their eggs. Biol. Lett. 2, 20–22.CrossRefGoogle Scholar
Emlen, J. M. (1966). The role of time and energy in food preference. Am. Nat., 100, 611–617.CrossRefGoogle Scholar
Endler, J. A. and Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends Ecol. Evol., 13, 415–420.CrossRefGoogle ScholarPubMed
Enquist, M. and Arak, A. (1993). Selection of exaggerated male traits by female aesthetic senses. Nature, 361, 446–448.CrossRefGoogle ScholarPubMed
Enquist, M. and Arak, A. (1998). Neural representation and the evolution of signal form. In Neural Representation and the Evolution of Signal Form, ed. Dukas, R.. Chicago: University of Chicago Press, pp. 21–87.Google Scholar
Enquist, M. and Ghirlanda, S. (2005). Neural Networks and Animal Behavior. Princeton, NJ: Princeton University Press.Google Scholar
Erichsen, J. T., Bingman, V. P., and Krebs, J. R. (1991). The distribution of neuropeptides in the dorsomedial telencephalon of the pigeon (Columba livia): a basis for regional subdivisions. J. Comp. Neurol., 314, 478–492.CrossRefGoogle ScholarPubMed
Ewert, J. P. (1997). Neural correlates of key stimulus and releasing mechanism: a case study and two concepts. Trends Neurosci., 20, 332–339.Google ScholarPubMed
Fee, M. S., Mitra, P. P., and Kleinfeld, (1998). The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, 395, 67–71.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat., 125, 1–15.CrossRefGoogle Scholar
Fentress, J. C. (1972). Development and patterning of movement sequences in inbred mice. In The Biology of Behavior, ed. Kiger, J.. Corvallis, OR: Oregon State University Press, pp. 83–132.Google Scholar
Fentress, J. C. and Gadbois, S. (2001). The development of action sequences. In Handbook of Behavioral Neurobiology, Vol. 13: Developmental Psychobiology, ed. Blass, E. M.. New York: Kluwer Academic/Plenum, pp. 393–431.Google Scholar
Fentress, J. C. and Stilwell, F. P. (1973). Grammar of a movement sequence in inbred mice. Nature, 224, 52–53.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Fleissner, G., Holtkamp-Rötzler, E., Hanzlik, M.et al. (2003). Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol., 458, 350–360.CrossRefGoogle ScholarPubMed
Fleming, A. S. and Blass, E. M. (1994). Psychobiology of the early mother–young relationship. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge, UK: Cambridge Univ. Press, pp. 212–241.CrossRefGoogle Scholar
Flombaum, J. I, Santos, L. R., and Hauser, M. D. (2002). Neuroecology and psychological modularity. Trends Cogn. Sci., 6, 106–108.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1983). The Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.Google Scholar
Fodor, J. A. (2000). The Mind Doesn't Work That Way. Cambridge, MA: MIT Press.Google Scholar
Francis, R. C. (1990). Causes, proximate and ultimate. Biol. Phil., 5, 401–415.CrossRefGoogle Scholar
Freckleton, R. P., Harvey, P. H., and Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat., 160, 712–726.CrossRefGoogle Scholar
Gahr, M. (1997). How should brain nuclei be delineated? Consequences for developmental mechanisms and for correlations of area size, neuron numbers and functions of brain nuclei. Trends Neurosci., 20, 58–62.CrossRefGoogle ScholarPubMed
Gahr, M., Leitner, S., Fusani, L., and Rybak, F. (2002). What is the adaptive role of neurogenesis in adult birds? In Progress in Brain Research, vol. 138, ed. Hofman, M. A., Boer, G. J., Holtmaat, A. J. G. D., Someren, E. J. W., Verhaagen, J., and Swaab, D. F.. Amsterdam: Elsevier Science, pp. 233–254.Google Scholar
Garamszegi, L. Z. and Eens, M. (2004a). Brain space for a learned task: strong intraspecific evidence for neural correlates of singing behavior in songbirds. Brain Res. Rev., 44, 187–193.CrossRefGoogle ScholarPubMed
Garamszegi, L. Z. and Eens, M. (2004b). The evolution of hippocampus volume and brain size in relation to food hoarding in birds. Ecol. Lett., 7, 1216–1224.CrossRefGoogle Scholar
Gerhardt, H. C. (1981). Mating call recognition in the barking treefrog (Hyla gratiosa): responses to synthetic calls and comparisons with the green treefrog (Hyla cinerea). J. Comp. Physiol., 144, 17–26.CrossRefGoogle Scholar
Gerhardt, H. C. (2001). Acoustic communication in two groups of closely related treefrogs. In Adv. Stud. Behav., Vol. 30, ed. Slater, P. J. B., Rosenblatt, J. S., Snowdon, C. T., and Roper, T. J.. San Diego: Academic Press, pp. 99–167.Google Scholar
Gerhardt, H. C. and Schwartz, J. J. (2001). Auditory tunings and frequency preferences in anurans. In Anuran Communication, ed. Ryan, M. J.. Washington DC: Smithsonian Institution Press, pp. 73–85.Google Scholar
Ghirlanda, S. (2002). Intensity generalization: physiology and modeling of a neglected topic. J. Theor. Biol., 214, 389–404.CrossRefGoogle Scholar
Ghirlanda, S. and Enquist, M. (1998). Artificial neural networks as models of stimulus control. Anim. Behav., 56, 1383–1389.CrossRefGoogle Scholar
Ghirlanda, S. and Enquist, M. (1999). The geometry of stimulus control. Anim. Behav., 58, 695–706.CrossRefGoogle Scholar
Ghirlanda, S., Jansson, L., and Enquist, M. (2002). Chickens prefer beautiful humans. Hum. Nature, 13, 383–389.CrossRefGoogle ScholarPubMed
Gil, D., Graves, J., Hazon, N., and Wells, A. (1999). Male attractiveness and differential hormone investment in zebra finch eggs. Science, 286, 126–128.CrossRefGoogle ScholarPubMed
Gobes, S. M. H. and Bolhuis, J. J. (2007). Bird song memory: a neural dissociation between song recognition and production. Curr. Biol., 17, 789–793.CrossRefGoogle Scholar
Goldin-Meadow, S. (1997). The resilience of language in humans. In Social Influences on Vocal Development, ed. Snowdon, C. T. and Hausberger, M.. Cambridge, UK: Cambridge University Press, pp. 293–311.CrossRefGoogle Scholar
Goldman, S. A. and Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl Acad. Sci. USA., 80, 2390–2394.CrossRefGoogle Scholar
Gonzalez-Lima, F. (1992). Brain imaging of auditory learning functions in rats: studies with fluorodeoxyglucose autoradiography and cytochrome oxidase histochemistry. In Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions, ed. Gonzalez-Lima, F., Finkenstadt, T., and Scheich, H.. Boston: Kluwer Academic Publ., pp. 39–109.CrossRefGoogle Scholar
Goodale, M. A. and Westwood, D. A. (2004). An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr. Opin. Neurobiol., 14, 203–211.CrossRefGoogle ScholarPubMed
Gottlieb, G. (1997). Synthesizing Nature-Nurture: Prenatal Roots of Instinctive Behavior. Mahway, NJ: Erlbaum.Google Scholar
Gould, S. J. and Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. Roy. Soc. Lond. B, 205, 581–598.CrossRefGoogle Scholar
Gould, S. J. and Vrba, E. S. (1982). Exaptation – a missing term in the science of form. Paleobiology, 8, 4–15.CrossRefGoogle Scholar
Gould-Beierle, K. L. (2000). A comparison of four corvid species in a working and reference memory task using a radial maze. J. Comp. Psychol., 114, 347–356.CrossRefGoogle Scholar
Goyman, W, East, M. L., and Hofer, H. (2001). Androgens and the role of female “hyperaggresiveness” in spotted hyenas. Horm. Behav., 39, 83–92.CrossRefGoogle Scholar
Grafen, A. (1984). Natural selection, kin selection and group selection. In Behavioural Ecology. 2nd edn, ed. Krebs, J. R. and Davies, N. B.. Oxford, UK: Blackwell Science Ltd., pp. 62–84.Google Scholar
Greenwalt, C. H. (1968). Bird Song: Acoustics and Physiology. Washington DC: Smithsonian Institution Press.Google Scholar
Griffin, D. R. (1976). The Question of Animal Awareness. New York: Rockefeller University Press.Google Scholar
Griffin, D. R. (1978). Prospects for a cognitive ethology. Behav. Brain Sci., 1, 527–538.CrossRefGoogle Scholar
Griffin, D. R. (1992). Animal Minds. Chicago: University of Chicago Press.Google Scholar
Groothuis, T. G. G. (1992). The influence of social experience on the develop-ment and fixation of the form of displays in the black-headed gull. Anim. Behav., 43, 1–14.CrossRefGoogle Scholar
Groothuis, T. G. G. (1993). Development of social displays: form development, form fixation and change in context. In Advances in the Study of Behavior, Vol. 22, ed. Slater, P. J. P., Milinski, M., and Rosenblatt, J. S.. New York: Academic Press, pp. 269–322.Google Scholar
Groothuis, T. G. G. (1994). The ontogeny of social displays: interplay between motor development, development of motivational systems and social experience. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge, UK: Cambridge University Press, pp. 183–211.CrossRefGoogle Scholar
Groothuis, T. and Mulekom, L. (1991). The influence of social experience on the ontogenetic change in the relation between aggression, fear and display behaviour in black-headed gulls. Anim. Behav., 42, 873–881.CrossRefGoogle Scholar
Groothuis, T. G. and Schwabl, H. (2002). Determinants of within and among clutch variation in levels of maternal hormones in Black-headed gull eggs. Funct. Ecol., 16, 281–289.Google Scholar
Groothuis, T. G. G. and Meeuwissen, G. (1992). The influence of testosterone on the development and fixation of the form of displays in two age classes of young Black-headed gulls. Anim. Behav., 43, 189–208.CrossRefGoogle Scholar
Groothuis, T. G. G., Müller, W.Engelhardt, N., Carere, C., and Eising, C. (2005). Maternal androgens as a tool to adjust offspring development in avian species. Neurosci. BioBehav. Rev., 29, 329–352.CrossRefGoogle ScholarPubMed
Hall, W. G. and Williams, C. L. (1983). Suckling isn't feeding, or is it? A search for developmental continuities. Adv. Study Behav., 13, 219–254.CrossRefGoogle Scholar
Hamilton, W. D. (1964). The genetical evolution of social behavior (I and II). J. Theor. Biol., 7, 1–16 and 17–52.CrossRefGoogle Scholar
Hammerstein, P. (1996). Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol., 34, 511–532.CrossRefGoogle ScholarPubMed
Hampton, R. R. and Sherry, D. F. (1992). Food storing by Mexican chickadees and bridled titmice. Auk, 109, 665–666.Google Scholar
Hampton, R. R. and Shettleworth, S. J. (1996a). Hippocampal lesions impair memory for location but not color in passerine birds. Behav. Neurosci., 110, 831–835.CrossRefGoogle Scholar
Hampton, R. R. and Shettleworth, S. J. (1996b). Hippocampus and memory in a food-storing and in a nonstoring bird species. Behav. Neurosci., 110, 946–964.CrossRefGoogle Scholar
