Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T18:30:37.050Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 December 2020

Serguei Popov
Affiliation:
Universidade do Porto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Two-Dimensional Random Walk
From Path Counting to Random Interlacements
, pp. 201 - 207
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abe, Yoshihiro. 2017. Second order term of cover time for planar simple random walk. arXiv preprint arXiv:1709.08151. (Cited on pages 160 and 167.)Google Scholar
[2] Abe, Yoshihiro, and Biskup, Marek. 2019. Exceptional points of two-dimensional random walks at multiples of the cover time. arXiv preprint arXiv:1903.04045. (Cited on page 168.)Google Scholar
[3] Alves, Caio, and Popov, Serguei. 2018. Conditional decoupling of random interlacements. ALEA Lat. Am. J. Probab. Math. Stat., 15(2), 1027–1063. (Cited on page 159.)Google Scholar
[4] Arnold, V. I. 1992. Trivium mathématique. Gaz. Math., 87–96. (Cited on page 199.)Google Scholar
[5] Asmussen, S. 2003. Applied probability and queues. Second edn. Applications of Mathematics (New York), vol. 51. Springer-Verlag, New York. (Cited on page 17.)Google Scholar
[6] Belius, David. 2012. Cover levels and random interlacements. Ann. Appl. Probab., 22(2), 522–540. (Cited on page 149.)CrossRefGoogle Scholar
[7] Belius, David. 2013. Gumbel fluctuations for cover times in the discrete torus. Probab. Theory Related Fields, 157(3–4), 635–689. (Cited on page 160.)CrossRefGoogle Scholar
[8] Belius, David, and Kistler, Nicola. 2017. The subleading order of two dimensional cover times. Probab. Theory Related Fields, 167(1–2), 461–552. (Cited on pages 160 and 167.)CrossRefGoogle Scholar
[9] Benjamini, Itai, and Sznitman, Alain-Sol. 2008. Giant component and vacant set for random walk on a discrete torus. J. Eur. Math. Soc. (JEMS), 10(1), 133–172. (Cited on page 146.)Google Scholar
[10] Berger, Noam, Gantert, Nina, and Peres, Yuval. 2003. The speed of biased random walk on percolation clusters. Probab. Theory Related Fields, 126(2), 221– 242. (Cited on page 147.)CrossRefGoogle Scholar
[11] Bollobás, Béla, and Riordan, Oliver. 2006. Percolation. Cambridge University Press, New York. (Cited on page 146.)Google Scholar
[12] Boucheron, S., Lugosi, G., and Massart, P. 2013. Concentration inequalities : a nonasymptotic theory of independence. Oxford University Press, Oxford. (Cited on page 125.)Google Scholar
[13] Brémaud, Pierre. 1999. Markov chains. Texts in Applied Mathematics, vol. 31. Springer-Verlag, New York. (Cited on page 17.)CrossRefGoogle Scholar
[14] Bucy, R. S. 1965. Recurrent sets. Ann. Math. Statist., 36, 535–545. (Cited on page 190.)CrossRefGoogle Scholar
[15] Camargo, Darcy, and Popov, Serguei. 2018. A one-dimensional version of the random interlacements. Stochastic Processes and Their Applications, 128(8), 2750–2778. (Cited on page 200.)CrossRefGoogle Scholar
[16] Černý, J., and Popov, S. 2012. On the internal distance in the interlacement set. Electron. J. Probab., 17, paper no. 29, 25 pp. (Cited on pages 146 and 147.)CrossRefGoogle Scholar
[17] Jiří, Černý, and Augusto, Teixeira. 2012. From random walk trajectories to random interlacements. Ensaios Matemáticos [Mathematical Surveys], vol. 23. Sociedade Brasileira de Matemática, Rio de Janeiro. (Cited on page 143.)Google Scholar
[18] Černý, Jiří, and Teixeira, Augusto. 2016. Random walks on torus and random interlacements: macroscopic coupling and phase transition. Ann. Appl. Probab., 26(5), 2883–2914. (Cited on page 146.)Google Scholar
