Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T10:49:13.829Z Has data issue: false hasContentIssue false

Section III - Iatrogenic ischemic strokes: other causes

Published online by Cambridge University Press:  20 October 2016

Alexander Tsiskaridze
Affiliation:
Sarajishvili Institute of Neurology, Tblisi State University, Georgia
Arne Lindgren
Affiliation:
Department of Neurology, University Hospital Lund, Sweden
Adnan I. Qureshi
Affiliation:
Department of Neurology, University of Minnesota
Get access
Type
Chapter
Information
Treatment-Related Stroke
Including Iatrogenic and In-Hospital Strokes
, pp. 113 - 154
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Moller, T R, Brorsson, B, Ceberg, J, et al. A prospective survey of radiotherapy practice 2001 in Sweden. Acta Oncol. 2003; 42:387410.CrossRefGoogle ScholarPubMed
Slotman, B, Faivre-Finn, C, Kramer, G, et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med. 2007; 357:664–72.Google Scholar
Morris, B, Partap, S, Yeom, K, et al. Cerebrovascular disease in childhood cancer survivors: A children’s oncology group report. Neurology. 2009; 73:1906–13.CrossRefGoogle ScholarPubMed
Bowers, D C, Liu, Y, Leisenring, W, et al. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: A report from the childhood cancer survivor study. J Clin Oncol. 2006; 24:5277–82.CrossRefGoogle ScholarPubMed
Campen, C J, Kranick, S M, Kasner, S E, et al. Cranial irradiation increases risk of stroke in pediatric brain tumor survivors. Stroke. 2012; 43:3035–40.Google Scholar
Grisold, W, Oberndorfer, S, Struhal, W. Stroke and cancer: A review. Acta Neurol Scand. 2009; 119:116.CrossRefGoogle ScholarPubMed
Labauge, P, Laberge, S, Brunereau, L, Levy, C, Tournier-Lasserve, E. Hereditary cerebral cavernous angiomas: Clinical and genetic features in 57 French families. Societe Francaise de Neurochirurgie. Lancet. 1998; 352:1892–7.Google Scholar
Gunel, M, Awad, I A, Finberg, K, et al. A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med. 1996; 334:946–51.Google Scholar
Laberge-le Couteulx, S, Jung, H H, Labauge, P, et al. Truncating mutations in ccm1, encoding krit1, cause hereditary cavernous angiomas. Nat Genet. 1999; 23:189–93.Google Scholar
Bergametti, F, Denier, C, Labauge, P, et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet. 2005; 76:4251.CrossRefGoogle ScholarPubMed
Nimjee, S M, Powers, C J, Bulsara, K R. Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy. Neurosurg Focus. 2006; 21:e4.Google Scholar
Lew, S M, Morgan, J N, Psaty, E, et al. Cumulative incidence of radiation-induced cavernomas in long-term survivors of medulloblastoma. J Neurosurg. 2006; 104:103–7.Google ScholarPubMed
Al-Shahi Salman, R, Hall, J M, Horne, M A, et al. Untreated clinical course of cerebral cavernous malformations: A prospective, population-based cohort study. Lancet Neurol. 2012; 11:217–24.Google Scholar
Kivelev, J, Niemela, M, Hernesniemi, J. Treatment strategies in cavernomas of the brain and spine. J Clin Neurosci. 2012; 19:491–7.Google ScholarPubMed
Niranjan, A, Lunsford, L D. Stereotactic radiosurgery guidelines for the management of patients with intracranial cavernous malformations. Prog Neurol Surg. 2013; 27:166–75.Google ScholarPubMed
Schneble, H M, Soumare, A, Herve, D, et al. Antithrombotic therapy and bleeding risk in a prospective cohort study of patients with cerebral cavernous malformations. Stroke. 2012; 43:3196–9.Google Scholar
de Weerd, M, Greving, J P, Hedblad, B, et al. Prevalence of asymptomatic carotid artery stenosis in the general population: An individual participant data meta-analysis. Stroke. 2010; 41:1294–7.CrossRefGoogle ScholarPubMed
Compter, A, van der Worp, H B, Algra, A, Kappelle, L J. Second manifestations of AdSG. Prevalence and prognosis of asymptomatic vertebral artery origin stenosis in patients with clinically manifest arterial disease. Stroke. 2011; 42:2795–800.CrossRefGoogle Scholar
Marquardt, L, Kuker, W, Chandratheva, A, Geraghty, O, Rothwell, P M. Incidence and prognosis of > or = 50% symptomatic vertebral or basilar artery stenosis: Prospective population-based study. Brain. 2009; 132:982–8.Google Scholar
Feldmann, E, Daneault, N, Kwan, E, et al. Chinese-White differences in the distribution of occlusive cerebrovascular disease. Neurology. 1990; 40:1541–5.CrossRefGoogle ScholarPubMed
Plummer, C, Henderson, R D, O’Sullivan, J D, Read, S J. Ischemic stroke and transient ischemic attack after head and neck radiotherapy: A review. Stroke. 2011; 42:2410–18.Google Scholar
Scott, A S, Parr, L A, Johnstone, P A. Risk of cerebrovascular events after neck and supraclavicular radiotherapy: A systematic review. Radiother Oncol. 2009; 90:163–5.Google Scholar
Jagsi, R, Griffith, K A, Koelling, T, Roberts, R, Pierce, L J. Stroke rates and risk factors in patients treated with radiation therapy for early-stage breast cancer. J Clin Oncol. 2006; 24:2779–85.Google Scholar
Nilsson, G, Holmberg, L, Garmo, H, Terent, A, Blomqvist, C. Increased incidence of stroke in women with breast cancer. Eur J Cancer. 2005; 41:423–9.Google Scholar
Nilsson, G, Holmberg, L, Garmo, H, Terent, A, Blomqvist, C. Radiation to supraclavicular and internal mammary lymph nodes in breast cancer increases the risk of stroke. Br J Cancer. 2009; 100:811–16.Google Scholar
Hooning, M J, Dorresteijn, L D, Aleman, B M, et al. Decreased risk of stroke among 10-year survivors of breast cancer. J Clin Oncol. 2006; 24:5388–94.Google Scholar
Zou, W X, Leung, T W, Yu, S C, et al. Angiographic features, collaterals, and infarct topography of symptomatic occlusive radiation vasculopathy: A case-referent study. Stroke. 2013; 44:401–6.Google Scholar
Murros, K E, Toole, J F. The effect of radiation on carotid arteries. A review article. Arch Neurol. 1989; 46:449–55.CrossRefGoogle ScholarPubMed
O’Connor, M M, Mayberg, M R. Effects of radiation on cerebral vasculature: A review. Neurosurgery. 2000; 46:138–49.Google Scholar
Fokkema, M, den Hartog, A G, Bots, M L, et al. Stenting versus surgery in patients with carotid stenosis after previous cervical radiation therapy: Systematic review and meta-analysis. Stroke. 2012; 43:793801.Google Scholar
Abbott, A L. Carotid surgery or stenting following neck irradiation: Time to address the assumptions. Eur J Vasc Endovasc Surg. 2012; 43:89.Google Scholar
McDonald, M W, Moore, M G, Johnstone, P A. Risk of carotid blowout after reirradiation of the head and neck: A systematic review. Int J Radiat Oncol Biol Phys. 2012; 82:1083–9.Google Scholar
Haas, R A, Ahn, S H. Interventional management of head and neck emergencies: Carotid blowout. Semin Intervent Radiol. 2013; 30:245–8.Google Scholar
Bowers, D C, Mulne, A F, Reisch, J S, et al. Nonperioperative strokes in children with central nervous system tumors. Cancer. 2002; 94:1094–101.CrossRefGoogle ScholarPubMed
Grill, J, Couanet, D, Cappelli, C, et al. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann Neurol. 1999; 45:393–6.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Erridge, S C, Conkey, D S, Stockton, D, et al. Radiotherapy for pituitary adenomas: Long-term efficacy and toxicity. Radiother Oncol. 2009; 93:597601.Google Scholar
Flickinger, J C, Nelson, P B, Taylor, F H, Robinson, A. Incidence of cerebral infarction after radiotherapy for pituitary adenoma. Cancer. 1989; 63:2404–8.Google Scholar
Bowen, J, Paulsen, C A. Stroke after pituitary irradiation. Stroke. 1992; 23:908–11.Google Scholar
Brada, M, Burchell, L, Ashley, S, Traish, D. The incidence of cerebrovascular accidents in patients with pituitary adenoma. Int J Radiat Oncol Biol Phys. 1999; 45:693–8.Google Scholar
Bailey, E L, Smith, C, Sudlow, C L, Wardlaw, J M. Pathology of lacunar ischemic stroke in humans: A systematic review. Brain Pathol. 2012; 22:583–91.Google Scholar
Millikan, C, Futrell, N. The fallacy of the lacune hypothesis. Stroke. 1990; 21:1251–7.Google Scholar