Hampton, R. R., Sherry, D. F., Shettleworth, S. J., Khurgel, M., and Ivy, G. (1995). Hippocampal volume and food-storing behavior are related in parids. Brain Behav. Evol., 45, 54–61.CrossRefGoogle ScholarPubMed
Hampton, R. R., Healy, S. D., Shettleworth, S. J., and Kamil, A. C. (2002). ‘Neuroecologists’ are not made of straw. Trends Cogn. Sci., 6, 6–7.CrossRefGoogle Scholar
Harlow, H. F. (1958). The nature of love. Amer. Psychologist, 13, 673–685.CrossRefGoogle Scholar
Harlow, H. F. and Harlow, M. K. (1962). Social deprivation in monkeys. Scient. Amer., 207, 136–146.Google ScholarPubMed
Harvey, P. H. and Nee, S. (1997). The phylogenetic foundations of behavioural ecology. In Behavioural Ecology. An Evolutionary Approach. 4th edn. ed. Krebs, J. R. and Davies, N. B.. Oxford, UK: Blackwell Science Ltd., pp. 334–349.Google Scholar
Harvey, P. H. and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford, UK: Oxford University Press.Google Scholar
Hauser, M. D. (1996). The Evolution of Communication. Cambridge, MA: MIT Press.Google Scholar
Hauser, M. D., Chomsky, N., and Fitch, W. T. (2002). The faculty of language: what is it, who has it, and how did it evolve?Science, 298, 1569–1579.CrossRefGoogle ScholarPubMed
Healy, S. and Braithwaite, V. (2000). Cognitive ecology: a field of substance?Trends Ecol. Evol., 15, 22–26.CrossRefGoogle ScholarPubMed
Healy, S. D. and Krebs, J. R. (1992). Delayed-matching-to-sample by marsh tits and great tits. Q. J. Exp. Psychol. B – Comp. Physiol. Psychol., 45B, 33–47.Google Scholar
Healy, S. D. and Krebs, J. R. (1992). Food storing and the hippocampus in corvids: amount and volume are correlated. Proc. R. Soc. Lond. B, 248, 241–245.CrossRefGoogle Scholar
Healy, S. D. and Krebs, K. R. (1993). Development of hippocampal specialization in a food-storing bird. Behav. Brain Res., 53, 127–131.CrossRefGoogle Scholar
Healy, S. D., Clayton, N. S., and Krebs, J. R. (1994). Development of hippocampal specialization in two species of tit (Parus spp.). Behav. Brain Res., 61, 23–28.CrossRefGoogle Scholar
Healy, S. D., Kort, S. R., and Clayton, N. S. (2005). The hippocampus, spatial memory and food hoarding: a puzzle revisited. Trends Ecol. Evol., 20, 17–22.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley & Sons.Google Scholar
Hebb, D. O. (1953). Heredity and environment in animal behaviour. Bri. J. Anim. Behav., 1, 43–47.CrossRefGoogle Scholar
Heidegger, M. (1996). Being and Time, ed. Stambaugh, J.. Albany NY: Trans. State University of New York Press.Google Scholar
Heiligenberg, W. (1977). Principles of Electrolocation and Jamming Avoidance in Electric Fish: A Neuroethological Approach. Berlin: Springer.CrossRefGoogle Scholar
Heinroth, O. (1909). Beobachtungen bei der zucht des ziegenmelkers (Caprimulgus europaeus L.). J. Ornithol., 57, 56–83.CrossRefGoogle Scholar
Hennig, W. (1950). Grundzuge einer Theorie der Phylogenetischen Systematik. Berlin: Deutscher zentralverlag.Google Scholar
Hennig, W. (1966). Phylogenetic Systematics. Urbana: University of Illinois Press.Google Scholar
Hickok, G., Bellugi, U., and Klima, E. S. (1998). The neural organization of language: evidence from sign language aphasia. Trends Cogn. Sci., 2, 129–136.CrossRefGoogle ScholarPubMed
Hilton, S. C. and Krebs, J. K. (1990). Spatial memory of four species of Parus: performance in an open-field analogue of a radial maze. Q. J. Exp. Psychol., 4B, 345–368.Google Scholar
Hinde, R. A. (1959). Unitary drives. Anim. Behav., 7, 130–141.CrossRefGoogle Scholar
Hinde, R. A. (1960). Energy models of motivation. Symp. Soc. Exp. Biol., 14, 199–213.Google ScholarPubMed
Hinde, R. A. (1962). Some aspects of the imprinting problem. Symp. Zool. Soc. Lond., 8, 129–138Google Scholar
Hinde, R. A. (1970). Animal Behavior, 2nd edn. New York: McGraw-Hill.Google Scholar
Hinde, R. A. (1975). The concept of function. In Function and Evolution in Behaviour, ed. Baerends, G. P., Beer, C., and Manning, A.. Oxford: Oxford University Press, pp. 2–15.Google Scholar
Hinde, R. A. (1977). Mother-infant separation and the nature of inter-individual relationships: experiments with rhesus monkeys. Proc. Roy. Soc. Lond. B, 196, 29–50.CrossRefGoogle ScholarPubMed
Hinde, R. A. (1982). Ethology. London: Fontana Paperbacks.Google Scholar
Hinde, R. A. and Spencer-Booth, Y. (1971). Effects of brief separation from mother on rhesus monkeys. Science, 173, 111–118.CrossRefGoogle ScholarPubMed
Hines, M., Golombok, S., Rust, J., Johnston, K. J., Golding, J., and ,the Avon Longitudinal Study of Parents and Children Study Team (2002). Testosterone during pregnancy and gender role behaviour of preschool children: a longitudinal population study. Child Devel., 73, 1678–1687.CrossRefGoogle ScholarPubMed
Hogan, J. A. (1971). The development of a hunger system in young chicks. Behaviour, 39, 128–201.CrossRefGoogle ScholarPubMed
Hogan, J. A. (1988). Cause and function in the development of behavior systems. In Handbook of Behavioral Neurobiology, Vol. 9, ed. Blass, E. M.. New York: Plenum Press, pp. 63–106.Google Scholar
Hogan, J. A. (1990). Animal behavior. In Foundations of Psychology, ed. Grusec, J. E., Lockhart, R. S., and Walters, G. C.. Toronto: Copp Clark Pitman, pp. 138–186.Google Scholar
Hogan, J. A. (1994). The concept of cause in the study of behavior. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge, UK: Cambridge University Press, pp. 3–15.CrossRefGoogle Scholar
Hogan, J. A. (1997). Energy models of motivation: a reconsideration. Appl. Anim. Behav. Sci., 53, 89–105.CrossRefGoogle Scholar
Hogan, J. A. (2001). Development of behavior systems. In Handbook of Behavioral Neurobiology, Vol. 13: Developmental Psychobiology, ed. Blass, E. M.. New York: Kluwer Academic/Plenum, pp. 229–279.
Hogan, J. A. (2005). Causation: the study of behavioural mechanisms. Anim. Biol., 55, 323–341. (Chapter 3 in this volume).CrossRefGoogle Scholar
Hogan, J. A. and Bolhuis, J. J. (2005). The development of behavior: trends since Tinbergen (1963). Anim. Biol., 55, 371–398. (Chapter 5 in this volume).CrossRefGoogle Scholar
Hogan, J. A. and Ghirlanda, S. (2003). A quantitative test of dustbathing motivation. (Abstract). Revista de Etologia, 5, 171.Google Scholar
Hogan, J. A. and Roper, T. J. (1978). A comparison of the properties of different reinforcers. Adv. Study Behav., 8, 155–255.CrossRefGoogle Scholar
Hogan, J. A. and Boxel, F. (1993). Causal factors controlling dustbathing in Burmese red junglefowl: some results and a model. Anim. Behav., 46, 627–635.CrossRefGoogle Scholar
Hogan, J. A., Honrado, G. I., and Vestergaard, K. S. (1991). Development of a behavior system: dustbathing in the Burmese red junglefowl (Gallus gallus spadiceus): II. Internal factors. J. Comp. Psychol., 105, 269–273.CrossRefGoogle Scholar
Hogan-Warburg, A. J. and Hogan, J. A. (1981). Feeding strategies in the development of food recognition in young chicks. Anim. Behav., 29, 143–154.CrossRefGoogle Scholar
Hollis, K. L., ten Cate, C., and Bateson, P. (1991). Stimulus representation: A subprocess of imprinting and conditioning. J. Comp. Psychol., 105, 307–317.CrossRefGoogle ScholarPubMed
Holmes, W. G. (2004). The early history of Hamiltonian-based research on kin recognition. Annls Zool. Fenn., 41, 691–711.Google Scholar
Holmes, W. G. and Sherman, P. W. (1983). Kin recognition in animals. Am. Scient., 71, 46–55.Google Scholar
Honey, R. C. and Bolhuis, J. J. (1997). Imprinting, conditioning, and within-event learning. Q. J. Exp. Psychol., 50B, 97–110.CrossRefGoogle Scholar
Hopkins, B. and Butterworth, G. (1990). Concepts of causality in explanations of development. In Causes of Development, ed. Butterworth, G. and Bryant, P.. London: Harvester Wheatsheaf, pp. 3–32.Google Scholar
Horn, G. (1985). Memory, Imprinting, and the Brain. Oxford, UK: Clarendon Press.CrossRefGoogle Scholar
Horn, G. (1998). Visual imprinting and the neural mechanisms of recognition memory. Trends Neurosci., 21, 300–305.CrossRefGoogle ScholarPubMed
Horn, G. (2000). In memory. In Brain, Perception, Memory. Advances in Cognitive Neuroscience, ed. Bolhuis, J. J.. Oxford, UK: Oxford University Press, pp. 329–363.CrossRefGoogle Scholar
Horn, G. (2004). Pathways of the past: The imprint of memory. Nature Rev. Neurosci., 5, 108–120.CrossRefGoogle Scholar
Hoshooley, J. S. and Sherry, D. F. (2004). Neuron production, neuron number, and structure size are seasonally stable in the hippocampus of the food-storing black-capped chickadee (Poecile atricapillus). Behav. Neurosci., 118, 345–355.CrossRefGoogle Scholar
Hoshooley, J. S., Phillmore, L. S., and MacDougall-Shackleton, S. A. (2005). An examination of avian hippocampal neurogenesis in relationship to photoperiod. NeuroReport, 16, 987–991.CrossRefGoogle ScholarPubMed
Hoshooley, J. S., Phillmore, L. S., Sherry, D. F., and MacDougall-Shackleton, S. A. (2007). Annual cycle of the black-capped chickadee: seasonality of food-storing and the hippocampus. Brain Behav. Evol., 69, 161–168.CrossRefGoogle ScholarPubMed
Houston, A. I. and McNamara, J. M. (1999). Models of Adaptive Behaviour: an Approach Based on State. Cambridge, UK: Cambridge University Press.Google Scholar
Houx, B. B. and ten Cate, C. (1998). Do contingencies with tutor behaviour influence song learning in zebra finches?Behaviour, 135, 599–614.CrossRefGoogle Scholar
Houx, B. B. and ten Cate, C. (1999). Song learning from playback in zebra finches: is there an effect of operant contingency?Anim. Behav., 57, 837–845.CrossRefGoogle ScholarPubMed
Howdeshell, K. L. and vom Saal, F. S. (2000). Developmental exposure to bisphenol A: interaction with endogenous estradiol during pregnancy in mice. Amer. Zool., 40, 429–437.Google Scholar
Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G., Welshons, W. V., and vom Saal, F. S. (1999). Exposure to bisphenol A advances puberty. Nature, 401, 763–764.Google ScholarPubMed
Hoyle, G. (1984). The scope of neuroethology. Behav. Brain Sci., 7, 367–384CrossRefGoogle Scholar
Hughes, B. O. and Duncan, I. J. H. (1988). The notion of ethological ‘need’, models of motivation and animal welfare. Anim. Behav., 36, 1696–1707.CrossRefGoogle Scholar
Hull, D. L. (1988). Science as Progress. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Hultsch, H. (1993). Tracing the memory mechanisms in the song acquisition of nightingales. Neth. J. Zool., 43, 155–171.CrossRefGoogle Scholar