[19] Chung, Kai Lai, and Walsh, John B. 2005. Markov processes, Brownian motion, and time symmetry. Vol. 249. Springer, New York. (Cited on page 75.)Google Scholar
[20] Comets, F., Popov, S., Schütz, G. M., and Vachkovskaia, M. 2009. Billiards in a general domain with random reflections. Arch. Ration. Mech. Anal., 191(3), 497–537. (Cited on page 140.)Google Scholar
[21] Comets, F., Popov, S., Schütz, G. M., and Vachkovskaia, M. 2010a. Knudsen gas in a finite random tube: transport diffusion and first passage properties. J. Stat. Phys., 140(5), 948–984. (Cited on page 140.)Google Scholar
[22] Comets, F., Popov, S., Schütz, G. M., and Vachkovskaia, M. 2010b. Quenched invariance principle for the Knudsen stochastic billiard in a random tube. Ann. Probab., 38(3), 1019–1061. (Cited on page 140.)Google Scholar
[23] Comets, Francis, and Popov, Serguei. 2017. The vacant set of two-dimensional critical random interlacement is infinite. Ann. Probab., 45(6B), 4752–4785. (Cited on pages 125, 127, and 167.)Google Scholar
[24] Comets, Francis, Menshikov, Mikhail, and Popov, Serguei. 1998. Lyapunov functions for random walks and strings in random environment. Ann. Probab., 26(4), 1433–1445. (Cited on page 27.)CrossRefGoogle Scholar
[25] Comets, Francis, Gallesco, Christophe, Popov, Serguei, and Vachkovskaia, Marina. 2013. On large deviations for the cover time of two-dimensional torus. Electron. J. Probab., 18, paper no. 96, 18 pp. (Cited on pages 117 and 169.)CrossRefGoogle Scholar
[26] Comets, Francis, Popov, Serguei, and Vachkovskaia, Marina. 2016. Two-dimensional random interlacements and late points for random walks. Comm. Math. Phys., 343(1), 129–164. (Cited on pages 10, 80, 117, 173, and 175.)Google Scholar
[27] Cook, Scott, and Feres, Renato. 2012. Random billiards with wall temperature and associated Markov chains. Nonlinearity, 25(9), 2503–2541. (Cited on page 140.)CrossRefGoogle Scholar
[28] Daley, D. J., and Vere-Jones, D. 2008. An introduction to the theory of point processes. Vol. II. Springer, New York. (Cited on page 146.)Google Scholar
[29] de Bernardini, Diego, Gallesco, Christophe, and Popov, Serguei. 2018a. An improved decoupling inequality for random interlacements. arXiv preprint arXiv:1809.05594. (Cited on pages 149 and 159.)Google Scholar
[30] de Bernardini, Diego F., Gallesco, Christophe, and Popov, Serguei. 2018b. On uniform closeness of local times of Markov chains and i.i.d. sequences. Stochastic Process. Appl., 128(10), 3221–3252. (Cited on pages 125, 127, and 131.)CrossRefGoogle Scholar
[31] de Bernardini, Diego F., Gallesco, Christophe, and Popov, Serguei. 2019. Corri-gendum to “On uniform closeness of local times of Markov chains and i.i.d. se-quences” [Stochastic Process. Appl. 128 (10) 3221–3252]. Stochastic Processes and Their Applications, 129(7), 2606–2609. (Cited on pages 127 and 131.)Google Scholar
[32] Dembo, Amir, and Sznitman, Alain-Sol. 2006. On the disconnection of a discrete cylinder by a random walk. Probab. Theory Related Fields, 136(2), 321–340. (Cited on page 125.)Google Scholar
[33] Dembo, Amir, Peres, Yuval, Rosen, Jay, and Zeitouni, Ofer. 2004. Cover times for Brownian motion and random walks in two dimensions. Ann. of Math. (2), 160(2), 433–464. (Cited on page 160.)CrossRefGoogle Scholar
[34] Dembo, Amir, Peres, Yuval, Rosen, Jay, and Zeitouni, Ofer. 2006. Late points for random walks in two dimensions. Ann. Probab., 34(1), 219–263. (Cited on pages 64, 160, and 172.)Google Scholar