Futrell, N. Lacunar infarction: Embolism is the key. Stroke. 2004; 35:1778–9.Google Scholar
Futrell, N, Millikan, C, Watson, B D, Dietrich, W D, Ginsberg, M D. Embolic stroke from a carotid arterial source in the rat: Pathology and clinical implications. Neurology. 1989; 39:1050–6.Google Scholar
Norrving, B. Lacunar infarcts: No black holes in the brain are benign. Pract Neurol. 2008; 8:222–8.Google Scholar
Patel, B, Markus, H S. Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker. Int J Stroke. 2011; 6:4759.Google Scholar
Kwee, R M, Kwee, T C. Virchow–Robin spaces at MR imaging. Radiographics. 2007; 27:1071–86.Google Scholar
Gouw, A A, Seewann, A, van der Flier, W M, et al. Heterogeneity of small vessel disease: A systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011; 82:126–35.Google Scholar
Atwood, L D, Wolf, P A, Heard-Costa, N L, et al. Genetic variation in white matter hyperintensity volume in the Framingham study. Stroke. 2004; 35:1609–13.Google Scholar
Fornage, M, Debette, S, Bis, J C, et al. Genome-wide association studies of cerebral white matter lesion burden: The charge consortium. Ann Neurol. 2011; 69:928–39.Google Scholar
Debette, S, Markus, H S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ. 2010; 341:c3666.Google Scholar
Ebi, J, Sato, H, Nakajima, M, Shishido, F. Incidence of leukoencephalopathy after whole-brain radiation therapy for brain metastases. Int J Radiat Oncol Biol Phys. 2012.Google Scholar
DeAngelis, L M, Delattre, J Y, Posner, J B. Radiation-induced dementia in patients cured of brain metastases. Neurology. 1989; 39:789–96.CrossRefGoogle ScholarPubMed
Schrag, M, McAuley, G, Pomakian, J, et al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: A postmortem MRI study. Acta Neuropathol. 2010; 119:291302.Google Scholar
Fazekas, F, Kleinert, R, Roob, G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: Evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999; 20:637–42.Google Scholar
Fisher, M, French, S, Ji, P, Kim, R C. Cerebral microbleeds in the elderly: A pathological analysis. Stroke. 2010; 41:2782–5.Google Scholar
Schrag, M, McAuley, G, Pomakian, J, et al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: A postmortem MRI study. Acta Neuropathol. 2009.Google Scholar
Greenberg, S M, Vernooij, M W, Cordonnier, C, et al. Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol. 2009; 8:165–74.Google Scholar
Roob, G, Schmidt, R, Kapeller, P, et al. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology. 1999; 52:991–4.Google Scholar
Vernooij, M W, van der Lugt, A, Ikram, M A, et al. Prevalence and risk factors of cerebral microbleeds: The Rotterdam scan study. Neurology. 2008; 70:1208–14.Google Scholar
Benavente, O R, Hart, R G, McClure, L A, et al. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N Engl J Med. 2012; 367:817–25.Google Scholar
Brisman, J L, Song, J K, Newell, D W. Cerebral aneurysms. N Engl J Med. 2006; 355:928–39.Google Scholar
van Gijn, J, Kerr, R S, Rinkel, G J. Subarachnoid haemorrhage. Lancet. 2007; 369:306–18.CrossRefGoogle ScholarPubMed
Vernooij, M W, Ikram, M A, Tanghe, H L, et al. Incidental findings on brain MRI in the general population. N Engl J Med. 2007; 357:1821–8.Google Scholar
Feigin, V L, Rinkel, G J, Lawes, C M, et al. Risk factors for subarachnoid hemorrhage: An updated systematic review of epidemiological studies. Stroke. 2005; 36:2773–80.Google Scholar
Wiebers, D O, Whisnant, J P, Huston, J 3rd, et al. Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003; 362:103–10.Google Scholar
Lau, W Y, Chow, C K. Radiation-induced petrous internal carotid artery aneurysm. Ann Otol Rhinol Laryngol. 2005; 114:939–40.Google Scholar
Sciubba, D M, Gallia, G L, Recinos, P, Garonzik, I M, Clatterbuck, R E. Intracranial aneurysm following radiation therapy during childhood for a brain tumor. Case report and review of the literature. J Neurosurg. 2006; 105:134–9.Google Scholar
Kuroda, S, Houkin, K. Moyamoya disease: Current concepts and future perspectives. Lancet Neurol. 2008; 7:1056–66.Google Scholar
Liu, W, Morito, D, Takashima, S, et al. Identification of rnf213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One. 2011; 6:e22542.Google Scholar
Kamada, F, Aoki, Y, Narisawa, A, et al. A genome-wide association study identifies rnf213 as the first moyamoya disease gene. J Hum Genet. 2011; 56:3440.Google Scholar
Kestle, J R, Hoffman, H J, Mock, A R. Moyamoya phenomenon after radiation for optic glioma. J Neurosurg. 1993; 79:32–5.Google Scholar
Ullrich, N J, Robertson, R, Kinnamon, D D, et al. Moyamoya following cranial irradiation for primary brain tumors in children. Neurology. 2007; 68:932–8.Google Scholar
Pandey, P, Steinberg, G K. Neurosurgical advances in the treatment of moyamoya disease. Stroke. 2011; 42:3304–10.Google Scholar
Shuper, A, Packer, R J, Vezina, L G, Nicholson, H S, Lafond, D. ‘Complicated migraine-like episodes’ in children following cranial irradiation and chemotherapy. Neurology. 1995; 45:1837–40.Google Scholar
Black, D F, Morris, J M, Lindell, E P, et al. Stroke-like migraine attacks after radiation therapy (SMART) syndrome is not always completely reversible: A case series. Am J Neuroradiol. 2013; 34:2298–303.Google Scholar
Tomek, M, Bhavsar, S V, Patry, D, Hanson, A. The syndrome of stroke-like migraine attacks after radiation therapy associated with prolonged unresponsiveness in an adult patient. Neurologist. 2015; 19:4952.Google Scholar
Armstrong, A E, Gillan, E, DiMario, F J Jr. SMART syndrome (stroke-like migraine attacks after radiation therapy) in adult and pediatric patients. J Child Neurol. 2014; 29:336–41.Google Scholar
Farid, K, Meissner, W G, Samier-Foubert, A, et al. Normal cerebrovascular reactivity in stroke-like migraine attacks after radiation therapy syndrome. Clin Nucl Med. 2010; 35:583–5.Google Scholar
Smith, G L, Smith, B D, Buchholz, T A, et al. Cerebrovascular disease risk in older head and neck cancer patients after radiotherapy. J Clin Oncol. 2008; 26:5119–25.Google Scholar
Haynes, J C, Machtay, M, Weber, R S, et al. Relative risk of stroke in head and neck carcinoma patients treated with external cervical irradiation. Laryngoscope. 2002; 112:1883–7.Google Scholar
Dorresteijn, L D, Kappelle, A C, Boogerd, W, et al. Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol. 2002; 20:282–8.Google Scholar
Elerding, S C, Fernandez, R N, Grotta, J C, et al. Carotid artery disease following external cervical irradiation. Ann Surg. 1981; 194:609–15.Google Scholar
De Bruin, M L, Dorresteijn, L D, van’t Veer, M B, et al. Increased risk of stroke and transient ischemic attack in 5-year survivors of Hodgkin lymphoma. J Natl Cancer Inst. 2009; 101:928–37.Google Scholar
Moser, E C, Noordijk, E M, van Leeuwen, F E, et al. Long-term risk of cardiovascular disease after treatment for aggressive non-Hodgkin lymphoma. Blood. 2006; 107:2912–19.Google Scholar

References

Schievink, W I. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med. 2001; 344:898906.Google Scholar
Ferro, J M, Massaro, A R, Mas, J L. Aetiological diagnosis of ischaemic stroke in young adults. Lancet Neurol. 2010; 9:1085–96.Google Scholar
Longoni, M, Grond-Ginsbach, C, Grau, A J, et al. The ICAM-1 E469 K gene polymorphism is a risk factor for spontaneous cervical artery dissection. Neurology. 2006; 66:1273–5.CrossRefGoogle Scholar
Pezzini, A, Del Zotto, E, Archetti, S, et al. Plasma homocysteine concentration, C677T MTHFR genotype, and 844ins68bp CBS genotype in young adults with spontaneous cervical artery dissection and atherothrombotic stroke. Stroke. 2002; 33:664–9.Google Scholar
Gallai, V, Caso, V, Paciaroni, M, et al. Mild hyperhomocyst(e)inemia: a possible risk factor for cervical artery dissection. Stroke. 2001; 32:714–18.Google Scholar
Konrad, C, Muller, G A, Langer, C, et al. Plasma homocysteine, MTHFR C677T, CBS 844ins68bp, and MTHFD1 G1958A polymorphisms in spontaneous cervical artery dissections. J Neurol. 2004; 251:1242–8.Google Scholar