Hunt, S., Cuthill, I. C., Bennett, A. T. D., and Griffiths, R. M. (1999). Preference for ultraviolet partners in the blue tit. Anim. Behav., 58, 809–815.CrossRefGoogle ScholarPubMed
Huxley, J. S. (1914). The courtship habits of the Great Crested Grebe (Podiceps cristatus); with an addition to the theory of sexual selection. Proc. Roy. Soc. London, (1914), 491–562.Google Scholar
Huxley, J. S. (1923). Courtship activities in the red-throated diver (Colymbus stellatus Pontopp); together with a discussion on the evolution of courtship in birds. J. Linn. Soc. 35, 253–291.CrossRefGoogle Scholar
Huxley, J. S. (1942). Evolution: the Modern Synthesis. London: Allen & Unwin.Google Scholar
Immelmann, K. (1972). The influence of early experience upon the development of social behaviour in estrildine finches. In Proc. XV Intl. Ornithological Congress, Den Haag, 1970, ed. Voous, K. H.. Leiden: Brill, pp. 316–338.Google Scholar
Immelmann, K. (1979). Genetical constraints on early learning: a perspective from sexual imprinting in birds and other species. In Theoretical. Advances in Behavior Genetics, ed. Royce, J. R. and Mos, P.. Alphen aan de Rijn, NL: Sijthof & Noordhoff, pp. 121–137.CrossRefGoogle Scholar
Immelmann, R., Lassek, R., Pröve, R., and Bischof, H.-J. (1991). Influence of adult courtship experience on the development of sexual preferences in zebra finch males. Anim. Behav., 42, 83–89.CrossRefGoogle Scholar
Jackson, R. R. and Wilcox, R. S. (1998). Spider-eating spiders. Amer. Scientist, 86, 350–357.CrossRefGoogle Scholar
Jackson, R. R., Pollard, S. D., and Cerveira, A. M. (2002). Opportunistic use of cognitive smokescreens by araneophagic jumping spiders. Anim. Cogn., 5, 147–157.CrossRefGoogle ScholarPubMed
Jalles-Filho, E., Grassetto, R., da Cunha, T., and Salm, R. A. (2001). Transport of tools and mental representation: is capuchin monkey tool behaviour a useful model of Plio-Pleistocene hominid technology?J. Hum. Evol., 40, 365–377.CrossRefGoogle ScholarPubMed
James, W. (1890). The Principles of Psychology. New York: Holt.Google Scholar
Jamieson, I. G. and Craig, J. L. (1987). Critique of helping behavior in birds: a departure from functional explanations. In Perspectives in Ethology, vol. 7, ed. Bateson, P. P. G. and Klopfer, P. H.. New York: Plenum Press, pp. 79–98.CrossRefGoogle Scholar
Jarvis, E. D. and Nottebohm, F. (1997). Motor-driven gene expression. Proc. Natl Acad. Sci. USA, 94, 4097–4102.CrossRefGoogle ScholarPubMed
Jennions, M. D. and Møller, A. P. (2002). Relationships fade with time: a meta-analysis of temporal trends in publication in ecology and evolutionProc. R. Soc. Lond. B, 269, 43–48.CrossRefGoogle ScholarPubMed
Jennions, M. D. and Møller, A. P. (2003). A survey of the statistical power of research in behavioral ecology and animal behavior. Behav. Ecol., 14, 438–445.CrossRefGoogle Scholar
Johnsen, P. F., Vestergaard, K. S., and Nørgaard-Nielsen, G. (1998). Influence of early fearing conditions on the development of feather pecking and cannibalism in domestic fowl. Appl. Anim. Behav. Sci., 60, 25–41.CrossRefGoogle Scholar
Johnson, M. H. and Bolhuis, J. J. (2000). Predispositions in perceptual and cognitive development. In Brain, Perception, Memory. Advances in Cognitive Neuroscience, ed. Bolhuis, J. J.. Oxford, UK: Oxford University Press, pp. 69–84.CrossRefGoogle Scholar
Johnson, M. H. and Horn, G. (1988). Development of filial preferences in dark-reared chicks. Anim. Behav., 36, 675–683.CrossRefGoogle Scholar
Johnson, M. H., Davies, D. C., and Horn, G. (1989). A sensitive period for the development of a predisposition in dark-reared chicks. Anim. Behav., 37, 1044–1046.CrossRefGoogle Scholar
Jones, D.Gonzalez-Lima, F., Crews, D., Galef, B. G., and Clark, M. M. (1997). Effects of intrauterine position on the metabolic capacity of the hypothalamus of female gerbils: a cytochrome oxidase study. Physiol. Behav., 61, 513–519.CrossRefGoogle Scholar
Jusczyk, P. W. (1997). Finding and remembering words: some beginnings by English-learning infants. Curr. Directions Psychol. Sci., 6, 170–174.CrossRefGoogle Scholar
Kacelnik, A. and Cuthill, I. C. (1987). Starlings and optimal foraging theory: modelling in a fractal world. In Foraging Behavior, ed. Kamil, A., Krebs, J. R., and Pulliam, H. R.New York: Plenum, pp. 303–333.CrossRefGoogle Scholar
Kaiser, S. and Sachser, N. (2005). The effects of prenatal social stress on behaviour: mechanisms and function. Neurosci. Behav. Revs., 29(2), 283–294.CrossRefGoogle ScholarPubMed
Kako, E. (1999). Elements of syntax in the systems of three language-trained animals. Anim. Learning Behav. 27, 1–14.CrossRefGoogle Scholar
Kamil, A. C. (1988). A synthetic approach to the study of animal intelligence. In Comparative Perspectives on Modern Psychology, ed. Leger, D. W.. Nebraska: University of Nebraska Press, pp. 230–257.Google Scholar
Kamil, A. C. and Balda, R. P. (1985). Cache recovery and spatial memory in Clark's nutcracker (Nucifraga columbiana). J. Exp. Psychol.: Anim. Behav. Proc.., 11, 95–111.Google Scholar
Kamil, A. C., Balda, R. P., and Olson, D. J. (1994). Performance of 4 seed-caching corvid species in the radial-arm maze analog. J. Comp. Psychol., 108, 385–393.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (1992). Beyond Modularity: A Developmental Perspective on Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends Cogn. Sci., 2, 389–398.CrossRefGoogle ScholarPubMed
Killeen, P. R. (2001). The four causes of behavior. Curr. Dir. Psychol. Sci., 10, 136–140.CrossRefGoogle ScholarPubMed
Kilner, R. M. and Davies, N. B. (1999). Signals of need in parent–offspring communication and their exploitation by the common cuckoo. Nature, 397, 667–672.CrossRefGoogle Scholar
Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice. Evolution, 36, 1–12.CrossRefGoogle ScholarPubMed
Kirn, J., O'Loughlin, B., Kasparian, S., and Nottebohm, F. (1994). Cell death and neuronal recruitment in the high vocal center of adult male canaries are temporally related to changes in song. Proc. Natl Acad. Sci. USA, 91, 7844–7848.CrossRefGoogle ScholarPubMed
Kirn, J. R., Clower, R. P., Kroodsma, D. E., and DeVoogd, T. J. (1989). Song-related brain regions in the red winged blackbird are affected by sex and season but not repertoire size. J. Neurobiol., 20, 139–163.CrossRefGoogle Scholar
Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol., 22, 770–783.Google ScholarPubMed
Konishi, M. (1993). Listening with two ears. Scient. Am., 268, 66–73.CrossRefGoogle ScholarPubMed
Konishi, M. (1995). Neural mechanisms of auditory image formation. In The Cognitive Neurosciences, ed. Gazzaniga, M. S.. Cambridge MA: MIT Press, pp. 269–277.Google Scholar
Konishi, M. (2003). Coding of auditory space. Annu. Rev. Neurosci., 26, 31–55.CrossRefGoogle ScholarPubMed
Kraemer, G. W. (1992). A psychobiological theory of attachment. Behav. Brain Sci., 15, 493–511.CrossRefGoogle ScholarPubMed
Kramer, G. (1953). Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet?J. Ornithol., 94, 201–219.CrossRefGoogle Scholar
Krebs, J. R. and Davies, N. B. (1993). An Introduction to Behavioural Ecology. 3rd edn. Oxford, UK: Blackwell Science Ltd.Google Scholar
Krebs, J. R. and Davies, N. B. (1997). The evolution of behavioural ecology. In Behavioural Ecology. An Evolutionary Approach. 4th edn. Oxford, UK: Blackwell Scientific, pp. 3–12.Google Scholar
Krebs, J. R., Sherry, D. F., Healy, S. D., Perry, V. H., and Vaccarino, A. L. (1989). Hippocampal specialization of food-storing birds. Proc. Natl Acad. Sci., USA, 86, 1388–1392.CrossRefGoogle ScholarPubMed
Krebs, J. R., Erichsen, J. T., and Bingman, V. P. (1991). The distribution of neurotransmitters and neurotransmitter-related enzymes in the dorsomedial telencephalon of the pigeon (Columba livia). J. Comp. Neurol., 314, 467–477.CrossRefGoogle Scholar
Krebs, J. R., Clayton, N. S., Hampton, R. R., and Shettleworth, S. J. (1995). Effects of photoperiod on food-storing and the hippocampus in birds. NeuroReport, 6, 1701–1704.CrossRefGoogle ScholarPubMed
Krebs, J. R., Clayton, N. S., Healy, S. D., Cristol, D. A., Patel, S. N., and Joliffe, A. R. (1996). The ecology of the brain: food-storing and the hippocampus. Ibis, 138, 34–46.CrossRefGoogle Scholar
Kruijt, J. P. (1964). Ontogeny of social behavior in Burmese red junglefowl (Gallus gallus spadiceus). Behaviour Suppl. 9, 1–201.Google Scholar
Kruijt, J. P. (1985). On the development of social attachments in birds. Neth. J. Zool., 35, 45–62.CrossRefGoogle Scholar
Kruijt, J. P. and Meeuwissen, G. B. (1991). Sexual preferences of male zebra finches: effects of early adult experience. Anim. Behav., 42, 91–102.CrossRefGoogle Scholar
Kruijt, J. P. and Meeuwissen, G. B. (1993). Consolidation and modification of sexual preferences in adult male zebra finches. Neth. J. Zool., 43, 68–79.CrossRefGoogle Scholar
Kruijt, J. P., Bossema, I., and Lammers, G. J. (1982). Effect of early experience and male activity on mate choice in mallard females (Anas platyrhynchos). Behaviour, 80, 32–43.CrossRefGoogle Scholar
Kruijt, J. P., ten Cate, C., and Meeuwissen, G. B. (1983). The influence of siblings on the development of sexual preferences of male zebra finches. Devel. Psychobiol., 16, 233–239.CrossRefGoogle ScholarPubMed
Kruuk, H. (2003). Niko's Nature. A Life of Niko TInbergen and His Science of Animal Behaviour. Oxford, UK: Oxford University Press.Google Scholar
Kuhl, P. K. (1994). Learning and representation in speech and language. Curr. Opin. Neurobiol., 4, 812–822.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Williams, K. A., Lacerda, R., Stevens, K. N., and Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255, 606–608.CrossRefGoogle ScholarPubMed
Laland, K. N. and Brown, G. R. (2002). Sense and Nonsense. Evolutionary Perspectives on Human Behaviour. Oxford, UK: Oxford University Press.Google Scholar
Larsen, B. H., Vestergaard, K. S., and Hogan, J. A. (2000). Development of dustbathing behavior sequences in the domestic fowl: the significance of functional experience. Devel. Psychobiol., 37, 5–12.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Lashley, K. S. (1938). Experimental analysis of instinctive behavior. Psychol. Rev., 45, 445–471.CrossRefGoogle Scholar
