Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-27T07:29:34.793Z Has data issue: false hasContentIssue false

8 - Gravitational radiation

Published online by Cambridge University Press:  05 June 2012

Joel Franklin
Affiliation:
Reed College, Oregon
Get access

Summary

While we have not exhausted the vacuum solutions, we are about half-way done with the physically interesting ones (for point sources). So it is time for a brief interlude – radiative solutions. Our study will split into two general categories: waves in vacuum and their sources. In the linearized theory, as was mentioned in our perturbative expansion of Einstein's equation, we have a generic wave equation with and without sources – the solution to this in the tensor setting is well-defined: superimposed (because we are in the linearized limit) waves of definite frequency and two polarizations. We will be studying both the vacuum and source-driven waves predicted by GR. Gravitational waves are the basis for detection in a number of experiments, both current and planned, so it is important to understand the nature of this radiation, and the patterns generated by typical sources. Basically, though, the tools are identical to E&M with one extra polarization.

We know that the metric, as a field, is most directly comparable to the fourpotential in E&M. The potential, however, is not the physically relevant field, as is evidenced by the Lorentz force law which makes reference to the fields E and B. The same is true in general relativity – it is not the metric itself that informs physical observation – after all, at the very least, the metric is governed by Einstein's equation, which is coordinate-independent. In order to make a prediction, one must first choose a coordinate system, and then see what form the metric takes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Gravitational radiation
  • Joel Franklin, Reed College, Oregon
  • Book: Advanced Mechanics and General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778780.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Gravitational radiation
  • Joel Franklin, Reed College, Oregon
  • Book: Advanced Mechanics and General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778780.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Gravitational radiation
  • Joel Franklin, Reed College, Oregon
  • Book: Advanced Mechanics and General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778780.009
Available formats
×