[35] Di Crescenzo, A., Macci, C., Martinucci, B., and Spina, S. 2017. Random walks on graphene: generating functions, state probabilities and asymptotic behavior. arXiv:1610.09310. (Cited on page 185.)Google Scholar
[36] Ding, Jian, Lee, James R., and Peres, Yuval. 2012. Cover times, blanket times, and majorizing measures. Ann. of Math. (2), 175(3), 1409–1471. (Cited on page 125.)CrossRefGoogle Scholar
[37] Doob, J. L. 1957. Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France, 85, 431–458. (Cited on page 75.)Google Scholar
[38] Doob, J. L. 1984. Classical potential theory and its probabilistic counterpart. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262. Springer-Verlag, New York. (Cited on pages 33 and 75.)Google Scholar
[39] Doyle, P. G., and Snell, J. L. 1984. Random walks and electric networks. Carus Mathematical Monographs, vol. 22. Mathematical Association of America, Washington, DC. (Cited on page 14.)Google Scholar
[40] Drewitz, Alexander, and Erhard, Dirk. 2016. Transience of the vacant set for near-critical random interlacements in high dimensions. Ann. Inst. Henri Poincaré Probab. Stat., 52(1), 84–101. (Cited on page 147.)Google Scholar
[41] Drewitz, Alexander, Ráth, Balázs, and Sapozhnikov, Artëm. 2014a. An introduction to random interlacements. Springer Briefs in Mathematics. Springer, Cham. (Cited on pages 8 and 143.)Google Scholar
[42] Drewitz, Alexander, Ráth, Balázs, and Sapozhnikov, Artëm. 2014b. Local per-colative properties of the vacant set of random interlacements with small intensity. Ann. Inst. Henri Poincaré Probab. Stat., 50(4), 1165–1197. (Cited on page 147.)Google Scholar
[43] Drewitz, Alexander, Ráth, Balázs, and Sapozhnikov, Artëm. 2014c. On chemical distances and shape theorems in percolation models with long-range correlations. J. Math. Phys., 55(8), 083307, 30. (Cited on page 147.)Google Scholar
[44] Durrett, R. 2010. Probability: theory and examples. Fourth edn. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge. (Cited on pages 8, 4, and 5.)Google Scholar
[45] Einmahl, Uwe. 1989. Extensions of results of Komlós, Major, and Tusnády to the multivariate case. Journal of Multivariate Analysis, 28(1), 20–68. (Cited on page 195.)Google Scholar
[46] Fayolle, G., Malyshev, V. A., and Menshikov, M. V. 1995. Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge. (Cited on pages 17, 19, and 30.)Google Scholar
[47] Fribergh, Alexander, and Popov, Serguei. 2018. Biased random walks on the interlacement set. Ann. Inst. Henri Poincaré Probab. Stat., 54(3), 1341–1358. (Cited on page 147.)Google Scholar
[48] Gantert, Nina, Popov, Serguei, and Vachkovskaia, Marina. 2019. On the range of a two-dimensional conditioned simple random walk. Annales Henri Lebesgue, 2, 349–368. (Cited on page 101.)Google Scholar
[49] Garcia, Nancy L. 1995. Birth and death processes as projections of higher-dimensional Poisson processes. Adv. in Appl. Probab., 27(4), 911–930. (Cited on page 117.)Google Scholar
[50] Garcia, Nancy L., and Kurtz, Thomas G. 2008. Spatial point processes and the projection method. Pages 271–298 of: In and out of equilibrium. 2. Progr. Probab., vol. 60. Birkhäuser, Basel. (Cited on page 117.)Google Scholar
[51] Grimmett, Geoffrey. 1999. Percolation. Second edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321. Springer-Verlag, Berlin. (Cited on page 146.)Google Scholar