Lashley, K. S. (1951). The problem of serial order in behavior. In Cerebral Mechanisms in Behavior, ed. Jeffress, L. A.New York: Wiley, pp. 112–136.Google Scholar
Lavenex, P., Steele, M. A., and Jacobs, L. F. (2000a). The seasonal pattern of cell proliferation and neuron number in the dentate gyrus of wild adult eastern gray squirrels. Eur. J. Neurosci., 12, 643–648.CrossRefGoogle Scholar
Lavenex, P., Steele, M. A., and Jacobs, L. F. (2000b). Sex differences, but no seasonal variations in the hippocampus of foodcaching squirrels: a stereological study. J. Comp. Neurol., 425, 152–166.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Lefebvre, L. and Bolhuis, J. J. (2003). Positive and negative correlates of feeding innovations in birds: evidence for limited modularity. In Animal Innovation, ed. Reader, S. M. and Laland, K. N.. Oxford, UK: Oxford University Press, pp. 39–61.CrossRefGoogle Scholar
Lefebvre, L., Nicolakakis, N., and Boire, D. (2002). Tools and brains in birds. Behaviour, 139, 939–973.CrossRefGoogle Scholar
Lehrman, D. S. (1953). A critique of Konrad Lorenz's theory of instinctive behavior. Q. Rev. Biol., 28, 337–363.CrossRefGoogle ScholarPubMed
Lehrman, D. S. (1965). Interaction between internal and external environments in the regulation of the reproductive cycle of the ring dove. In Sex and Behavior, ed. Beach, F. A.. New York: Wiley, pp. 355–380.Google Scholar
Lehrman, D. S. (1970). Semantic and conceptual issues in the nature–nurture problem. In Development and Evolution of Behavior, ed. Aronson, L. R., Tobach, E., Lehrman, D. S., and Roisenblatt, J. S.. San Francisco: Freeman, pp. 17–52.Google Scholar
Leitner, S. and Catchpole, C. K. (2004). Syllable repertoire and the size of the song control system in captive canaries (Serinus canaria). J. Neurobiol., 60, 21–27.CrossRefGoogle Scholar
Leitner, S., Voigt, C., Garcia-Segura, L.-M., Van't Hof, T., and Gahr, M. (2001). Seasonal activation and inactivation of song motor memories in wild canaries is not reflected in neuroanatomical changes of forebrain song areas. Horm. Behav., 40, 160–168.CrossRefGoogle Scholar
Lenneberg, E. H. (1967). Biological Foundations of Language. New York: John Wiley.Google Scholar
Li, D., Jackson, R. R., and Lim, M. L. M. (2003). Influence of background and prey orientation on an ambushing predator's decisions. Behaviour, 140, 739–764.CrossRefGoogle Scholar
Licht, P., Frank, L. G., Pavgi, S., Yalcinkaya, T. M., Siteri, P. K., and Glickman, S. E. (1992). Hormonal correlates of “masculinization” in female spotted hyenas: 2, Maternal and fetal steroids. J. Reprod. Fertil., 95, 463–474.CrossRefGoogle Scholar
Lipar, J. L. and Ketterson, E. D. (2000). Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird. Proc. Roy. Soc. Lond. B, 267, 2005–2010.CrossRefGoogle ScholarPubMed
Locke, J. L. (1993). The Child's Path to Spoken Language. Cambridge, MA: Harvard University Press.Google Scholar
Locke, J. L. (1994). The biological building blocks of spoken language. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge, UK: Cambridge University Press, pp. 300–324.CrossRefGoogle Scholar
Locke, J. L. and Snow, C. (1997). Social influences on vocal learning in human and nonhuman primates. In Social Influences on Vocal Development, ed. Snowdon, C. T. and Hausberger, M.. Cambridge, UK: Cambridge University Press, pp. 274–292.CrossRefGoogle Scholar
Logan, C. A. (1983). Biological diversity in avian vocal learning. In Advances in Analysis of Behavior, Vol. 3: Biological Factors in Learning, ed. Zeiler, M. D. and Harzem, P.Chichester, UK: Wiley, pp. 143–176.Google Scholar
Lohmann, K. J. and Johnsen, S. (2000). The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci., 23, 153–159.CrossRefGoogle ScholarPubMed
Lorenz, K. (1935). Der Kumpan in der Umwelt des Vogels. J. Ornithol., 83, 137–213, 289–413. [Translation: Companions as factors in the bird's environment. In Studies in Animal and Human Behavior, vol. 1, 1970. London: Methuen, pp. 101–258.]CrossRefGoogle Scholar
Lorenz, K. (1937). Über die Bildung des Instinktbegriffes. Naturwissenschaften, 25, 289–300, 307–318, 324–331. [Translation: The establishment of the instinct concept. In Studies in Animal and Human Behavior, vol. 1, 1970. London: Methuen, pp. 259–315.]CrossRefGoogle Scholar
Lorenz, K. (1941). Comparative studies of the motor patterns of the Anatinae (translated by R. Martin 1971). Studies in Animal and Human Behavior, 2, 14–18 and 106–114.Google Scholar
Lorenz, K. Z. (1950). The comparative method in studying innate behaviour patterns. Symp. Soc. Exp. Biol., 4, 221–268.Google Scholar
Lorenz, K. Z. (1965). Evolution and Modification of Behaviour. Chicago: University of Chicago Press.Google Scholar
Lucas, J. R., Brodin, A., Kort, S. R., and Clayton, N. S. (2004). Does hippocampal size correlate with the degree of caching specialization?Proc. Roy. Soc. Lond. B, 271, 2423–2429.CrossRefGoogle ScholarPubMed
MacArthur, R. H. and Pianka, E. R. (1966). On optimal use of a patchy environment. Am. Nat., 100, 603–609.CrossRefGoogle Scholar
MacDougall-Shackleton, S. A. and Ball, G. F. (1999). Comparative studies of sex differences in the song-control system of songbirds. Trends Neurosci., 22, 432–436.CrossRefGoogle ScholarPubMed
MacDougall-Shackleton, S. A. and Ball, G. F. (2002). Revising hypotheses does not indicate a flawed approach. Trends Cogn. Sci., 6, 68–69.CrossRefGoogle Scholar
MacDougall-Shackleton, S. A., Hulse, S. H., and Ball, G. F. (1998a). Neural bases of song preferences in female zebra finches (Taeniopygia guttata). NeuroReport, 9, 3047–3052.CrossRefGoogle Scholar
MacDougall-Shackleton, S. A., Hulse, S. H., and Ball, G. F. (1998b). Neural correlates of singing behavior in male zebra finches (Taeniopygia guttata). J. Neurobiol., 36, 421–430.3.0.CO;2-Y>CrossRefGoogle Scholar
MacDougall-Shackleton, S. A., Sherry, D. F., Clark, A. P., Pinkus, R., and Hernandez, A. M. (2003). Photoperiodic regulation of food-storing and hippocampus volume in black-capped chickadees (Poecile atricapilla). Anim. Behav., 65, 805–812.CrossRefGoogle Scholar
Macphail, E. M. and Bolhuis, J. J. (2001). The evolution of intelligence: adaptive specialisations versus general process. Biol. Rev., 76, 341–364.CrossRefGoogle Scholar
Maney, D. L., MacDougall-Shackleton, E. A., MacDougall-Shackleton, S. A., Ball, G. F., and Hahn, T. P. (2003). Immediate early gene response to hearing song correlates with receptive behavior and depends on dialect in female white-crowned sparrows. J. Comp. Physiol. A., 189, 667–674.CrossRefGoogle Scholar
Manning, A. and Dawkins, M. S. (1995). An Introduction to Animal Behaviour. Cambridge, UK: Cambridge University Press.Google Scholar
Manning, C. J., Wakeland, E. K., and Potts, W. K. (1992). Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature, 360, 581–583.CrossRefGoogle ScholarPubMed
Margoliash, D. (1986). Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. J. Neurosci., 6, 1643–1661.CrossRefGoogle Scholar
Margoliash, D. and Konishi, M. (1985). Auditory representation of autogenous song in the song system of white-crowned sparrows. Proc. Natl Acad. Sci. USA, 82, 5997–6000.CrossRefGoogle Scholar
Marler, P. (1970a). A comparative approach to vocal learning: Song development in white-crowned sparrows. J. Comp. Physiol. Psychol. (monograph supplement), 71, 1–25.CrossRefGoogle Scholar
Marler, P. (1970b). Birdsong and speech development: could there be parallels?Amer. Scientist, 58, 669–673.Google ScholarPubMed
Marler, P. (1976). Sensory templates in species-specific behavior. In Simpler Networks and Behavior, ed. Fentress, J. C.. Sunderland, MA: Sinauer, pp. 314–329.Google Scholar
Marler, P. (1984). Song learning: innate species differences in the learning process. In The Biology of Learning. ed. Marler, P. and Terrace, H. S.. Dahlem Workshop Reports-Life Sciences Research Report 29. Berlin: Springer.CrossRefGoogle Scholar
Marler, P. (1987). Sensitive periods and the roles of specific and general sensory stimulation in birdsong learning. In Imprinting and Cortical Plasticity. Comparative Aspects of Sensitive Periods, ed. Rauschecker, J. P. and Marler, P.. New York: John Wiley and Sons, pp. 99–135.Google Scholar
Marler, P. (1991). Song-learning behavior: the interface with neuroethology. Trends Neurosci., 14, 199–206.CrossRefGoogle ScholarPubMed
Marler, P. (1997). Three models of song learning: evidence from behavior. J. Neurobiol., 33, 501–516.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Marler, P. and Doupe, A. (2000). Singing in the brain. Proc. Natl Acad. Sci. USA, 97, 2965–2967.CrossRefGoogle Scholar
Marler, P. and Peters, S. (1982). Subsong and plastic song: their role in the vocal learning process. In Acoustic communication in birds, Vol. 2, ed. Kroodsma, D. E. and Miller, E. H.. New York: Academic Press, pp. 25–50.Google Scholar
Marler, P. and Peters, S. S. (1989). Species differences in auditory responsiveness in early vocal learning. In The Comparative Psychology of Audition: Perceiving Complex Sounds, ed. Hulse, S. and Dooling, R.. Hillsdale, NJ: Lawrence Erlbaum, pp. 243–273.Google Scholar
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, CA: Freeman.Google Scholar
Martins, E. (1996). Phylogenies and the Comparative Method in Animal Behavior. Oxford, UK: Oxford University Press.Google Scholar
Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature, 246, 15–18.CrossRefGoogle Scholar
Maynard Smith, J. and Reichart, S. E. (1984). A conflicting tendency model of spider agonistic behaviour in hybrid-pure line comparison. Anim. Behav., 32, 564–578.CrossRefGoogle Scholar
Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501–1506.CrossRefGoogle ScholarPubMed
Mayr, E. (1988). The multiple meanings of teleological. In Toward a New Philosophy of Biology. Cambridge, MA: Harvard University Press, pp. 38–66.Google Scholar
Mayr, E. (1993). Proximate and ultimate causations. Biol. Philos., 8, 93–94.CrossRefGoogle Scholar
McClelland, J. L. and Rumelhart, D. E., Eds. (1985). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 2: Psychological and Biological Models. Cambridge, MA: MIT Press.Google Scholar
McFarland, D. J., (ed.) (1974). Motivational Control Systems Analysis. London: Academic Press.