Silbert, P L, Mokri, B, Schievink, W I. Headache and neck pain in spontaneous internal carotid and vertebral artery dissections. Neurology. 1995; 45:1517–22.Google Scholar
Lee, V H, Brown, R D Jr., Mandrekar, J N, Mokri, B. Incidence and outcome of cervical artery dissection: a population-based study. Neurology. 2006; 67:1809–12.CrossRefGoogle ScholarPubMed
Mokri, B, Silbert, P L, Schievink, W I, Piepgras, D G. Cranial nerve palsy in spontaneous dissection of the extracranial internal carotid artery. Neurology. 1996;46:356–9.Google Scholar
Arnold, M, Cumurciuc, R, Stapf, C, et al. Pain as the only symptom of cervical artery dissection. J Neurol Neurosurg Psychiatry. 2006; 77:1021–4.Google Scholar
Biousse, V, D’Anglejan-Chatillon, J, Touboul, P J, Amarenco, P, Bousser, M G. Time course of symptoms in extracranial carotid artery dissections. A series of 80 patients. Stroke. 1995; 26:235–9.Google Scholar
Saeed, A B, Shuaib, A, Al-Sulaiti, G, Emery, D. Vertebral artery dissection: Warning symptoms, clinical features and prognosis in 26 patients. Can J Neurol Sci. 2000; 27:292–6.Google Scholar
Hurwitz, E L, Aker, P D, Adams, A H, Meeker, W C, Shekelle, P G. Manipulation and mobilization of the cervical spine. A systematic review of the literature. Spine. 1996; 21:1746–60.Google Scholar
Haldeman, S, Carey, P, Townsend, M, Papadopoulos, C. Arterial dissections following cervical manipulation: the chiropractic experience. CMAJ. 2001; 165:905–6.Google Scholar
Thornton, R V. Malpractice: death resulting from chiropractic treatment of headache (medicolegal abstract). JAMA. 1934; 103:1260.Google Scholar
Haneline, M T, Croft, A C, Frishberg, B M. Association of internal carotid artery dissection and chiropractic manipulation. Neurologist. 2003; 9:3544.Google Scholar
Dziewas, R, Konrad, C, Drager, B, et al. Cervical artery dissection: Clinical features, risk factors, therapy and outcome in 126 patients. J Neurol. 2003; 250:1179–84.Google Scholar
Lee, K P, Carlini, W G, McCormick, G F, Albers, G W. Neurologic complications following chiropractic manipulation: a survey of California neurologists. Neurology. 1995; 45:1213–15.Google Scholar
Norris, J W, Beletsky, V, Nadareishvili, Z G. Sudden neck movement and cervical artery dissection. The Canadian Stroke Consortium. CMAJ. 2000; 163:3840.Google Scholar
Dabbs, V, Lauretti, W J. A risk assessment of cervical manipulation vs. NSAIDs for the treatment of neck pain. J Manipulative Physiol Ther. 1995; 18:530–6.Google Scholar
Haneline, M T, Lewkovich, G. Identification of internal carotid artery dissection in chiropractic practice. J Can Chiropr Assoc. 2004; 48:206–10.Google Scholar
Schievink, W I, Mokri, B, Whisnant, J P. Internal carotid artery dissection in a community. Rochester, Minnesota, 1987–1992. Stroke. 1993; 24:1678–80.Google Scholar
Giroud, M, Fayolle, H, Andre, N, et al. Incidence of internal carotid artery dissection in the community of Dijon. J Neurol Neurosurg Psychiatry. 1994; 57:1443.Google Scholar
Assendelft, W J, Bouter, L M, Knipschild, P G. Complications of spinal manipulation: A comprehensive review of the literature. J Fam Pract. 1996; 42:475–80.Google Scholar
Showalter, W, Esekogwu, V, Newton, K I, Henderson, S O. Vertebral artery dissection. Acad Emerg Med. 1997; 4:991–5.Google Scholar
Dvorak, J, Orelli, F V. How dangerous is manipulation to the cervical spine? Man Med. 1985; 2:14.Google Scholar
Klougart, N, Leboeuf-Yde, C, Rasmussen, L R. Safety in chiropractic practice, Part I; The occurrence of cerebrovascular accidents after manipulation to the neck in Denmark from 1978–1988. J Manipulative Physiol Ther. 1996; 19:371–7.Google Scholar
Haldeman, S, Carey, P, Townsend, M, Papadopoulos, C. Clinical perceptions of the risk of vertebral artery dissection after cervical manipulation: the effect of referral bias. Spine J. 2002; 2:334–42.Google Scholar
Haldeman, S, Kohlbeck, F J, McGregor, M. Unpredictability of cerebrovascular ischemia associated with cervical spine manipulation therapy: a review of sixty-four cases after cervical spine manipulation. Spine. 2002; 27:4955.Google Scholar
Reuter, U, Hamling, M, Kavuk, I, Einhaupl, K M, Schielke, E. Vertebral artery dissections after chiropractic neck manipulation in Germany over three years. J Neurol. 2006; 253:724–30.Google Scholar
Haldeman, S, Kohlbeck, F J, McGregor, M. Stroke, cerebral artery dissection, and cervical spine manipulation therapy. J Neurol. 2002; 249:1098–104.CrossRefGoogle ScholarPubMed
Hufnagel, A, Hammers, A, Schonle, P W, Bohm, K D, Leonhardt, G. Stroke following chiropractic manipulation of the cervical spine. J Neurol. 1999; 246:683–8.Google Scholar
Rothwell, D M, Bondy, S J, Williams, J I. Chiropractic manipulation and stroke: a population-based case-control study. Stroke. 2001; 32:1054–60.Google Scholar
Whedon, J M, Song, Y, Mackenzie, T A, et al. Risk of stroke after chiropractic spinal manipulation in Medicare B beneficiaries aged 66 to 99 years with neck pain. J Manipulative Physiol Ther. 2015; 38:93101.Google Scholar
Smith, W S, Johnston, S C, Skalabrin, E J, et al. Spinal manipulative therapy is an independent risk factor for vertebral artery dissection. Neurology. 2003; 60:1424–8.Google Scholar
Dittrich, R, Rohsbach, D, Heidbreder, A, et al. Mild mechanical traumas are possible risk factors for cervical artery dissection. Cerebrovasc Dis. 2007; 23:275–81.Google Scholar
Wynd, S, Westaway, M, Vohra, S, Kawchuk, G. The quality of reports on cervical arterial dissection following cervical spinal manipulation. PLoS One. 2013; 8:e59170.Google Scholar
Haynes, M J, Vincent, K, Fischhoff, C, et al. Assessing the risk of stroke from neck manipulation: A systematic review. Int J Clin Pract. 2012; 66:940–7.Google Scholar
Cassidy, J D, Boyle, E, Cote, P, et al. Risk of vertebrobasilar stroke and chiropractic care: results of a population-based case-control and case-crossover study. J Manipulative Physiol Ther. 2009; 32:S201208.Google Scholar
Guillon, B, Berthet, K, Benslamia, L, et al. Infection and the risk of spontaneous cervical artery dissection: a case-control study. Stroke. 2003; 34:e7981.Google Scholar
Cagnie, B, Barbaix, E, Vinck, E, D’Herde, K, Cambier, D. Atherosclerosis in the vertebral artery: an intrinsic risk factor in the use of spinal manipulation? Surg Radiol Anat. 2006; 28:129–34.Google Scholar
Pezzini, A, Del Zotto, E, Padovani, A. Hyperhomocysteinemia: a potential risk factor for cervical artery dissection following chiropractic manipulation of the cervical spine. J Neurol. 2002; 249:1401–3.Google Scholar
Frisoni, G B, Anzola, G P. Neck manipulation and stroke. Neurology. 1990; 40:1910.Google Scholar

References

Scott, A A, Welsh, R P. Fat embolism: A rational approach to treatment. Can Med Assoc J. 1973; 109(9):867–71.Google Scholar
Talbot, M, Schemitsch, E H. Fat embolism syndrome: History, definition, epidemiology. Injury. 2006; 37(Suppl 4):S3S7.Google Scholar
Klingele, K, Bhalla, T, Sawardekar, A, Tobias, J D. Postoperative hypoxemia due to fat embolism. Saudi J Anaesth. 2011; 5(3):332–4.Google Scholar
Weisz, G M, Barzilai, A. Fat embolism: Physiopathology, diagnosis with management. Arch Orthop Unfall-Chir. 1975; 82(3):217–23.Google Scholar
Habashi, N M, Andrews, P L, Scalea, T M. Therapeutic aspects of fat embolism syndrome. Injury. 2006; 37(Suppl 4):S68S73.Google Scholar
Fulde, G W, Harrison, P. Fat embolism: A review. Arch Emerg Med. 1991; 8(4):233–9.Google Scholar
Christie, J, Robinson, C M, Pell, A C, McBirnie, J, Burnett, R. Transcardiac echocardiography during invasive intramedullary procedures. J Bone Joint Surg Br. 1995; 77(3):450–5.Google Scholar
Gurd, A R, Wilson, R I. The fat embolism syndrome. J Bone Joint Surg Br. 1974; 56B(3):408–16.Google Scholar
Allardyce, D B, Meek, R N, Woodruff, B, Cassim, M M, Ellis, D. Increasing our knowledge of the pathogenesis of fat embolism: A prospective study of 43 patients with fractured femoral shafts. J Trauma. 1974; 14(11):955–62.Google Scholar