[52] Hu, Yueyun, and Shi, Zhan. 2015. The most visited sites of biased random walks on trees. Electron. J. Probab., 20, paper no. 62, 14. (Cited on page 125.)CrossRefGoogle Scholar
[53] Jaynes, E. T. 1973. The well-posed problem. Found. Phys., 3, 477–492. (Cited on page 199.)Google Scholar
[54] Kendall, M. G., and Moran, P. A. P. 1963. Geometrical probability. Griffin’s Statistical Monographs & Courses, No. 10. Hafner Publishing Co., New York. (Cited on page 136.)Google Scholar
[55] Kochen, Simon, and Stone, Charles. 1964. A note on the Borel–Cantelli lemma. Illinois J. Math., 8, 248–251. (Cited on page 110.)Google Scholar
[56] Komlós, János, Major, P’eter, and Tusnády, G. 1975. An approximation of partial sums of independent RV’-s, and the sample DF. I. Zeitschrift für Wahrschein-lichkeitstheorie und Verwandte Gebiete, 32, 111–131. (Cited on page 195.)Google Scholar
[57] Lacoin, Hubert, and Tykesson, Johan. 2013. On the easiest way to connect k points in the random interlacements process. ALEA Lat. Am. J. Probab. Math. Stat., 10(1), 505–524. (Cited on page 146.)Google Scholar
[58] Lagarias, J. C., and Weiss, A. 1992. The 3x + 1 problem: two stochastic models. Ann. Appl. Probab., 2(1), 229–261. (Cited on page 31.)Google Scholar
[59] Lamperti, J. 1960. Criteria for the recurrence or transience of stochastic process. I. J. Math. Anal. Appl., 1, 314–330. (Cited on page 32.)Google Scholar
[60] Lamperti, J. 1962. A new class of probability limit theorems. J. Math. Mech., 11, 749–772. (Cited on page 32.)Google Scholar
[61] Lamperti, J. 1963. Criteria for stochastic processes. II. Passage-time moments. J. Math. Anal. Appl., 7, 127–145. (Cited on page 32.)Google Scholar
[62] LaSalle, Joseph, and Lefschetz, Solomon. 1961. Stability by Liapunov’s direct method, with applications. Mathematics in Science and Engineering, Vol. 4. Academic Press, New York–London. (Cited on page 18.)Google Scholar
[63] Lawler, G. F., and Limic, V. 2010. Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge. (Cited on pages 8, 9, 33, 36, 46, 52, 65, 69, and 188.)Google Scholar
[64] Levin, David A, and Peres, Yuval. 2017. Markov chains and mixing times. Vol. 107. American Mathematical Society, Providence. (Cited on pages 14 and 75.)CrossRefGoogle Scholar
[65] Liggett, T. M. 1985. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 276. Springer-Verlag, New York. (Cited on page 29.)Google Scholar
[66] Lyons, Russell, and Peres, Yuval. 2016. Probability on trees and networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York. (Cited on pages 14 and 29.)CrossRefGoogle Scholar
[67] Meester, Ronald, and Roy, Rahul. 1996. Continuum percolation. Cambridge Tracts in Mathematics, vol. 119. Cambridge University Press, Cambridge. (Cited on page 132.)CrossRefGoogle Scholar
[68] Menshikov, M., Popov, S., Ramírez, A., and Vachkovskaia, M. 2012. On a general many-dimensional excited random walk. Ann. Probab., 40(5), 2106–2130. (Cited on page 27.)Google Scholar
[69] Menshikov, M. V. 1986. Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR, 288(6), 1308–1311. (Cited on page 147.)Google Scholar
[70] Menshikov, M. V., and Popov, S. Yu. 1995. Exact power estimates for countable Markov chains. Markov Process. Related Fields, 1(1), 57–78. (Cited on page 27.)Google Scholar
[71] Menshikov, Mikhail, Popov, Serguei, and Wade, Andrew. 2017. Non-homogeneous random walks – Lyapunov function methods for near-critical stochastic systems. Cambridge University Press, Cambridge. (Cited on pages 8, 7, 17, 21, 27, 30, 186, and 187.)Google Scholar