McFarland, D. J. (1989). Problems of Animal Behaviour. London: Longman Scientific and Technical.Google Scholar
Meaney, M. J. (2001). Maternal care, gene expression and the transmission of individual differences in stress reactivity across generations. Ann. Rev. Neurosci., 24, 161–192.CrossRefGoogle Scholar
Medawar, P. B. (1967). The Art of the Soluble. London: Methuen.Google Scholar
Mello, C. V. (2002). Mapping vocal communication pathways in birds with inducible gene expression. J. Comp. Physiol. A, 188, 943–959,Google ScholarPubMed
Mello, C. V. and Clayton, D. F. (1994). Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J. Neurosci., 14, 6652–6666.CrossRefGoogle ScholarPubMed
Mello, C. V., Vicario, D. S., and Clayton, D. F. (1992). Song presentation induces gene-expression in the songbird forebrain. Proc. Natl Acad. Sci. USA, 89, 6818–6822.CrossRefGoogle ScholarPubMed
Mercader, J., Panger, M., and Boesch, C. (2002). Excavation of a chimpanzee stone tool site in the African rainforest. Science, 296, 1452–1455.CrossRefGoogle ScholarPubMed
Milinski, M., Griffiths, S., Wegner, K. M., Reusch, T. B. H., Haas-Assenbaum, A., and Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl Acad. Sci. USA, 102, 4414–4418.CrossRefGoogle ScholarPubMed
Moiseff, A. and Konishi, M. (1981). Neuronal and behavioral sensitivity to binaural time differences in the owl. J. Neurosci., 1, 40–48.CrossRefGoogle ScholarPubMed
Moiseff, A. and Konishi, M. (1983). Binaural characteristics of units in the owl's brainstem auditory pathway: precursors of restricted spatial receptive fields. J. Neurosci., 3, 2553–2562.CrossRefGoogle ScholarPubMed
Mook, D. G. (1983). In defense of external invalidity. Am. Psych., 38, 379–389.CrossRefGoogle Scholar
Moore, C. L. (1995). Maternal contributions to mammalian reproductive development and divergence of males and females. In Advances in the Study of Behavior, ed. Slater, P. J. P., Rosenblatt, J. S., Snowdon, C. T., and Milinski, M.. New York: Academic Press, pp. 47–118.Google Scholar
Morris, D. (1979). Animal Days. London: Jonathan Cape.Google Scholar
Mueller, W., Eising, C. M., Dijkstra, C., and Groothuis, T. G. G. (2004). Within-clutch patterns of yolk testosterone varies with the onset of incubation in black-headed gulls. Behav. Ecol. Sociobiol., 15, 893–897.CrossRefGoogle Scholar
Munn, N. L. (1950). Handbook of Psychological Research on the Rat. Boston, MA: Houghton Mifflin.Google Scholar
Murray, E. A. (1996). What have ablation studies told us about the neural substrates of stimulus memory?Sem. Neurosci., 8, 13–22.CrossRefGoogle Scholar
Nealen, P.M. (2005). An interspecific comparison using immuno-fluorescence reveals that synapse density in the avian song system is related to sex but not to male song repertoire size. Brain Res., 1032, 50–62.CrossRefGoogle Scholar
Neff, B. D. and Pitcher, T. E. (2005). Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol. Ecol., 14, 19–38.CrossRefGoogle ScholarPubMed
Nelson, D. (1997). Social interaction and sensitive phases for song learning: a critical review. In Social Influences on Vocal Development, ed. Snowdon, C. T. and Hausberger, M.. Cambridge, UK: Cambridge Univ. Press, pp. 7–22.CrossRefGoogle Scholar
Nelson, D. A. and Marler, P. (1990). The perception of birdsong and an ecological concept of signal space. In Comparative Perception: Complex Signals, ed. Stebbins, W. C. and Berkeley, M. A.. New York: John Wiley & Sons, pp. 443–478.Google Scholar
Nelson, K. (1965). After-effects of courtship in the male three-spined stickleback. Z. Vgl. Physiol., 50, 569–597.CrossRefGoogle Scholar
Nelson, R. J. (1999). An Introduction to Behavioral Endocrinology, 2nd edn. Sunderland, MA: Sinauer.Google Scholar
Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior: a node in the mammalian social behavior network. Ann. NY Acad. Sci., 877, 242–257.CrossRefGoogle ScholarPubMed
Nicol, C. J., Lindberg, A. C., Phillips, A. J., Pope, S. J, Wilkins, L. J., and Green, L. E. (2001). Influence of prior exposure to wood shavings on feather pecking, dustbathing and foraging in adult laying hens. Appl. Anim. Behav Sci., 73, 141–155.CrossRefGoogle ScholarPubMed
Nordeen, K. W. and Nordeen, E. J. (1997). Anatomical and synaptic substrates for avian song learning. J. Neurobiol., 33, 532–548.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Nordeen, K. W., Marler, P., and Nordeen, E. J. (1989). Addition of song-related neurons in swamp sparrows coincides with memorization, not production, of learned songs. J. Neurobiol. 20, 651–661.CrossRefGoogle Scholar
Nottebohm, F. (1981). A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science, 214, 1368–1370.CrossRefGoogle Scholar
Nottebohm, F. (1984). Birdsong as a model in which to study brain processes related to learning. Condor, 87, 227–236.CrossRefGoogle Scholar
Nottebohm, F. (2000). The anatomy and timing of vocal learning in birds. In The Design of Animal Communication, ed. Hauser, M. D. and Konishi, M.. Cambridge, MA: MIT Press, pp. 63–110.Google Scholar
Nottebohm, F. (2002). Neuronal replacement in adult brain. Brain Res. Bull., 57, 737–749.CrossRefGoogle ScholarPubMed
Nottebohm, F. (2002). Why are some neurons replaced in adult brain?J. Neurosci., 22, 624–628.CrossRefGoogle ScholarPubMed
Nottebohm, F., Stokes, T., and Leonard, C. M. (1976). Central control of song in the canary. J. Comp. Neurol., 165, 457–486.CrossRefGoogle Scholar
Nottebohm, F., Kasparian, S., and Pandazis, C. (1981). Brain space for learned task. Brain Res., 213, 99–109.CrossRefGoogle ScholarPubMed
Nottebohm, F., Alvarez-Buylla, A., Cynx, J.et al. (1990). Song learning in birds: the relation between perception and production. Phil. Trans. Roy. Soc. Lond, B, 329, 115–124.CrossRefGoogle Scholar
Nottebohm, R. (1991). Reassessing the mechanisms and origins of vocal learning in birds. Trends Neurosci., 14, 206–211.CrossRefGoogle ScholarPubMed
Oppenheim, R. W. (1981). Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behaviour: a neuroembryological perspective. In Maturation and Development: Biological and Psychological Perspectives, ed. Connolly, K. J. and Prechtl, H. F. R.. Philadelphia: Lippincott, pp. 73–109.Google Scholar
Oppenheim, R. W. (2001). Early development of behavior and the nervous system, an embryological perspective. In Handbook of Behavioral Neurobiology, Vol. 13: Developmental Psychobiology, ed. Blass, E. M.. New York: Kluwer Academic/Plenum, pp. 15–52.Google Scholar
Orzack, S. H. and Sober, E. (2001). Adaptation, phylogenetic inertia, and the method of controlled comparisons. In Adaptationism and Optimality, ed. Orzack, S. H. and Sober, E.. Cambridge, UK: Cambridge University Press, pp. 45–63.CrossRefGoogle Scholar
Oyama, S. (1985). The Ontogeny of Information. Cambridge, UK: Cambridge University Press.Google Scholar
Palmer, A. R. (2000). Quasireplication and the contract of error: lessons from sex ratios, heritabilities and fluctuating asymmetry. Annu. Rev. Ecol. Syst., 31, 441–480.CrossRefGoogle Scholar
Peña, J. L., Viete, S., Funabiki, K., Saberi, K., and Konishi, M. (2001). Cochlear and neural delays for coincidence detection in owls. J. Neurosci., 21, 9455–9459.CrossRefGoogle ScholarPubMed
Penn, D. and Potts, W. (1998). MHC-disassortiative mating preferences reversed by cross-fostering. Proc. Roy. Soc. Lond. B, 265, 1299–1306.CrossRefGoogle ScholarPubMed
Penn, D. J. (2002). The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology, 108, 1–21.CrossRefGoogle Scholar
Penn, D. J. and Potts, W. K. (1999). The evolution of mating preferences and the major histocompatibility complex. Am. Nat., 153, 146–164.CrossRefGoogle Scholar
Petherick, J. C., Seawright, E., Waddington, D., Duncan, I. J. H., and Murphy, L. B. (1995). The role of perception in the causation of dustbathing behavior in domestic fowl. Anim. Behav., 49, 1521–1530.CrossRefGoogle Scholar
Petitto, L. A. and Marentette, P. F. (1991). Babbling in the manual mode: Evidence for the ontogeny of language. Science, 251, 1493–1496.CrossRefGoogle ScholarPubMed
Petrinovich, L. (1985). Factors influencing song development in the white-crowned sparrow (Zonotrichia leucophrys). J. Comp. Psychol., 99, 15–29.CrossRefGoogle Scholar
Phelps, S. M. and Ryan, M. J. (1998). Neural networks predict response biases in female túngara frogs. Proc. Roy. Soc., Lond. Ser. B, 265, 279–285.CrossRefGoogle ScholarPubMed
Phelps, S. M. and Ryan, M. J. (2000). History influences signal recognition: neural network models of túngara frogs. Proc. Roy. Soc., Lond. Ser. B, 267, 1633–1639.CrossRefGoogle ScholarPubMed
Phelps, S. M., Ryan, M. J., and Rand, A. S. (2001). Vestigial preference functions in neural networks and tungara frogs. Proc. Natl Acad. Sci. USA, 98, 13161–13166.CrossRefGoogle ScholarPubMed
Pierce, G. J. and Ollason, J. G. (1987). Eight reasons why optimal foraging theory is a complete waste of time. Oikos, 49, 111–118.CrossRefGoogle Scholar
Pinker, S. (1994). The Language Instinct. London: Penguin Books.CrossRefGoogle Scholar
Pinker, S. (1997). How the Mind Works. New York: W.W. Norton.Google Scholar
Pittendrigh, C. S. (1958). Adaptation, natural selection, and behavior. In Behavior and Evolution, ed. Roe, A. and Simpson, G. G.. New Haven: Yale University Press, pp. 390–416.Google Scholar
Podos, J. (1996). Motor constraints on vocal developement in a songbird. Anim. Behav., 51, 1061–1070.CrossRefGoogle Scholar
Povinelli, D. J., Bering, J. M., and Giambrone, S. (2000). Toward a science of other minds: Escaping the argument by analogy. Cogn. Sci., 24, 509–541.CrossRefGoogle Scholar
Pravosudov, V. V. (2003). Long term moderate elevation of corticosterone facilitates avian food-caching behavior and enhances spatial memory. Proc. Roy. Soc. Lond. B, 270, 2599–2604.CrossRefGoogle ScholarPubMed
Pravosudov, V. V. and Clayton, N. S. (2001). Effects of demanding foraging conditions on cache retrieval accuracy in foodcaching mountain chickadees (Poecile gambeli). Proc. Roy. Soc. Lond. B, 268, 363–368.CrossRefGoogle Scholar
Pravosudov, V. V. and Clayton, N. S. (2002). A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behav. Neurosci. 116, 513–522.CrossRefGoogle Scholar
Pravosudov, V. V. and Omanska, A. (2005). Prolonged moderate elevation of corticosterone does not affect hippocampal anatomy or cell proliferation rates in mountain chickadees (Poecile gambeli). J. Neurobiol., 62, 82–91.CrossRefGoogle Scholar
Pravosudov, V. V., Kitaysky, A. S., Wingfield, J. C., and Clayton, N. S. (2001). Long-term unpredictable foraging conditions and physiological stress response in mountain chickadees (Poecile gambeli). Gen. Comp. Endocrinol., 123, 324–331.CrossRefGoogle Scholar
Pravosudov, V. V., Lavenex, P., and Clayton, N. S. (2002). Changes in spatial memory mediated by experimental variation in food supply do not affect hippocampal anatomy in mountain chickadees (Poecile gambeli). J. Neurobiol. 51, 142–148.CrossRefGoogle Scholar
Pulliam, H. R. (1974). On the theory of optimal diets. Am. Nat., 108, 59–74.CrossRefGoogle Scholar
Putz, O. and Crews, D. (2006). Embryonic origin of mate choice in a lizard with temperature-dependent sex determination. Devel. Psychobiol., 48, 29–38.CrossRefGoogle Scholar
Raby, C. R., Alexis, D. M., Dickinson, A., and Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445, 919–921.CrossRefGoogle ScholarPubMed
Rand, A. S. and Ryan, M. J. (1981). The adaptive significance of a complex vocal repertoire in a neotropical frog (Physalaemus pustulosus). Z. Tierpsychol., 57, 209–214.CrossRefGoogle Scholar
Rand, A. S., Ryan, M. J., and Wilczynski, W. (1992). Signal redundancy and receiver permissiveness in acoustic mate recognition by the túngara frog Physalaemus pustulosus. Am. Zool., 32, 81–90.CrossRefGoogle Scholar
Rauschecker, J. P. and Marler, P. (eds.) (1987). Imprinting and Cortical Plasticity. New York: Wiley.