Bulger, E M, Smith, D G, Maier, R V, Jurkovich, G J. Fat embolism syndrome. A 10-year review. Arch Surg. 1997; 132(4):435–9.Google Scholar
Fabian, T C, Hoots, A V, Stanford, D S, Patterson, C R, Mangiante, E C. Fat embolism syndrome: Prospective evaluation in 92 fracture patients. Crit Care Med. 1990; 18(1):42–6.Google Scholar
Robert, J H, Hoffmeyer, P, Broquet, P E, Cerutti, P, Vasey, H. Fat embolism syndrome. Orthop Rev. 1993; 22(5):567–71.Google ScholarPubMed
Pinney, S J, Keating, J F, Meek, R N. Fat embolism syndrome in isolated femoral fractures: Does timing of nailing influence incidence? Injury. 1998; 29(2):131–3.Google Scholar
Campo-López, C, Flors-Villaverde, P, Calabuig-Alborch, J R. Fat embolism syndrome after bone fractures. Rev Clin Esp. 2012; 212(10):482–7.Google Scholar
Tsai, I T, Hsu, C J, Chen, Y H, et al. Fat embolism syndrome in long bone fracture–clinical experience in a tertiary referral center in Taiwan. J Chin Med Assoc. 2010; 73(8):407–10.Google Scholar
Talucci, R C, Manning, J, Lampard, S, Bach, A, Carrico, C J. Early intramedullary nailing of femoral shaft fractures: A cause of fat embolism syndrome. Am J Surg. 1983; 146(1):107–11.Google Scholar
Bone, L B, Johnson, K D, Weigelt, J, Scheinberg, R. Early versus delayed stabilization of femoral fractures. A prospective randomized study. J Bone Joint Surg Am. 1989; 71(3):336–40.Google Scholar
Findlay, J M, DeMajo, W. Cerebral fat embolism. Can Med Assoc J. 1984; 131(7):755–7.Google Scholar
Taviloglu, K, Yanar, H. Fat embolism syndrome. Surg Today. 2007; 37(1):58.Google Scholar
Duja, C M, Berna, C, Kremer, S, et al. Confusion after spine injury: Cerebral fat embolism after traumatic rupture of a Tarlov cyst: Case report. BMC Emerg Med. 2010; 10:18.Google Scholar
Powers, K A, Talbot, L A. Case report: Fat embolism syndrome after femur fracture with intramedullary nailing. Am J Crit Care. 2011; 20:264–6.Google Scholar
Thienpont, E, Kaddar, S, Morrison, S. Paradoxical fat embolism after uncemented total hip arthroplasty: A case report. Acta Orthop Belg. 2007; 73(3):418–20.Google Scholar
Sasano, N, Ishida, S, Tetsu, S, et al. Cerebral fat embolism diagnosed by magnetic resonance imaging at one, eight, and 50 days after hip arthroplasty: A case report. Can J Anaesth. 2004; 51(9):875987.Google Scholar
Rodriguez-Merchan, E C, Comin-Gomez, J A, Martinez-Chacon, J L. Cerebral embolism during revision arthroplasty of the hip. Acta Orthop Belg. 1995; 61(4):319–22.Google Scholar
Ammon, J T, Khalily, C, Lester, D K. Fatal cerebral emboli in the absence of a cardiac arterial-venous shunt: Case report. J Arthroplasty. 2007; 22(3):477–9.Google Scholar
Chang, R N, Kim, J H, Lee, H, et al. Cerebral fat embolism after bilateral total knee replacement arthroplasty: A case report. Korean J Anesthesiol. 2010; 59 Suppl:S207S210.Google Scholar
Jenkins, K, Chung, F, Wennberg, R, Etchells, E E, Davey, R. Fat embolism syndrome and elective knee arthroplasty. Can J Anaesth. 2002; 49(1):1924.Google Scholar
Lee, S C, Yoon, J Y, Nam, C H, et al. Cerebral fat embolism syndrome after simultaneous bilateral total knee arthroplasty: A case series. J Arthroplasty. 2012; 27(3):409–14.Google Scholar
Ghatak, N R, Sinnenberg, R J, deBlois, G G. Cerebral fat embolism following cardiac surgery. Stroke. 1983; 14(4):619–21.Google Scholar
Wang, H D, Zheng, J H, Deng, C L, Liu, Q Y, Yang, S L. Fat embolism syndromes following liposuction. Aesthetic Plast Surg. 2008; 32(5):731–6.Google Scholar
Laub, D R Jr. Fat embolism syndrome after liposuction: A case report and review of the literature. Ann Plast Surg. 1990; 25(1):4852.Google Scholar
Richards, R R. Fat embolism syndrome. Can J Surg. 1997; 40(5):334–9.Google Scholar
Mossa-Basha, M, Izbudak, I, Gurda, G T, Aygun, N. Cerebral fat embolism syndrome in sickle cell anaemia/β-thalassemia: Importance of susceptibility-weighted MRI. Clin Radiol. 2012; 67(10):1023–6.Google Scholar
Barson, A J, Chistwick, M L, Doig, C M. Fat embolism in infancy after intravenous fat infusions. Arch Dis Child. 1978; 53(3):218–23.Google Scholar
Bhalla, A, Sachdev, A, Lehl, S S, Singh, R, D’Cruz, S. Cerebral fat embolism as a rare possible complication of traumatic pancreatitis. JOP. 2003; 4(4):155–7.Google Scholar
Guardia, S N, Bilbao, J M, Murray, D, Warren, R E, Sweet, J. Fat embolism in acute pancreatitis. Arch Pathol Lab Med. 1989; 113:503–6.Google Scholar
Dang, N C, Johnson, C, Eslami-Farsani, M, Haywood, L J. Bone marrow embolism in sickle cell disease: A review. Am J Hematol. 2005; 79(1):61–7.Google Scholar
Desselle, B C, O’Brien, T, Bugnitz, M, et al. Fatal fat embolism in a patient with sickle-beta+ thalassemia. Pediatr Hematol Oncol. 1995; 12(2):159–62.Google Scholar
ten Duis, H J. The fat embolism syndrome. Injury. 1997; 28(2):7785.Google Scholar
Cox, G, Tzioupis, C, Calori, G M, et al. Cerebral fat emboli: A trigger of post-operative delirium. Injury. 2011; 42(S4):S6S10.Google Scholar
Etchells, E E, Wong, D T, Davidson, G, Houston, P L. Fatal cerebral fat embolism associated with a patent foramen ovale. Chest. 1993; 104(3):962–3.Google Scholar
Gossling, H R, Pellegrini, V D Jr. Fat embolism syndrome: A review of the pathophysiology and physiological basis of treatment. Clin Orthop Relat Res. 1982; 165:6882.Google Scholar
Butteriss, D J, Mahad, D, Soh, C, et al. Reversible cytotoxic cerebral edema in cerebral fat embolism. Am J Neuroradiol. 2006; 27(3):620–3.Google Scholar
Parisi, D M, Koval, K, Egol, K. Fat embolism syndrome. Am J Orthop. 2002; 31(9):507–12.Google Scholar
Adams, C B. The retinal manifestations of fat embolism. Injury. 1971; 2(3):221–4.Google Scholar
Murray, D G, Racz, G B. Fat embolism syndrome (respiratory insufficiency syndrome). A rationale for treatment. J Bone Joint Surg. 1974; 56(7):1338–49.Google Scholar
Koch, S, Forteza, A, Lavernia, C, et al. Cerebral fat microembolism and cognitive decline after hip and knee replacement. Stroke. 2007; 38(3):1079–81.Google Scholar
Sulek, C A, Davies, L K, Enneking, F K, Gearen, P A, Lobato, E B. Cerebral microembolism diagnosed by transcranial Doppler during total knee arthroplasty: Correlation with transesophageal echocardiography. Anesthesiology. 1999; 91(3):672–6.Google Scholar
Van Besouw, J P, Hinds, C J. Fat embolism syndrome. Br J Hosp Med. 1989; 42(4):304–6.Google Scholar
Finlay, M E, Benson, M D. Case report: Magnetic resonance imaging in cerebral fat embolism. Clin Radiol. 1996; 51(6):445–6.Google Scholar
Gombar, S, Dey, N, Deva, C. Pupillary signs in fat embolism syndrome. Acta Anaesthesiol Scand. 2005; 49(5):723.Google Scholar
Manousakis, G, Han, D Y, Backonja, M. Cognitive outcome of cerebral fat embolism. J Stroke Cerebrovasc Dis. 2012; 21(8):906–8.Google Scholar
Thomas, J E, Ayyar, D R. Systemic fat embolism. A diagnostic profile in 24 patients. Arch Neurol. 1972; 26(6):517–23.Google Scholar
Bardana, D, Rudan, J, Cervenko, F, Smith, R. Fat embolism syndrome in a patient demonstrating only neurologic symptoms. Can J Surg. 1998; 41(5):398402.Google Scholar
Jacobson, D M, Terrence, C F, Reinmuth, O M. The neurologic manifestations of fat embolism. Neurology. 1986; 36:847–51.Google Scholar
Metting, Z, Rödiger, L A, Regtien, J G, van der Naalt, J. Delayed coma in head injury: consider cerebral fat embolism. Clin Neurol Neurosurg. 2009; 111(7):597600.Google Scholar
Johnson, M J, Lucas, G L. Fat embolism syndrome. Orthopedics. 1996; 19(1):41–8.Google Scholar
Oh, W H, Mital, M A. Fat embolism: Current concepts of pathogenesis, diagnosis, and treatment. Orthop Clin North Am. 1978; 9(3):769–79.Google Scholar
Gurd, A R. Fat embolism: An aid to diagnosis. J Bone Joint Surg Br. 1970; 52(4):732–7.Google Scholar
Vedrinne, J M, Guillaume, C, Gagnieu, M C, et al. Bronchoalveolar lavage in trauma patients for diagnosis of fat embolism syndrome. Chest. 1992; 102(5):1323–7.Google Scholar
