Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T00:34:20.695Z Has data issue: false hasContentIssue false

2 - Ultra-wideband signals

Published online by Cambridge University Press:  23 December 2009

Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Sinan Gezici
Affiliation:
Bilkent University, Ankara
Ismail Güvenc
Affiliation:
DoCoMo Communications Laboratories USA, California
Get access

Summary

Commonly, an ultra-wideband (UWB) signal is defined to be a signal with a fractional bandwidth of larger than 20% or an absolute bandwidth of at least 500 MHz. The main feature of UWB signals is that they occupy a much wider frequency band than conventional signals; hence, they need to share the existing spectrum with incumbent systems. Therefore, certain regulations are imposed on systems transmitting UWB signals. In this chapter, after a detailed description of UWB signals, various regulatory rules on UWB systems in different parts of the world are investigated. Then, emerging UWB standards for wireless personal area network (WPAN) applications are studied.

Definition of UWB

Although Guglielmo Marconi's spark gap radio transmitters were sending UWB signals across the Atlantic Ocean in 1901, the rigorous investigation of UWB systems was stimulated by the studies on impulse response characterization of microwave networks in the 1960s [63, 64]. Instead of the conventional swept-frequency response characterization, a linear-time-invariant (LTI) system was characterized by its response to an impulse in the time domain. After employing impulses to characterize behavior of various systems, it was also realized that such impulses could also be used in radar and communications systems [65]. The first UWB communications patent was issued in 1973 to Gerald F. Ross on transmission and reception of baseband pulse signals [66].

Early names for UWB technology include baseband, carrier-free, non-sinusoidal and impulse. The term UWB was coined by the US Department of Defense in the late 1980s. A UWB signal is characterized by its very large bandwidth compared to the conventional narrowband systems.

Type
Chapter
Information
Ultra-wideband Positioning Systems
Theoretical Limits, Ranging Algorithms, and Protocols
, pp. 20 - 43
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×