[72] Meyn, S., and Tweedie, R. L. 2009. Markov chains and stochastic stability. Second edn. Cambridge University Press, Cambridge. With a prologue by Peter W. Glynn. (Cited on page 17.)Google Scholar
[73] Miller, Jason, and Sousi, Perla. 2017. Uniformity of the late points of random walk on Zdn for d ≥ 3. Probab. Theory Related Fields, 167(3–4), 1001–1056. (Cited on page 160.)Google Scholar
[74] Peres, Y., Popov, S., and Sousi, P. 2013. On recurrence and transience of self-interacting random walks. Bull. Braz. Math. Soc., 44(4), 1–27. (Cited on page 21.)CrossRefGoogle Scholar
[75] Peres, Yuval. 2009. The unreasonable effectiveness of martingales. Pages 997– 1000 of: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia. (Cited on page 4.)Google Scholar
[76] Pólya, Georg. 1921. Über eine Aufgabe der Wahrscheinlichkeitsrechnung be-treffend die Irrfahrt im Straßennetz. Math. Ann., 84(1–2), 149–160. (Cited on pages 1 and 27.)Google Scholar
[77] Popov, Serguei. 2019. Conditioned two-dimensional simple random walk: Green’s function and harmonic measure. arXiv preprint arXiv:1907.12682. (Cited on pages 81 and 92.)Google Scholar
[78] Popov, Serguei, and Ráth, Balázs. 2015. On decoupling inequalities and percolation of excursion sets of the Gaussian free field. J. Stat. Phys., 159(2), 312–320. (Cited on page 149.)Google Scholar
[79] Popov, Serguei, and Teixeira, Augusto. 2015. Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. (JEMS), 17(10), 2545–2593. (Cited on pages 117, 119, 121, 124, 147, 150, 151, 156, 157, 158, and 200.)Google Scholar
[80] Popov, Serguei, Rolla, Leonardo T., and Ungaretti, Daniel. 2020. Transience of conditioned walks on the plane: encounters and speed of escape. Electron. J. Probab., 25, paper no. 52, 23 pp. (Cited on page 185.)Google Scholar
[81] Procaccia, Eviatar B., and Tykesson, Johan. 2011. Geometry of the random interlacement. Electron. Commun. Probab., 16, 528–544. (Cited on page 146.)Google Scholar
[82] Procaccia, Eviatar B., Rosenthal, Ron, and Sapozhnikov, Artëm. 2016. Quenched invariance principle for simple random walk on clusters in correlated percolation models. Probab. Theory Related Fields, 166(3–4), 619–657. (Cited on page 147.)Google Scholar
[83] Ráth, Balázs, and Sapozhnikov, Artëm. 2012. Connectivity properties of random interlacement and intersection of random walks. ALEA Lat. Am. J. Probab. Math. Stat., 9, 67–83. (Cited on page 146.)Google Scholar
[84] Ráth, Balázs, and Sapozhnikov, Artëm. 2013. The effect of small quenched noise on connectivity properties of random interlacements. Electron. J. Probab., 18, paper no. 4, 20 pp. (Cited on page 147.)Google Scholar
[85] Resnick, Sidney I. 2008. Extreme values, regular variation and point processes. Springer Series in Operations Research and Financial Engineering. Springer, New York. Reprint of the 1987 original. (Cited on page 117.)Google Scholar
[86] Revuz, D. 1984. Markov chains. Second edn. North-Holland Mathematical Library, vol. 11. Amsterdam: North-Holland Publishing Co. (Cited on pages 33 and 111.)Google Scholar
[87] Rodriguez, Pierre-François. 2019. On pinned fields, interlacements, and random walk on (Z/NZ)2 . Probab. Theory Related Fields, 173(3), 1265–1299. (Cited on page 168.)Google Scholar
[88] Romeijn, H. E. 1998. A general framework for approximate sampling with an application to generating points on the boundary of bounded convex regions. Statist. Neerlandica, 52(1), 42–59. (Cited on page 139.)Google Scholar