Weisz, G M, Rang, M, Salter, R B. Posttraumatic fat embolism in children: Review of the literature and of experience in the Hospital for Sick Children, Toronto. J Trauma. 1973; 13(6):529–34.Google Scholar
Schonfeld, S A, Ploysongsang, Y, DiLisio, R, et al. Fat embolism prophylaxis with corticosteroids. A prospective study in high-risk patients. Ann Intern Med. 1983; 99(4):438–43.Google Scholar
Lindeque, B G, Schoeman, H S, Dommisse, G F, Boeyens, M C, Vlok, A L. Fat embolism and the fat embolism syndrome. A double-blind therapeutic study. J Bone Joint Surg Br. 1987; 69(1):128–31.Google Scholar
Mellor, A, Soni, N. Fat embolism. Anaesthesia. 2001; 56(2):145–54.Google Scholar
Shaikh, N. Emergency management of fat embolism syndrome. J Emerg Trauma Shock. 2009; 2(1):2933.Google Scholar
Costa, A N, Mendes, D M, Toufen, C, et al. Adult respiratory distress syndrome due to fat embolism in the postoperative period following liposuction and fat grafting. J Bras Pneumol. 2008; 34(8):622–5.Google Scholar
Chastre, J, Fagon, J Y, Soler, P, et al. Bronchoalveolar lavage for rapid diagnosis of the fat embolism syndrome in trauma patients. Ann Intern Med. 1990; 113(8):583–8.Google Scholar
Forteza, A M, Koch, S, Romano, J G, et al. Transcranial Doppler detection of fat emboli. Stroke. 1999; 30(12):2687–91.Google Scholar
Belvis, R, Leta, R G, Marti-Fabregas, J, et al. Almost perfect concordance between simultaneous transcranial Doppler and transesophageal echocardiography in the quantification of right-to-left shunts. J Neuroimaging. 2006; 16(2):133–8.Google Scholar
Forteza, A M, Koch, S, Campo-Bustillo, I, et al. Transcranial Doppler detection of cerebral fat emboli and relation to paradoxical embolism: A pilot study. Circulation. 2011; 123(18):1947–52.Google Scholar
Gupta, B, Kaur, M, d’Souza, N, et al. Cerebral fat embolism: A diagnostic challenge. Saudi J Anaesth. 2011; 5(3):348–52.Google Scholar
Salazar, J A, Romero, F, Padilla, F, Arboleda, J A, Fernández, O. Neurological manifestations of fat embolism syndrome. Neurologia. 1995; 10(2):65–9.Google Scholar
Sakamoto, T, Sawada, Y, Yukioka, T, et al. Computed tomography for diagnosis and assessment of cerebral fat embolism. Neuroradiology. 1983; 24(5):283–5.Google Scholar
Beers, G J, Nichols, G R, Willing, S J. CT demonstration of fat-embolism-associated hemorrhage in the anterior commissure. Am J Neuroradiol. 1988; 9(1):212–13.Google Scholar
Stoeger, A, Daniaux, M, Felber, S, et al. MRI findings in cerebral fat embolism. Eur Radiol. 1998; 8(9):1590–93.Google Scholar
Marshall, G B, Heale, V R, Herx, L, et al. Magnetic resonance diffusion weighted imaging in cerebral fat embolism. Can J Neurol Sci. 2004; 31(3):417–21.Google Scholar
Ryu, C W, Lee, D H, Kim, T K, et al. Cerebral fat embolism: Diffusion-weighted magnetic resonance imaging findings. Acta Radiol. 2005; 46(5):528–33.Google Scholar
Aravapalli, A, Fox, J, Lazaridis, C. Cerebral fat embolism and the ‘starfield’ pattern: A case report. Cases J. 2009; 2:212–14.Google Scholar
Pfeffer, G, Heran, M K. Restricted diffusion and poor clinical outcome in cerebral fat embolism syndrome. Can J Neurol Sci. 2010; 37(1):128–30.Google Scholar
Buskens, C J, Gratama, J W, Hogervorst, M, et al. Encephalopathy and MRI abnormalities in fat embolism syndrome: A case report. Med Sci Monit. 2008; 14(11):CS125129.Google Scholar
Citerio, G, Bianchini, E, Beretta, L. Magnetic resonance imaging of cerebral fat embolism: A case report. Intensive Care Med. 1995; 21(8):679–81.Google Scholar
Yoshida, A, Okada, Y, Nagata, Y, Hanaguri, K, Morio, M. Assessment of cerebral fat embolism by magnetic resonance imaging in the acute stage. J Trauma. 1996; 40(3):437–40.Google Scholar
Simon, A D, Ulmer, J L, Strottmann, J M. Contrast-enhanced MR imaging of cerebral fat embolism: Case report and review of the literature. Am J Neuroradiol. 2003; 24(1):97101.Google Scholar
Lee, J. Gradient-echo MRI in defining the severity of cerebral fat embolism. J Clin Neurol. 2008; 4(4):164–6.Google Scholar
Evert, A Eriksson, E A, Sarah, E et al. Cerebral fat embolism without intracardiac shunt: A novel presentation. Emerg Trauma Shock. 2011; 4(2):309–12.Google Scholar
Stoltenberg, J J, Gustilo, R B. The use of methylprednisolone and hypertonic glucose in the prophylaxis of fat embolism syndrome. Clin Orthop Relat Res. 1979; 143:211–21.Google Scholar
Kallenbach, J, Lewis, M, Zaltzman, M, et al. Low-dose corticosteroid prophylaxis against fat embolism. J Trauma. 1987; 27(10):1173–6.Google Scholar
Bederman, S S, Bhandari, M, McKee, M D, Schemitsch, E H. Do corticosteroids reduce the risk of fat embolism syndrome in patients with long-bone fractures? A meta-analysis. Can J Surg. 2009; 52(5):386–93.Google Scholar
Johnson, K D, Cadambi, A, Seibert, G B. Incidence of adult respiratory distress syndrome in patients with multiple musculoskeletal injuries: Effect of early operative stabilization of fractures. J Trauma. 1985; 25(5):375–84.Google Scholar
White, T, Petrisor, B A, Bhandari, M. Prevention of fat embolism syndrome. Injury. 2006; 37(Suppl 4):S5967.Google Scholar
Muth, C M, Shank, E S. Gas embolism. N Engl J Med. 2000; 342(7):476–82.Google Scholar
Shaikh, N, Ummunisa, F. Acute management of vascular air embolism. J Emerg Trauma Shock. 2009; 2(3):180–5.Google Scholar
Green, B T, Tendler, D A. Cerebral air embolism during upper endoscopy: Case report and review. Gastrointest Endosc. 2005; 61(4):620–3.Google Scholar
Bou-Assaly, W, Pernicano, P, Hoeffner, E. Systemic air embolism after transthoracic lung biopsy: A case report and review of literature. World J Radiol. 2010; 2(5):193–6.Google Scholar
Mirski, M A, Lele, A V, Fitzsimmons, L, Toung, T J. Diagnosis and treatment of vascular air embolism. Anesthesiology. 2007; 106(1):164–77.Google Scholar
Herron, D M, Vernon, J K, Gryska, P V, Reines, H D. Venous gas embolism during endoscopy. Surg Endosc. 1999; 13(3):276–9.Google Scholar
Kashuk, J L, Penn, I. Air embolism after central venous catheterization. Surg Gynecol Obstet. 1984; 159(3):249–52.Google Scholar
Leach, R M, Rees, P J, Wilmshurst, P. Hyperbaric oxygen therapy. BMJ. 1998; 317(7166):1140–3.Google Scholar
Standefer, M, Bay, J W, Trusso, R. The sitting position in neurosurgery: A retrospective analysis of 488 cases. Neurosurgery. 1984; 14(6):649–58.Google Scholar
Papadopoulos, G, Kuhly, P, Brock, M, et al. Venous and paradoxical air embolism in the sitting position. A prospective study with transoesophageal echocardiography. Acta Neurochir. 1994; 126(2–4):140–3.Google Scholar
Ngai, S H, Stinchfield, F E, Triner, L. Air embolism during total hip arthroplasties. Anesthesiology. 1974; 40(4):405–7.Google Scholar
Spiess, B D, Sloan, M S, McCarthy, R J, et al. The incidence of venous air embolism during total hip arthroplasty. J Clin Anesth. 1988; 1(1):2530.Google Scholar
Lew, T W, Tay, D H, Thomas, E. Venous air embolism during cesarean section: More common than previously thought. Anesth Analg. 1993; 77(3):448–52.Google Scholar
Nishiyama, T, Hanaoka, K. Gas embolism during hysteroscopy. Can J Anaesth. 1999; 46(4):379–81.Google Scholar
Chang, J L, Skolnick, K, Bedger, R, Schramm, V, Bleyaert, A L. Postoperative venous air embolism after removal of neck drains. Arch Otolaryngol. 1981; 107(8):494–6.Google Scholar
Ledowski, T, Kiese, F, Jeglin, S, Scholz, J. Possible air embolism during eye surgery. Anesth Analg. 2005; 100(6):1651–2.Google Scholar
Suzuki, K, Ueda, M, Abe, A, et al. Paradoxical cerebral air embolism occurred with postural change during rehabilitation, in a patient with ipsilateral internal carotid artery occlusion. Intern Med. 2012; 51(9):1107–9.Google Scholar
Timpa, J G, O’Meara, C, McIlwain, R B, Dabal, R J, Alten, J A. Massive systemic air embolism during extracorporeal membrane oxygenation support of a neonate with acute respiratory distress syndrome after cardiac surgery. J Extra Corpor Technol. 2011; 43(2):86–8.Google Scholar