Real, L. A. (1993). Toward a cognitive ecology. Trends Ecol. Evol., 8, 413–417.CrossRefGoogle Scholar
Reeve, H. K. and Sherman, P. A. (1993). Adaptation and the goals of evolutionary research. Q. Rev. Biol., 68, 1–32.CrossRefGoogle Scholar
Reeve, H. K. and Sherman, P. A. (2001). Optimality and phylogeny: a critique of current thought. In Adaptationism and Optimality, ed. Orzack, S. and Sober, E.. Cambridge, UK: Cambridge University Press.Google Scholar
Reznick, D. A., Bryga, H., and Endler, J. A. (1990). Experimentally induced life-history evolution in a natural population. Nature, 346, 357–359.CrossRefGoogle Scholar
Rhen, T. and Crews, D. (2002). Variation in reproductive behavior within a sex; neural systems and endocrine activation. J. Neuroendocr., 14, 517–532.CrossRefGoogle ScholarPubMed
Ribeiro, S., Cecchi, G. A., Magnasco, M. O., and Mello, C. V. (1998). Toward a song code: evidence for a syllabic representation in the canary brain. Neuron, 21, 359–371.CrossRefGoogle Scholar
Ridley, M. (1983). The Explanation of Organic Diversity.the Comparative Method and Adaptations for Mating. Oxford, UK: Clarendon Press.Google Scholar
Riebel, K. (2000). Early exposure leads to repeatable preferences for male song in female zebra finches. Proc. Roy. Soc. Lond, B., 267, 2553–2558.CrossRefGoogle Scholar
Riebel, K. (2003a). Developmental influences on auditory perception in female zebra finches – is there a sensitive phase for song preference learning?Anim. Biol., 53, 73–87.CrossRefGoogle Scholar
Riebel, K. (2003b). The ‘mute’ sex revisited: vocal production and perception learning in female song birds. Adv. Study Behav., 33, 49–86.CrossRefGoogle Scholar
Riebel, K., Smallegange, I. M., Terpstra, N. J., and Bolhuis, J. J. (2002). Sexual equality in zebra finch song preference: evidence for a dissociation between song recognition and production learning. Proc. Roy. Soc. Lond., B, 269, 729–733.CrossRefGoogle ScholarPubMed
Riedstra, B. and Groothuis, T. G. G. (2002). Early feather pecking as a form of social exploration: the effect of group stability on feather pecking and tonic immobility in domestic chicks. Appl. Anim. Behav. Sci., 77, 127–138.CrossRefGoogle Scholar
Ristau, C. A. (1991). Cognitive Ethology: The Minds of Other Animals. Hillsdale, New Jersey: Lawrence Erlbaum Associates.Google Scholar
Robinson, G. E. and Ben-Shahar, Y. (2002). Social behaviour and comparative genomics: new genes or new regulation?Genes Brain Behav., 1, 197–203.CrossRefGoogle ScholarPubMed
Robinson, M. H. (1991). Niko Tinbergen, comparative studies and evolution. In The Tinbergen Legacy, ed. Dawkins, M. S., Halliday, T. R., and Dawkins, R.. London: Chapman & Hall, pp. 100–128.Google Scholar
Röell, D. R. (2000). The World of Instinct: Niko Tinbergen and the Rise of Ethology in the Netherlands (1920–50). Assen, Netherlands: Van Gorcum.Google Scholar
Rogers, L. J. and Deng, C. (2002). Factors affecting the development of lateralization in chicks. In Comparative Vertebrate Lateralization, ed. Rogers, L. J. and Andrew, R. J.. New York: Cambridge University Press, pp. 206–246.CrossRefGoogle Scholar
Ros, A. F. H. (1999). Effects of testosterone on growth, plumage pigmentation and mortality in black-headed gull chicks. Ibis, 141, 451–459.CrossRefGoogle Scholar
Ros, A. F. H., Dieleman, St. J., and Groothuis, T. G. G. (2002). Social stimuli, testosterone, and aggression in gull chicks: support for the challenge. Horm. Behav., 41, 334–342.CrossRefGoogle ScholarPubMed
Rumelhart, D. E. and McClelland, J. L., Eds. (1985). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations. Cambridge, MA: MIT Press.
Rutter, M. (1991). A fresh look at “maternal deprivation.” In The Development and Integration of Behavior, ed. Bateson, P.. Cambridge, UK: Cambridge University Press, pp. 331–374.Google Scholar
Rutter, M. (2002). Nature, nurture, and development: from evangelism through science toward policy and practice. Child Develop., 73, 1–21.CrossRefGoogle ScholarPubMed
Ryan, M. J. (1980). Female mate choice in a Neotropical frog. Science, 209, 523–525.CrossRefGoogle Scholar
Ryan, M. J. (1983). Sexual selection and communication in a Neotropical frog, Physalaemus pustulosus. Evolution, 39, 261–272.CrossRefGoogle Scholar
Ryan, M. J. (1985). The Túngara Frog, A Study in Sexual Selection and Communication. Chicago: University of Chicago Press.Google Scholar
Ryan, M. J. (1990). Sensory systems, sexual selection, and sensory exploitation. Oxford Surv. Evol. Biol., 7, 157–195.Google Scholar
Ryan, M. J. (1996). Phylogenetics and behavior; some cautions and expectations. In Phylogenetics and Behavior; Some Cautions and Expectations, ed. Martins, E.. Oxford, UK: Oxford University Press. pp. 1–21.Google Scholar
Ryan, M. J. (1998). Receiver biases, sexual selection and the evolution of sex differences. Science, 281, 1999–2003.CrossRefGoogle ScholarPubMed
Ryan, M. J. (2005). The evolution of behaviour, and integrating it towards a complete and correct understanding of behavioural biology. Anim Biol., 55, 419–439. (Chapter 7 in this volume.).CrossRefGoogle Scholar
Ryan, M. J. and Getz, W. (2000). Signal decoding and receiver evolution: an analysis using an artificial neural network. Brain, Behav. Evol., 56, 45–62.CrossRefGoogle ScholarPubMed
Ryan, M. J. and Rand, A. S. (1993). Sexual selection and signal evolution: the ghost of biases past. Phil. Trans. Roy. Soc. ser. B., 340, 187–195.CrossRefGoogle Scholar
Ryan, M. J. and Rand, A. S. (1995). Female responses to ancestral advertisement calls in Tungara frogs. Science (Washington, DC), 269, 390–392.CrossRefGoogle ScholarPubMed
Ryan, M. J. and Rand, A. S. (1999). Phylogenetic influences on mating call preferences in female túngara frogs (Physalaemus pustulosus). Anim. Behav., 57, 945–956.CrossRefGoogle Scholar
Ryan, M. J. and Rand, A. S. (2003). Mate recognition in túngara frogs: a review of some studies of brain, behavior, and evolution. Acta Zoologica Sinica. 49, 713–726.Google Scholar
Ryan, M. J., Tuttle, M. D., and Rand, A. S. (1982). Sexual advertisement and bat predation in a Neotropical frog. Am. Nat., 119, 136–139.CrossRefGoogle Scholar
Ryan, M. J., Bartholomew, G. A., and Rand, A. S. (1983). Energetics of reproduction in a Neotropical frog, Physalaemus pustulosus. Ecology 64, 1456–1462.CrossRefGoogle Scholar
Ryan, M. J., Fox, J. H., Wilczynski, W., and Rand, A. S. (1990). Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 343, 66–67.CrossRefGoogle ScholarPubMed
Ryan, M. J., Rand, W., Hurd, P. L., Phelps, S. M., and Rand, A. S. (2003). Generalization in response to mate recognition signals. Am. Nat., 161, 380–394.CrossRefGoogle ScholarPubMed
Sakata, J. T. and Crews, D. (2004). Developmental sculpting of social phenotype and plasticity. Neurosci. Biobehav. Rev., 28, 95–112.CrossRefGoogle ScholarPubMed
Sakata, J. T., Coomber, P., Gonzalez-Lima, F., and Crews, D. (2000). Functional connectivity among limbic brain areas: differential effects of incubation temperature and gonadal sex in the leopard gecko, Eublepharis macularius. Brain, Behav. Evol., 55, 139–151.CrossRefGoogle ScholarPubMed
Sakata, J. T., Gupta, A., and Crews, D. (2001). Animal models of experiential effects on neural metabolism: plasticity in limbic circuits. In Neuroplasticity, Development and Steroid Hormone Action, ed. Handa, R., Hayashi, S., Terasawa, E., and Kawata, M.. Boca Raton: CRC Press, pp. 257–272.Google Scholar
Sakata, J. T., Gupta, A., Chuang, C. -P., and Crews, D. (2002). Social experience affects territorial and reproductive behaviours in male leopard geckos, Eublepharis macularius. Anim. Behav., 63, 487–493.CrossRefGoogle Scholar
Schlaepfer, M. A., Runge, M. C., and Sherman, P. W. (2002). Ecological and evolutionary traps. Trends Ecol. Evol., 17, 474–480.CrossRefGoogle Scholar
Schoener, T. W. (1971). Theory of feeding strategies. Ann. Rev. Ecol. Syst., 2, 369–404.CrossRefGoogle Scholar
Schutz, F. (1965). Sexuelle Prägung bei Anatiden. Z. Tierpsychol., 22, 50–103.CrossRefGoogle Scholar
Schwabl, H. (1993). Yolk is a source of maternal testosterone for developing birds. Proc. Nat. Acad. Sci. USA, 90, 11446–11450.CrossRefGoogle ScholarPubMed
Schwabl, H. (1996a). Maternal testosterone in the avian egg enhances postnatal growth. Comp. Biochem. Phys. 114, 271–276.CrossRefGoogle ScholarPubMed
Schwabl, H., Mock, D. W., and Gieg, J. A. (1997). A hormonal mechanism for parental favouritism. Nature, 386, 231–231.CrossRefGoogle Scholar
Searcy, W. A. and Anderson, M. (1986). Sexual selection and the evolution of song. Ann. Rev. Ecol. Syst., 17, 507–533.CrossRefGoogle Scholar
Shatz, C. J. (1992). The developing brain. Scientific Amer., 267, 60–67.CrossRefGoogle ScholarPubMed
Shelton, J. R. and Caramazza, A. (1999). Deficits in lexical and semantic processing. Implications for models of normal language. Psychon. Bull. Rev., 6, 5–27.CrossRefGoogle ScholarPubMed
Sherman, P. W. (1988). The levels of analysis. Anim. Behav., 36, 616–619.CrossRefGoogle Scholar
Sherman, P. W., Reeve, H. K., and Pfennig, D. W. (1997). Recognition systems. In Behavioural Ecology: An Evolutionary Approach, ed. Krebs, J. R. and Davies, N. B.. 4th edn. Oxford, UK: Blackwell Science, pp. 69–96.Google Scholar
Sherry, D. F. (1985). Food storage by birds and mammals. Adv. Study Behav., 15, 153–188.CrossRefGoogle Scholar
Sherry, D. F. (2005). Do ideas about function help in the study of causation? Anim. Biol., 55, 441–456. (Chapter 8 in this volume.).CrossRefGoogle Scholar
Sherry, D. F. and Schacter, D. L. (1987). The evolution of multiple memory systems. Psychol. Rev., 94, 439–454.CrossRefGoogle Scholar
Sherry, D. F. and Vaccarino, A. L. (1989). Hippocampus and memory for food caches in Black-Capped Chickadees. Behav. Neurosci., 103, 308–318.CrossRefGoogle Scholar
Sherry, D. F., Krebs, J. R., and Cowie, R. J. (1981). Memory for the location of stored food in marsh tits. Anim. Behav., 29, 1260–1266.CrossRefGoogle Scholar
Sherry, D. F., Vaccarino, A. L., Buckenham, K., and Herz, R. S. (1989). The hippocampal complex of food-storing birds. Brain Behav. Evol., 34, 308–317.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. (1995). Comparative studies of memory in food storing birds: from the field to the Skinner box. In Behavioral Brain Research in Naturalistic and Semi-Naturalistic Settings, ed. Alleva, E., Fasolo, A., Lipp, H. P., Nadel, L., and Ricceri, L.Kluwer Academic, pp. 159–194.CrossRefGoogle Scholar