[89] Sapozhnikov, Artem. 2017. Random walks on infinite percolation clusters in models with long-range correlations. Ann. Probab., 45(3), 1842–1898. (Cited on page 147.)Google Scholar
[90] Sidoravicius, Vladas, and Sznitman, Alain-Sol. 2009. Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math., 62(6), 831–858. (Cited on page 147.)Google Scholar
[91] Spitzer, F. 1976. Principles of random walk. Second edn. Springer-Verlag, New York. Graduate Texts in Mathematics, Vol. 34. (Cited on pages 8, 53, and 69.)Google Scholar
[92] Srikant, R., and Ying, Lei. 2014. Communication Networks: An Optimization, Control and Stochastic Networks Perspective. Cambridge University Press, New York. (Cited on page 17.)Google Scholar
[93] Sznitman, Alain-Sol. 2010. Vacant set of random interlacements and percolation. Ann. of Math. (2), 171(3), 2039–2087. (Cited on pages 10, 125, 143, 145, and 149.)Google Scholar
[94] Sznitman, Alain-Sol. 2012a. On (Z/NZ)2-occupation times, the Gaussian free field, and random interlacements. Bull. Inst. Math. Acad. Sin. (N.S.), 7(4), 565– 602. (Cited on page 149.)Google Scholar
[95] Sznitman, Alain-Sol. 2012b. Random interlacements and the Gaussian free field. Ann. Probab., 40(6), 2400–2438. (Cited on page 149.)CrossRefGoogle Scholar
[96] Sznitman, Alain-Sol. 2012c. Topics in occupation times and Gaussian free fields. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich. (Cited on page 143.)Google Scholar
[97] Sznitman, Alain-Sol. 2017. Disconnection, random walks, and random interlacements. Probab. Theory Related Fields, 167(1–2), 1–44. (Cited on page 10.)Google Scholar
[98] Teixeira, A. 2009a. Interlacement percolation on transient weighted graphs. Electron. J. Probab., 14, paper no. 54, 1604–1628. (Cited on pages 150, 162, and 163.)Google Scholar
[99] Teixeira, Augusto. 2009b. On the uniqueness of the infinite cluster of the vacant set of random interlacements. Ann. Appl. Probab., 19(1), 454–466. (Cited on page 147.)CrossRefGoogle Scholar
[100] Teixeira, Augusto. 2011. On the size of a finite vacant cluster of random interlacements with small intensity. Probab. Theory Related Fields, 150(3–4), 529–574. (Cited on page 147.)Google Scholar
[101] Tóth, Bálint. 2001. No more than three favorite sites for simple random walk. Ann. Probab., 29(1), 484–503. (Cited on page 125.)Google Scholar
[102] Tsirelson, Boris. 2006. Brownian local minima, random dense countable sets and random equivalence classes. Electron. J. Probab., 11, paper no. 7, 162–198. (Cited on page 117.)Google Scholar
[103] Woess, Wolfgang. 2009. Denumerable Markov chains. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich. (Cited on page 75.)Google Scholar
[104] Zaitsev, Andrei Yu. 1998. Multidimensional version of the results of Komlos, Major and Tusnady for vectors with finite exponential moments. ESAIM: PS, 2, 41–108. (Cited on page 195.)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Serguei Popov, Universidade do Porto
  • Book: Two-Dimensional Random Walk
  • Online publication: 09 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108680134.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Serguei Popov, Universidade do Porto
  • Book: Two-Dimensional Random Walk
  • Online publication: 09 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108680134.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Serguei Popov, Universidade do Porto
  • Book: Two-Dimensional Random Walk
  • Online publication: 09 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108680134.010
Available formats
×