Ueda, K, Kaneda, Y, Sudo, M, et al. Cerebral air embolism during imaging of a sentinel lymphatic drainage in the respiratory tract. Ann Thorac Surg. 2006; 81(2):721–3.Google Scholar
Singh, A, Ramanakumar, A, Hannan, J. Simultaneous left ventricular and cerebral artery air embolism after computed tomographic-guided transthoracic needle biopsy of the lung. Tex Heart Inst J. 2011; 38(4):424–6.Google Scholar
Le Guen, M, Trebbia, G, Sage, E, Cerf, C, Fischler, M. Intraoperative cerebral air embolism during lung transplantation: Treatment with early hyperbaric oxygen therapy. J Cardiothorac Vasc Anesth. 2012; 26(6):1077–9.Google Scholar
Frasco, P E, Caswell, R E, Novicki, D. Venous air embolism during transurethral resection of the prostate. Anesth Analg. 2004; 99(6):1864–6.Google Scholar
Tsou, M Y, Teng, Y H, Chow, L H, Ho, C M, Tsai, S K. Fatal gas embolism during transurethral incision of the bladder neck under spinal anesthesia. Anesth Analg. 2003; 97(6):1833–4.Google Scholar
Nayagam, J, Ho, K M, Liang, J. Fatal systemic air embolism during endoscopic retrograde cholangio-pancreatography. Anaesth Intensive Care. 2004; 32(2):260–4.Google Scholar
Akhtar, N, Jafri, W, Mozaffar, T. Cerebral artery air embolism following an esophagogastroscopy: A case report. Neurology. 2001; 56(1):136–7.Google Scholar
Katzgraber, F, Glenewinkel, F, Rittner, C, Beule, J. Fatal air embolism resulting from gastroscopy. Lancet. 1995; 346:1714–15.Google Scholar
Lowdon, J D, Tidmore, T L Jr. Fatal air embolism after gastrointestinal endoscopy. Anesthesiology. 1988; 69(4):622–3.Google Scholar
Zini, A, Carpeggiani, P, Pinelli, G, Nichelli, P. Brain air embolism secondary to atrial-esophageal fistula. Arch Neurol. 2012; 69(6):785.Google Scholar
Williams, T L, Parikh, D R, Hopkin, J R, et al. Teaching neuroimages: Cerebral air embolism secondary to atrial-esophageal fistula. Neurology. 2009; 72(12):e5455.Google Scholar
Hertz, J A, Schinco, M A, Frykberg, E R. Extensive pneumocranium. J Trauma. 2002; 52(1):188.Google Scholar
Laskey, A L, Dyer, C, Tobias, J D. Venous air embolism during home infusion therapy. Pediatrics. 2002; 109(1):13.Google Scholar
Grace, D M. Air embolism with neurologic complications: A potential hazard of central venous catheters. Can J Surg. 1977; 20(1):51–3.Google Scholar
Seeburger, J, Borger, M A, Merk, D R, et al. Massive cerebral air embolism after bronchoscopy and central line manipulation. Asian Cardiovasc Thorac Ann. 2009; 17(1):67–9.Google Scholar
Clark, D K, Plaizier, E. Devastating cerebral air embolism after central line removal. J Neurosci Nurs. 2011; 43(4):193–6.Google Scholar
Yee, E S, Verrier, E D, Thomas, A N. Management of air embolism in blunt and penetrating thoracic trauma. J Thorac Cardiovasc Surg. 1983; 85(5):661–8.Google Scholar
Lai, C C, Chuang, C H, Chao, C M, Liu, W L, Hou, C C. Pulmonary artery air embolism after blunt trauma. Resuscitation. 2011; 82(4):369–70.Google Scholar
Hwang, S L, Lieu, A S, Lin, C L, et al. Massive cerebral air embolism after cardiopulmonary resuscitation. J Clin Neurosci. 2005; 12(4):468–9.Google Scholar
Arena, V, Capelli, A. Venous air embolism after cardiopulmonary resuscitation: The first case with histological confirmation. Cardiovasc Pathol. 2010; 19(2):43–4.Google Scholar
Schwerzmann, M, Seiler, C. Recreational scuba diving, patent foramen ovale and their associated risks. Swiss Med Wkly. 2001; 131(25–26): 365–74.Google Scholar
Spira, A. Diving and marine medicine review part II: Diving diseases. J Travel Med. 1999; 6(3):180–98.Google Scholar
Kapoor, T, Gutierrez, G. Air embolism as a cause of the systemic inflammatory response syndrome: A case report. Crit Care. 2003; 7(5):98100.Google Scholar
Alvaran, S B, Toung, J K, Graff, T E, Benson, D W. Venous air embolism: Comparative merits of external cardiac massage, intracardiac aspiration, and left lateral decubitus position. Anesth Analg. 1978; 57(2):166–70.Google Scholar
Toung, T J, Rossberg, M I, Hutchins, G M. Volume of air in a lethal venous air embolism. Anesthesiology. 2001; 94(2):360–1.Google Scholar
Vann, R D, Butler, F K, Mitchell, S J, Moon, R E. Decompression illness. Lancet. 2011; 377(9760):153–64.Google Scholar
Raju, G S, Bendixen, B H, Khan, J, Summers, R W. Cerebrovascular accident during endoscopy: Consider cerebral air embolism, a rapidly reversible event with hyperbaric oxygen therapy. Gastrointest Endosc. 1998; 47(1):70–3.Google Scholar
Gursoy, S, Duger, C, Kaygusuz, K, et al. Cerebral arterial air embolism associated with mechanical ventilation and deep tracheal aspiration. Case Rep Pulmonol. 2012; 2012:12.Google Scholar
Heckmann, J G, Lang, C J, Kindler, K, et al. Neurologic manifestations of cerebral air embolism as a complication of central venous catheterization. Crit Care Med. 2000; 28(5):1621–5.Google Scholar
Ho, A M, Ling, E. Systemic air embolism after lung trauma. Anesthesiology. 1999; 90(2):564–75.Google Scholar
de Blauw, M H. An unusual complication of a central venous catheter placement. Neth J Med. 2012; 70(1):40–4.Google Scholar
Kuwahara, T, Takahashi, A, Takahashi, Y, et al. Clinical characteristics of massive air embolism complicating left atrial ablation of atrial fibrillation: Lessons from five cases. Europace. 2012; 14(2):204–8.Google Scholar
Fitchet, A, Fitzpatrick, A P. Central venous air embolism causing pulmonary oedema mimicking left ventricular failure. BMJ. 1998; 316(7131):604–6.Google Scholar
Valentino, R, Hilbert, G, Vargas, F, Gruson, D. Computed tomographic scan of massive cerebral air embolism. Lancet. 2003; 361(9372):1848.Google Scholar
Herber, N, Salvolin, L, Salvolini, U. Changes in CT evidence of massive cerebral air embolism. Eur J Radiol Extra. 2004; 51:910.Google Scholar
Suzuki, T, Ando, T, Usami, A, et al. Cerebral air embolism as a complication of peptic ulcer in the gastric tube: case report. BMC Gastroenterol. 2011; 11:139–41.Google Scholar
Griese, H, Seifert, D, Koerfer, R. Cortical infarction following cardiosurgical procedures: Air embolism as a probable cause. Eur Neurol. 2009; 61(6):343–9.Google Scholar
Gao, G K, Wu, D, Yang, Y, et al. Cerebral magnetic resonance imaging of compressed air divers in diving accidents. Undersea Hyperb Med. 2009; 36(1):3341.Google Scholar
Rodriguez, R A, Rubens, F D, Wozny, D, Nathan, H J Cerebral emboli detected by transcranial Doppler during cardiopulmonary bypass are not correlated with postoperative cognitive deficits. Stroke. 2010; 41(10):2229–35.Google Scholar
Furuya, H, Okumura, F. Detection of paradoxical air embolism by transesophageal echocardiography. Anesthesiology. 1984; 60(4):374–7.Google Scholar
Romero, J R, Frey, J L, Schwamm, L H, et al. Cerebral ischemic events associated with ‘bubble study’ for identification of right to left shunts. Stroke. 2009; 40(7):2343–8.Google Scholar
Tsivgoulis, G, Stamboulis, E, Sharma, V K, et al. Safety of transcranial Doppler ‘bubble study’ for identification of right to left shunts: An international multicentre study. J Neurol Neurosurg Psychiatry. 2011; 82(11):1206–8.Google Scholar
Orebaugh, S L. Venous air embolism: Clinical and experimental considerations. Crit Care Med. 1992; 20(8):1169–77.Google Scholar
Mehlhorn, U, Burke, E J, Butler, B D, et al. Body position does not affect the hemodynamic response to venous air embolism in dogs. Anesth Analg. 1994; 79(4):734–9.Google Scholar
Bowdle, T A, Artru, A A. Treatment of air embolism with a special pulmonary artery catheter introducer sheath in sitting dogs. Anesthesiology. 1988; 68(1):107–10.Google Scholar
Bedford, R F, Marshall, W K, Butler, A, Welsh, J E. Cardiac catheters for diagnosis and treatment of venous air embolism: A prospective study in man. J Neurosurg. 1981; 55(4):610–14.Google Scholar
Kol, S, Ammar, R, Weisz, G, Melamed, Y. Hyperbaric oxygenation for arterial air embolism during cardiopulmonary bypass. Ann Thorac Surg. 1993; 55(2):401–3.Google Scholar