Shettleworth, S. J. (1998). Cognition, Evolution, and Behavior. Oxford, UK: Oxford University Press.Google Scholar
Shettleworth, S. J. (2000). Modularity and the evolution of cognition. In The Evolution of Cognition, ed. Heyes, C., and Huber, L.. Cambridge, MA: MIT Press, pp. 43–60.Google Scholar
Shettleworth, S. J. (2003). Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition. Brain Behav. Evol., 62, 108–116.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. (2007). Planning for breakfast. Nature, 445, 825–826.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. and Krebs, J. R. (1982). How marsh tits find their hoards: the roles of site preference and spatial memory. J. Exp. Psychol.: Anim. Behav. Proc., 8, 354–375.Google ScholarPubMed
Shettleworth, S. J. and Westwood, R. P. (2002). Divided attention, memory, and spatial discrimination in food-storing and nonstoring birds, black-capped chickadees (Poecile atricapilla). and dark-eyed juncos (Junco hyemalis). J. Exp. Psychol.: Anim. Behav. Proc., 28, 227–241.Google Scholar
Shettleworth, S. J., Hampton, R. R., and Westwood, R. P. (1995). Effects of season and photoperiod on food storing by black-capped chickadees, Parus atricapillus. Anim. Behav., 49, 989–998.CrossRefGoogle Scholar
Shine, R. (1979). Sexual selection and sexual dimorphism in the amphibia. Copeia, 1979, 297–306.CrossRefGoogle Scholar
Short, T. L. (2002). Darwin's concept of final cause: neither new nor trivial. Biol. Philos., 17, 323–340.CrossRefGoogle Scholar
Silver, R. (1990). Biological timing mechanisms with special emphasis on the parental behavior of doves. In Contemporary Issues in Comparative Psychology, ed. Dewsbury, D. A.. Sunderland, MA: Sinauer, pp. 252–277.CrossRefGoogle Scholar
Singer, A. G., Beauchamp, G. K., and Yamazaki, K. (1997). Volatile signals of the major histocompatibility complex in male mouse urine. Proc. Natl Acad. Sci. USA, 94, 2210–2214.CrossRefGoogle ScholarPubMed
Skinner, B. F. (1953). Science and Human Behavior. New York: Macmillan.Google Scholar
Slater, P. J. B. (1999). Essentials of Animal Behaviour. Cambridge, UK: Cambridge University Press.Google Scholar
Slater, P. J. B., Eales, L. A., and Clayton, N. S. (1988). Song learning in zebra finches: progress and prospects. Adv. Study Behav., 18, 1–34.CrossRefGoogle Scholar
Sluckin, W. and Salzen, E. A. (1961). Imprinting and perceptual learning. Q. J. Exp. Psychol., 8, 65–77.CrossRefGoogle Scholar
Smulders, T. V. and DeVoogd, T. J. (2000). The avian hippocampal formation and memory for hoarded food: spatial learning out in the real world. In Brain, Perception, Memory, ed. Bolhuis, J. J.. Oxford, UK: Oxford University Press, pp. 127–148.Google Scholar
Smulders, T. V., Sasson, A. D., and DeVoogd, T. J. (1993). Seasonal changes in brain size in a food-storing bird, the black-capped chickadee (Parus atricapillus). Soc. Neurosci. Abstr., 19, 1448.Google Scholar
Smulders, T. V., Sasson, A. D., and DeVoogd, T. J. (1995). Seasonal variation in hippocampal volume in a food-storing bird, the black-capped chickadee. J. Neurobiol., 27, 15–25.CrossRefGoogle Scholar
Smulders, T. V., Shiflett, M. W., Sperling, A. J., and DeVoogd, T. J. (2000). Seasonal change in neuron number in the hippocampal formation of a food-hoarding bird: the black-capped chickadee. J. Neurobiol., 44, 414–422.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Snowdon, C. T. and Hausberger, M. (eds.) (1997). Social Influences on Vocal Development. Cambridge, UK: Cambridge Univ. Press.CrossRef
Sober, E. (1984). The Nature of Selection. Cambridge, MA: MIT Press.Google Scholar
Sockman, K. W., Gentner, T. Q., and Ball, G. F. (2002). Recent experience modulates forebrain gene-expression in response to mate-choice cues in European starlings. Proc. Roy. Soc. Lond., B., 269, 2479–2485.CrossRefGoogle ScholarPubMed
Sokolowski, M. B. (2001). Drosophila: genetics meets behaviour. Nature Rev. Genet., 2, 879–890.CrossRefGoogle ScholarPubMed
Solis, M. M., Brainard, M. S., Hessler, N. A., and Doupe, A. J. (2000). Song selectivity and sensorimotor signals in vocal learning and production. Proc. Natl. Acad. Sci. USA, 97, 11836–11842.CrossRefGoogle Scholar
Steer, M. and Cuthill, I. C. (2003). Irrationality, sub-optimality and the evolutionary context. Behav. Brain Sci., 26, 176–177.CrossRefGoogle Scholar
Stephens, D. W. and Krebs, J. R. (1986). Foraging Theory. Princeton NJ: Princeton University Press.Google Scholar
Stevenson, J. G. (1967). Reinforcing effects of chaffinch song. Anim. Behav., 15, 427–432.CrossRefGoogle ScholarPubMed
Suthers, R. A. (2001). Peripheral vocal mechanisms in birds: are songbirds special?Neth. J. Zool, 51, 217–242.CrossRefGoogle Scholar
ten Cate, C. (1984). The influence of social relations on the development of species recognition in zebra finch males. Behaviour, 91, 263–285.CrossRefGoogle Scholar
ten Cate, C. (1987). Sexual preferences in zebra finch males raised by two species: II. The internal representation resulting from double imprinting. Anim. Behav., 35, 321–330.CrossRefGoogle Scholar
ten Cate, C. (1989). Behavioural development: toward understanding processes. In Perspectives in Ethology, Vol 8. ed. Bateson, P. P. G. and Klopfer, P. H.. New York: Plenum, pp 243–269.Google Scholar
ten Cate, C. (1994). Perceptual mechanisms in imprinting and song learning. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. and Bolhuis, J. J.. Cambridge, UK: Cambridge University Press, pp. 116–146.CrossRefGoogle Scholar
ten Cate, C. and Bateson, P. (1988). Sexual selection: the evolution of conspicuous characteristics in birds by means of imprinting. Evolution, 42, 1355–1358.CrossRefGoogle Scholar
ten Cate, C. and Vos, D. R. (1999). Sexual imprinting and evolutionary processes in birds: a reassessment. Adv. Study Behav., 28, 1–31.CrossRefGoogle Scholar
Terpstra, N. J., Bolhuis, J. J., and Boer-Visser, A. M. (2004). An analysis of the neural representation of bird song memory. J. Neurosci. 24, 4971–4977.CrossRefGoogle Scholar
Terpstra, N. J., Bolhuis, J. J., Riebel, K., Burg, J. M. M., and Boer-Visser, A. M. (2006). Localised brain activation specific to auditory memory in a female songbird. J. Comp. Neurol., 494, 784–791.CrossRefGoogle Scholar
Thornhill, R. (1990). The study of adaptation. In Interpretation and Explanation in the Study of Behavior, ed. Bekoff, M. and Jamieson, D.. Boulder, CO: Westview Press, pp. 1–31.Google Scholar
Thorpe, W. H. (1961). Bird Song. Cambridge, UK: Cambridge University Press.Google Scholar
Timmermans, S., Lefebvre, L., Boire, D., and Basu, P. (2000). Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain Behav. Evol., 56, 196–203.CrossRefGoogle ScholarPubMed
Tinbergen, N. (1951). The Study of Instinct. Oxford, UK: Oxford University Press.Google Scholar
Tinbergen, N. (1952). Derived activities: their causation, biological significance, origin and emancipation during evolution. Q. Rev. Biol., 27, 1–32.CrossRefGoogle ScholarPubMed
Tinbergen, N. (1953). Social Behaviour in Animals. London: Methuen.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Z. Tierpsychol., 20, 410–433. (Reprinted in this volume).CrossRefGoogle Scholar
Tinbergen, N. (1985). Watching and wondering. In Leaders in the Study of Animal Behavior: Autobiographical Perspectives, ed. Dewsbury, D. A.. Chapter 17. Lewisburg, PA: Bucknell University Press.Google Scholar
Tinbergen, N. and Kruyt, W. (1938). Über die Orientierung des Bienenwolfes (Philanthus trangulum Fabr.). III: Die Bevorzugung bestimmter Wegmarken. Z. Vgl. Physiol., 25, 292–334.Google Scholar
Tinbergen, N., Brockhuysen, G. J., Feekes, F., Houghton, J. C. W., Kruuk, H., and Szulc, E. (1962). Egg shell removal by the black headed gull, Larus ridibundus: a behaviour component of camouflage. Behaviour, 19, 74–117.CrossRefGoogle Scholar
Toates, F. (1986). Motivational Systems. London: Cambridge University Press.Google Scholar
Toates, F. and Jensen, P. (1991). Ethological and psychological models of motivation: towards a synthesis. In From Animals to Animats. Cambridge, MA: MIT Press, ed. Meyer, J. A. and Wilson, S., pp. 194–205.Google Scholar
Tomasello, M. (1995). Language is not an instinct. Cogn. Devel., 10, 131–156.CrossRefGoogle Scholar
Tomasello, M. (2000). Primate cognition: introduction to the issue. Cogn. Sci., 24, 351–361.CrossRefGoogle Scholar
Tramontin, A. D. and Brenowitz, E. A. (1999). A field study of seasonal neuronal incorporation into the song control system of a songbird that lacks adult song learning. J. Neurobiol. 40, 316–326.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Tramontin, A. D. and Brenowitz, E. (2000). Seasonal plasticity in the adult brain. Trends Neurosci., 23, 251–258.CrossRefGoogle ScholarPubMed
Trivers, R.L. (1971). The evolution of reciprocal altruism. Q. Rev. Biol., 46, 35–57.CrossRefGoogle Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Sexual Selection and the Descent of Man, 1871–1971, ed. Campbell, B. G.. Chicago: Aldine, pp. 136–179.Google Scholar
Trivers, R. L. (1974). Parent–offspring conflict. Amer. Zool., 14, 249–264.CrossRefGoogle Scholar
Trivers, R. L. and Hare, H. (1976). Haplodiploidy and the evolution of the social insects. Science, 191, 249–263.CrossRefGoogle Scholar
Trivers, R. L. and Willard, D. E. (1973). Natural selection of parental ability to vary? the sex ratio of offspring. Science, 179, 90–92.CrossRefGoogle ScholarPubMed
Tulving, E. (1983). Elements of Episodic Memory. New York: Oxford University Press.Google Scholar
Tuttle, M. D. and Ryan, M. J. (1981). Bat predation and the evolution of frog vocalizations in the Neotropics. Science, 214, 677–678.CrossRefGoogle ScholarPubMed
Klaauw, C. J. (1940). Theoretische biologie. Vakbl. Biol., 21, 75–88.Google Scholar
Vander Wall, S. B. (1982). An experimental analysis of cache recovery in Clark's nutcracker. Anim. Behav., 30, 84–94.CrossRefGoogle Scholar
Dierendonck, M. C. (2006). The importance of social relationships in horses. Ph.D. thesis Utrecht University, Faculty of Veterinary Medicine, the Netherlands.