Sahni, T, Jain, M. Hyperbaric oxygen therapy: Research indications and emerging role in neurological illnesses. Apollo Med. 2005; 2(1):1620.Google Scholar
Mortensen, C R. Hyperbaric oxygen therapy. Curr Anaesth Crit Care. 2008; 19:333–7.Google Scholar
Murphy, B P, Harford, F J, Cramer, F S. Cerebral air embolism resulting from invasive medical procedures. Treatment with hyperbaric oxygen. Ann Surg. 1985; 201(2):242–5.Google Scholar
Newcomb, A, Frawley, G, Fock, A, Bennett, M, d’Udekem, Y. Hyperbaric oxygenation in the management of cerebral arterial gas embolism during cavopulmonary connection surgery. J Cardiothorac Vasc Anesth. 2008; 22(4):576–80.Google Scholar
Blanc, P, Boussuges, A, Henriette, K, Sainty, J M, Deleflie, M. Iatrogenic cerebral air embolism: Importance of an early hyperbaric oxygenation. Intensive Care Med. 2002; 28(5):559–63.Google Scholar
Dutka, A J, Mink, R, McDermott, J, Clark, J B, Hallenbeck, J M. Effect of lidocaine on somatosensory evoked response and cerebral blood flow after canine cerebral air embolism. Stroke. 1992; 23(10):1515–20.Google Scholar
McDermott, J J, Dutka, A J, Evans, D E, Flynn, E T. Treatment of experimental cerebral air embolism with lidocaine and hyperbaric oxygen. Undersea Biomed Res. 1990; 17(6):525–34.Google Scholar
Mitchell, S J, Merry, A F, Frampton, C, et al. Cerebral protection by lidocaine during cardiac operations: A follow-up study. Ann Thorac Surg. 2009; 87(3):820–5.Google Scholar
Ballham, A, Allen, M J. Air embolism in a sports diver. Br J Sports Med. 1983; 17(1):79.Google Scholar
Dutka, A J, Mink, R B, Pearson, R R, Hallenbeck, J M. Effects of treatment with dexamethasone on recovery from experimental cerebral arterial gas embolism. Undersea Biomed Res. 1992; 19(2):131–41.Google Scholar
Ryu, K H, Hindman, B J, Reasoner, D K, Dexter, F. Heparin reduces neurological impairment after cerebral arterial air embolism in the rabbit. Stroke. 1996; 27(2):303–9.Google Scholar

References

Vane, J R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971; 231:232–5.Google Scholar
Evangelista, V, Manarini, S, Di Santo, A, et al. De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin. Circ Res. 1998; 593–5.Google Scholar
Bjornsson, T D, Schneider, D E, Berger, H. Aspirin aetylates fibrinogen and enhances fibrinolysis. Fibrinolytic effect is independent of changes in plasminogen activator levels. J Pharmacol Exp Ther. 1989; 250:154–61.Google Scholar
De Schryver, E L L M, van Gijn, J, Kappelle, L J, Koudstaal, P J, Algra, A. Non-adherence to aspirin or oral anticoagulants in secondary prevention after ischaemic stroke. J Neurol. 2005;252:1316–21.Google Scholar
Kovich, O, Clark, C O. Thrombotic complications related to discontinuation of warfarin and aspirin therapy perioperatively for cutaneous operation. J Am Acad Dermatol. 2003; 48:233–7.Google Scholar
Sibon, I, Orgogozo, J-M. Antiplatelet drug discontinuation is a risk factor for ischemic stroke. Neurology. 2004; 62:1187–9.Google Scholar
Maulaz, A B, Bezerra, D C, Michel, P, Bogousslavsky, J. Effect of discontinuing aspirin therapy on the risk of brain ischemic stroke. Arch Neurol. 2005; 62:1217–20.Google Scholar
Broderick, J P, Bonomo, J B, Kissela, B M, et al. Withdrawal of antithrombotic agents and its impact on ischemic stroke occurrence. Stroke. 2011; 42:2509–14.Google Scholar
Watanabe, H, Morimoto, T, Natsuaki, M, et al. Antiplatelet therapy discontinuation and the risk of serious cardiovascular events after coronary stenting: Observations from the CREDO-Kyoto Registry Cohort-2. PLoS One. 2015; 10(4):e0124314.Google Scholar
Rossini, R, Musumeci, G, Capodanno, D, et al. Perioperative management of oral antiplatelet therapy and clinical outcomes in coronary stent patients undergoing surgery. Results of a multicentre registry. Thromb Haemost. 2015; 113(2):272–82.Google Scholar
Burger, W, Chemnitius, J M, Kneissl, G D, Rücker, G. Low-dose aspirin for secondary cardiovascular prevention – cardiovascular risks ater its perioperative withdrawal versus bleed risks with its continuation – review and meta-analysis. J Int Med. 2005; 257:399414.Google Scholar
García Rodríguez, L A, Soriano, L C, Hill, C, Johansson, S. Increased risk of stroke after discontinuation of acetylsalicylic acid: a UK primary care study. Neurology. 2011; 76:740–6.Google Scholar
Weimar, C, Cotton, D, Sha, N, et al. Discontinuation of antiplatelet study medication and risk of recurrent stroke and cardiovascular events: results from the PRoFESS study. Cerebrovasc Dis. 2013; 35:538–43.Google Scholar
Lee, J, Kim, J K, Kim, J H, et al. Recovery time of platelet function after aspirin withdrawal. Curr Ther Res Clin Exp. 2014; 76:2631.Google Scholar
Le Manach, Y, Kahn, D, Bachelot-Loza, C, et al. Impact of aspirin and clopidogrel interruption on platelet function in patients undergoing major vascular surgery. PLoS One. 2014; 9(8):e104491.Google Scholar
Aguejouf, O, Belougne-Malfatti, E, Doutremepuich, F, Belon, P, Doutremepuich, C. Thromboembolic complications several days after a single-dose administration of aspirin. Thromb Res. 1998; 89(3):123–7.Google Scholar
Doutremepuich, C, Aguejouf, O, Eizayaga, F X, Desplat, V. Reverse effect of aspirin: is the prothrombotic effect after aspirin discontinuation mediated by cyclooxygenase 2 inhibition? Pathophysiol Haemost Thromb. 2007; 36:40–4.Google Scholar
Aguejouf, O, Eizayaga, F, Desplat, V, Belon, P, Doutremepuich, C. Prothrombotic and hemorrhagic effects of aspirin. Clin Appl Thromb Hemost. 2009; 15(5):523–8.Google Scholar
Vial, J H, McLeod, L J, Roberts, M S. Rebound elevation in urinary thromboxane B2 and 6-keto-PGF1 alpha excretion after aspirin withdrawal. Adv Prostatglandin Thromboxane Leukot Res. 1991; 21:157–60.Google Scholar
Moussa, S A, Forsythe, M S, Bozarth, J M, Reilly, T M. Effect of single oral dose of aspirin on human platelet functions and plasma plasminogen activator inhibitor-1. Cardiology. 1993; 83:367–73.Google Scholar
Armstrong, M J, Gronseth, G, Anderson, D C, et al. Summary of evidence-based guideline: Periprocedural management of antithrombotic medications in patients with ischemic cerebrovascular disease: Report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2013; 80:2065–9.Google Scholar
Mantz, J, Samama, C M, Tubach, F, et al. Impact of preoperative maintenance or interruption of aspirin on thrombotic and bleeding events after elective non-cardiac surgery: The multicentre, randomized, blinded, placebo-controlled, STRATAGEM trial. Br J Anaesth. 2011; 107(6):899910.Google Scholar
Dorsam, R T, Kunapuli, S P. Central role of the P2Y12 receptor in platelet activation. J Clin Invest. 2004; 113(3):340–5.Google Scholar
CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996; 348(9038):1329–39.Google Scholar
Diehl, P, Halscheid, C, Olivier, C, et al. Discontinuation of long term clopidogrel therapy induces platelet rebound hyperaggregability between 2 and 6 weeks post cessation. Clin Res Cardiol. 2011; 100:765–71.Google Scholar
Sambu, N, Warner, T, Curzen, N. Clopidogrel withdrawal: is there a “rebound” phenomenon? Thromb Haemost. 2011; 105:211–20.Google Scholar
Collet, J-P, Montalescot, G, Steg, P G, et al. Clinical outcomes according to permanent discontinuation of clopidogrel or placebo in the CHARISMA trial. Arch Cardiovasc Dis. 2009; 102:485–96.Google Scholar
Geraghty, O C, Paul, N L M, Chandratheva, A, Rothwell, P M. Low risk of rebound events after a short course of clopidogrel in acute TIA or minor stroke. Neurology. 2010; 74:1891–6.Google Scholar
Ford, I, Scott, N W, Herd, V, et al. A randomized controlled trial of platelet activity before and after cessation of clopidogrel therapy in patients with stable cardiovascular disease. J Am Coll Cardiol. 2014; 63:233–9.Google Scholar
Rossen, J D, Chalouhi, N, Wassef, S N, et al. Incidence of cerebral ischemic events after discontinuation of clopidogrel in patients with intracranial aneurysms treated with stent-assisted techniques. J Neurosurg. 2012; 117:929–33.Google Scholar
Fiedler, A K, Mehilli, J, Kufner, S, et al. Randomised, double-blind trial on the value of tapered discontinuation of clopidogrel maintenance therapy after drug-eluting stent implantation. Thromb Haemost. 2014; 111:1041–9.Google Scholar
Mauri, L, Kereiakes, D J, Yeh, R W, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med. 2014;Nov 16 (Epub ahead of print).Google Scholar
Vongpatanasin, W, Hillis, L D, Lange, R A. Prosthetic heart valves. N Engl J Med. 1996; 335:407–16.Google Scholar
The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Guidelines for the management of atrial fibrillation. Eur Heart J. 2010; 31:2369–429.Google Scholar
Douketis, J D, Berger, P B, Dunn, A S, et al. The perioperative management of antithrombotic therapy. American College of Chest Physicians evidence-based clinicial practice guidelines (8th edition). Chest. 2008; 133:299339S.Google Scholar
Di Biase, L, Burkhardt, J D, Santangeli, P, et al. Periprocedural stroke and bleeding complications in patients undergoing catheter ablation of atrial fibrillation with different anticoagulation management. Results from the role of coumadin in preventing thromboembolism in atrial fibrillation patients undergoing catheter ablation (COMPARE) randomized trial. Circulation. 2014; 129:2638–44.Google Scholar
Fang, M C, Go, A S, Chang, Y, Borowsky, L H, et al. Warfarin discontinuation after starting warfarin for atrial fibrillation. Circ Cardiovasc Qual Outcomes. 2010; 3:624–31.Google Scholar
Tulner, L R, Van Campen, J P C M, Kuper, I M J A, et al. Reasons for undertreatment with oral anticoagulants in frail geriatric outpatients with atrial fibrillation. A prospective, descriptive study. Drugs Aging. 2010; 27(1):3950.Google Scholar
Blacker, D J, Wijdicks, E F M, McClelland, R L. Stroke risk in anticoagulated patients with atrial fibrillation. Neurology. 2003; 61:964–8.Google Scholar
Raunsø, J, Selmer, C, Olesen, J B, et al. Increased short-term riks of thrombo-embolism or death after interruption of warfarin treatment in patients with atrial fibrillation. Eur Heart J. 2012; 33(15):1886–92.Google Scholar
Di Biase, L, Gaita, F, Toso, E, et al. Does periprocedural anticoagulation management of atrial fibrillation affect the prevalence of silent thromboembolic lesion detected by diffusion cerebral magnetic resonance imaging in patients undergoing radiofrequency atrial fibrillation ablation with open irrigated catheters? Results from a prospective multicenter study. Heart Rhythm. 2014; 11(5):791–8.Google Scholar
Garcia, D A, Regan, S, Henault, L E, et al. Risk of thromboembolism with short-term interruption of warfarin therapy. Arch Intern Med. 2008; 168(1):63–9.Google Scholar
Cundiff, D K. Clinical evidence for rebound hypercoagulability after discontinuing oral anticoagulants for venous thromboembolism. Medscape J Med. 2008; 10(11):258.Google Scholar
Genewein, U, Haeberli, A, Straub, P W, Beer, J H. Rebound after cessation of oral anticoagulant therapy: The biochemical evidence. Br J Haematol. 1996;92:479–85.Google Scholar
Reddy, V Y, Sievert, H, Halperin, J, et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: A randomized clinical trial. JAMA. 2014; 312(19):1988–98.Google Scholar
Bai, R, Horton, R P, Di Biase, L, et al. Intraprocedural and long-term incomplete occlusion of the left atrial appendage following placement of the Watchman device: A single center experience. J Cardiovasc Electrophysiol. 2012; 23(5):455–61.Google Scholar
Chatterjee, S, Sardar, P, Giri, J S, Ghosh, J, Mukherjee, D. Treatment discontinuations with new oral agents for long-term anticoagulation: Insights from a meta-analysis of 18 randomized trials including 101,801 patients. Mayo Clin Proc. 2014; 89(7):896907.Google Scholar
Zalesak, M, Siu, K, Francis, K, et al. Higher persistence in newly diagnosed nonvalvular atrial fibrillation patients treated with dabigatran versus warfarin. Circ Cardiovasc Qual Outcomes. 2013; 6(5):567–74.Google Scholar
Nascimento, T, Birnie, D H, Healey, J S, et al. Managing novel oral anticoagulants in patients with atrial fibrillation undergoing device surgery: Canadian survey. Can J Cardiol. 2014; 30(2):231–6.Google Scholar
Watanabe, M, Siddiqui, F M, Qureshi, A I. Incidence and management of ischemic stroke and intracerebral hemorrhage in patients on dabigatran etexilate treatment. Neurocrit Care. 2012; 16:203–9.Google Scholar
Patel, M R, Hellkamp, A S, Lokhnygina, Y, et al. Outcomes of discontinuing rivaroxaban compared with warfarin in patients with nonvalvular atrial fibrillation: Analysis from the ROCKET AF trial (Rivaroxaban Once-Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation). J Am Coll Cardiol. 2013; 61(6):651–8.Google Scholar
Reynolds, M R. Discontinuation of rivaroxaban: Filling in the gaps. J Am Coll Cardiol. 2013;61(6):659–60.Google Scholar
Granger, C B, Alexander, J H, McMurray, J J, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011; 365(11):981–92.Google Scholar
Granger, C B, Lopes, R D, Hanna, M, et al. Clinical events after transitioning from apixaban versus warfarin to warfarin at the end of the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. Am Heart J. 2015; 169(1):2530.Google Scholar
Connolly, S J, Ezekowitz, M D, Yusuf, S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009; 361(12):1139–51.Google Scholar
Giugliano, R P, Ruff, C T, Braunwald, E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013; 369(22):2093–104.Google Scholar
Davignon, J, Leiter, L A. Ongoing clinical trials of the pleiotropic effects of statins. Vasc Health Risk Manag. 2005; 1(1):2940.Google Scholar
Amarenco, P, Bogousslavsky, J, Callahan, A, et al. High-dose atorvastatin after stroke or transient ischemic attack: The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) investigators. N Eng J Med. 2006; 355:549–59.Google Scholar
Colvicchi, F, Bassi, A Santini, M, Caltagirone, C. Discontinuation of statin therapy and clinical outcome after ischemic stroke. Stroke. 2007; 38:2652–7.Google Scholar
Blanco, M, Nombela, F, Castellanos, M, et al. Statin treatment withdrawal in ischemic stroke: a controlled randomized study. Neurology. 2007; 69:904–10.Google Scholar
Fuentes, B, Martínez-Sánchez, P, Díez-Tejedor, E. Lipid-lowering drugs in ischemic stroke prevention and their influence on acute stroke outcome. Cerebrovasc Dis. 2009; 27(1):126–33.Google Scholar
Endres, M. Statins and stroke. J Cereb Blood Flow Metab. 2005; 25(9):1093–110.Google Scholar
Li, J-J, Li, Y-S, Chu, J-M, et al. Changes of plasma inflammatory markers after withdrawal of statin therapy in patients with hyperlipidemia. Clinica Chimica Acta. 2006; 366:269–73.Google Scholar
Rosengarten, B, Auch, D, Kaps, M. Effects of initiation and acute withdrawal of statins on the neurovascular coupling mechanism in healthy, normocholesterolemic humans. Stroke. 2007; 38:3193–7.Google Scholar
Dowlatshahi, D, Demchuk, A M, Fang, J, et al. Association of statins and statin discontinuation with poor outcome and survival after intracerebral hemorrhage. Stroke. 2012; 43:1518–23.Google Scholar
Robinson, T G, Potter, J F, Ford, G A, et al. Effects of antihypertensive treatment after acute stroke in the Continue or Stop Post-Stroke Antihypertensives Collaborative Study (COSSACS): A prospective, randomised, open, blinded-endpoint trial. Lancet Neurol. 2010; 9(8):767–75.Google Scholar
Bath, et al. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): A partial-factorial randomised controlled trial. Lancet. 2014; 22 October: Epub ahead of print.Google Scholar
Baird, T A, Parsons, M W, Phan, T, et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 2003; 34:2208–14.Google Scholar
Rosso, C, Corvol, J C, Pires, C, et al. Intensive versus subcutaneous insulin in patients with hyperacute stroke: Results from the randomized INSULINFARCT trial. Stroke. 2012; 43(9):2343–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×