Kampen, H. S. (1996). A framework for the study of filial imprinting and the development of attachment. Psychon. Bull. Rev., 3, 3–20.CrossRefGoogle Scholar
Ventura, D. F., Zana, Y., Souza, J. M., and Devoe, R. D. (2001). Ultraviolet colour opponency in the turtle retina. J. Exp. Biol., 204, 2527–2534.Google ScholarPubMed
Vestergaard, K. S. (1982). Dust-bathing in the domestic fowl: diurnal rhythm and dust deprivation. Appl. Anim. Ethol., 8, 487–495.CrossRefGoogle Scholar
Vestergaard, K. S. (1994). Dustbathing and its relation to feather pecking in the fowl: motivational and developmental aspects. Ph.D. thesis, Royal Veterinary and Agricultural University, Copenhagen.
Vestergaard, K. S. and Baranyiova, E. (1996). Pecking and scratching in the development of dust perception in young chicks. Acta Veter. Brno, 65, 133–142.CrossRefGoogle Scholar
Vestergaard, K. S. and Hogan, J. A. (1992). The development of a behavior system: dustbathing in the Burmese red junglefowl. III. Effects of experience on stimulus preference. Behaviour, 121, 215–230.CrossRefGoogle Scholar
Vestergaard, K. S. and Lisborg, L. (1993). A model of feather pecking development which relates to dustbathing in the fowl. Behaviour, 126, 291–308.CrossRefGoogle Scholar
Vestergaard, K. S., Hogan, J. A., and Kruijt, J. P. (1990). The development of a behavior system: dustbathing in the Burmese red junglefowl. I, The influence of the rearing environment on the organization of dustbathing. Behaviour, 112, 99–116.CrossRefGoogle Scholar
Vestergaard, K. S., Damm, B. I., Abbott, U. K., and Bildsøe, M. (1999). Regulation of dustbathing in feathered and featherless domestic chicks: the Lorenzian model revisited. Anim. Behav., 58, 1017–1025.CrossRefGoogle ScholarPubMed
Viitala, J., Korpimäki, E., Palokangas, P., and Koivula, M. (1995). Attraction of kestrels to vole scent marks visible in ultraviolet light. Nature, 373, 425–427.CrossRefGoogle Scholar
Viola, A. U., Archer, S. N., James, L. M.et al. (2007). PER3 polymorphism predicts sleep structure and waking performance. Current Biol., 17, 613–618.CrossRefGoogle ScholarPubMed
vom Saal, F., Clark, M., Galef, B., Drickamer, L. C., and Vandenbergh, J. G. (1999). Intrauterine position phenomenon. In Encyclopedia of Reproduction. Vol. 2, Knobil, C. and , J. N.. New York: Academic Press. pp. 893–900.Google Scholar
Engelhardt, N. (2004). Proximate control of avian sex allocation, a study on zebra finches. Ph.D. thesis. Groningen, the Netherlands.
Holst, E. and St. Paul, U. (1960). Vom Wirkungsgefüge der Triebe. Naturwissenschaft, 47, 409–422. (Trans.: On the functional organization of drives Anim.Behav., 1963, 11, 1–20.).CrossRefGoogle Scholar
Walker, M. M., Dennis, T. E., and Krischvink, J. L. (2002). The magnetic sense and its use in long-distance navigation by animals. Curr. Opin. Neurobiol., 12, 735–744.CrossRefGoogle ScholarPubMed
Ward, B. C., Nordeen, E. J., and Nordeen, K. W. (1998). Individual variation in neuron number predicts differences in the propensity for avian vocal imitation. Proc. Natl Acad. Sci. USA, 95, 1277–1282.CrossRefGoogle ScholarPubMed
Weaver, A. and Waal, F. B. M. (2002). An index of relationship quality based on attachment theory. J. Comp. Psychol., 116, 93–106.CrossRefGoogle ScholarPubMed
Weinstock, M. (1997). Does prenatal stress impair coping and regulation of hypothalamic–pituitary–adrenal axis?Neurosci. Biobehav. Rev., 21, 1–10.CrossRefGoogle ScholarPubMed
Werker, J. F. and Tees, R. C. (1992). The organization and reorganization of human speech perception. Ann. Rev. Neurosci., 15, 377–402.CrossRefGoogle ScholarPubMed
West, M. J. and King, A. P. (1988). Female visual display affects the development of males' song in the cowbird. Nature, 334, 244–246.CrossRefGoogle Scholar
West, M. J. and King, A. P. (2001). Science lies its way to the truth … really. In Handbook of Behavioral Neurobiology, Vol. 13: Developmental Psychobiology, ed. Blass, E. M.. New York: Kluwer Academic/Plenum, pp. 587–614.Google Scholar
Westneat, D. F. and Birkhead, T. R. (1998). Alternative hypotheses linking the immune system and mate choice for good genes. Proc. Roy. Soc. Lond. B, 265, 1065–1073.CrossRefGoogle Scholar
Whitman, C. O. (1898). Animal Behavior. Woods Hole.Google Scholar
Widowski, T. M. and Duncan, I. J. H. (2000). Working for a dustbath: are hens increasing pleasure rather than reducing suffering?Appl. Anim. Behav. Sci., 68, 39–53.CrossRefGoogle ScholarPubMed
Wilczynski, W. and Capranica, R. R. (1984). The auditory system of anuran amphibians. Progr. Nerwobiol., 22, 1–38.CrossRefGoogle ScholarPubMed
Wilczynski, W., Rand, A. S., and Ryan, M. J. (1995). The processing of spectral ones by the call analysis system of the túngara frog, Physalaemus pustulosus, Animal Behavior 49.Google Scholar
Wilczynski, W., Rand, A. S., and Ryan, M. J. (2001). Evolution of calls and auditory tuning in the Physalaemus pustulosus species group. Brain, Behavior, and Evolution, 58, 137–151.CrossRefGoogle ScholarPubMed
Wilkinson, G. S. and Reillo, P. R. (1994). Female choice response to artificial selection on an exaggerated male trait in a stalk-eyed fly. Proc. Roy. Soc. Lond. B, 255, 1–6.CrossRefGoogle Scholar
Williams, G. C. (1966). Adaptation and Natural Selection. Princeton, New Jersey: Princeton University Press.Google Scholar
Wilson, E. O. (1975). Sociobiology. The New Synthesis. Cambridge, MA: Belknap Press.Google Scholar
Wiltschko, W. and Wiltschko, R. (2002). Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften, 89, 445–452.CrossRefGoogle ScholarPubMed
Wimberger, P. H. and Queiroz, A. (1996). Comparing behavioral and morphological characters as indicates of phylogeny. In Philogenies and the Comparative Method in Animal Behavior, ed. Martins, E. M.. Oxford: Oxford University Press.Google Scholar
Wingfield, J. C., Hegner, R. E., Dufty, A. M., and Ball, G. F. (1990). The Challenge hypothesis: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Amer. Nat., 136, 829–846.CrossRefGoogle Scholar
Witkin, J. W. (1992). Reproductive history affects the synaptology of the aging gonadotropin-releasing hormone system in the male rat, J. Neuroendocr., 4, 427–432.CrossRefGoogle Scholar
Wolfer, D. P., Litvin, O., Morf, S., Nitsch, R. M., Lipp, H-P., and Würbel, H. (2004). Cage enrichment and mouse behaviour. Nature, 432, 821–822.CrossRefGoogle ScholarPubMed
Wouters, A. G. (2003). Four notions of biological function. Studies History Phil. Biol. Biomed. Sci., 34, 633–668.CrossRefGoogle Scholar
Wouters, A. G. (2005). The functional perspective of organismal biology. In Current Themes in Theoretical Biology, ed. Reydon, T. A. C. and Hemerik, L.. The Netherlands: Springer, Dordrecht, pp. 33–69.CrossRefGoogle Scholar
Würbel, H. (2001). Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci., 24, 207–211.CrossRefGoogle ScholarPubMed
Yamazaki, K., Boyse, E. A., Miké, V.et al. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med., 144, 1324–1335.CrossRefGoogle ScholarPubMed
Yamazaki, K., Beauchamp, G. K., Curran, M., Bard, J., and Boyse, E. A. (2000). Parent–progeny recognition as a function of MHC odortype identity. Proc. Natl Acad. Sci. USA, 97, 10500–10502.CrossRefGoogle ScholarPubMed
Yokoyama, S. (1999). Molecular bases of color vision in vertebrates. Genes Genet. Syst., 74, 189–199.CrossRefGoogle ScholarPubMed
Yokoyama, S. and Shi, Y. S. (2000). Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett., 486, 167–172.CrossRefGoogle ScholarPubMed
Zana, Y., Ventura, D. F., Souza, J. M., and Devoe, R. D. (2001). Tetrachromatic input to turtle horizontal cells. Vis. Neurosci., 18, 759–765.CrossRefGoogle ScholarPubMed
Zielinski, W. J., vom Saal, F. S., and Vandenbergh, J. G. (1992). The effect of intrauterine position on the survival, reproduction and home range size of female house mice. Behav. Ecol. Sociobiol., 30, 185–191.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Johan Bolhuis, Universiteit Utrecht, The Netherlands
  • Simon Verhulst, Rijksuniversiteit Groningen, The Netherlands
  • Book: Tinbergen's Legacy
  • Online publication: 19 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619991.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Johan Bolhuis, Universiteit Utrecht, The Netherlands
  • Simon Verhulst, Rijksuniversiteit Groningen, The Netherlands
  • Book: Tinbergen's Legacy
  • Online publication: 19 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619991.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Johan Bolhuis, Universiteit Utrecht, The Netherlands
  • Simon Verhulst, Rijksuniversiteit Groningen, The Netherlands
  • Book: Tinbergen's Legacy
  • Online publication: 19 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619991.012
Available formats
×