Skip to main content Accessibility help
×
  • Cited by 13
Publisher:
Cambridge University Press
Online publication date:
February 2018
Print publication year:
2018
Online ISBN:
9781108303538

Book description

Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1]Ackermann, W., Asova, G., Ayvazyan, et al. 2007. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics, 1(6), 336–342.
[2]Alexander, D. R., and Ferguson, J. W. 1994. Low-temperature Rosseland opacities. Astrophys. J., 437, 879–891.
[3]Aslanyan, V., and Tallents, G. J. 2014. Local thermodynamic equilibrium in rapidly heated high energy density plasmas. Phys. Plasmas, 21(6), 062702.
[4]Attwood, D. 2000. Soft X-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, Cambridge, UK.
[5]Atzeni, S., and Meyer-ter-Vehn, J. 2009. The physics of inertial fusion. Oxford University Press, Oxford, UK.
[6]Bailey, J. E., Nagayama, T., Loisel, G. P. et al. 2015. A higher-than-predicted measurement of iron opacity at solar interior temperatures. Nature, 517(7532), 56–59.
[7]Bar-Shalom, A., Klapisch, M., and Oreg, J. 2001. HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spect. Rad. Trans., 71, 169–188.
[8]Bates, D. R., Kingston, A. E., and McWhirter, R. W. P. 1962. Recombination between electrons and atomic ions 1. Optically thin plasmas. Proc. R. Soc. A, 267, 297–312.
[9]Bernstein, J., and Dyson, F. 2003. Opacity bounds. Publ. Astron. Soc. Pac., 115(814), 1383–1387.
[10]Blitz, L., and Spergel, D. N. 1991. The shape of the galaxy. Astrophys. J., 370, 205–224.
[11]Boiko, V. A., Faenov, A. Y., and Pikuz, S. A. 1978. X-ray spectroscopy of multiplycharged ions from laser plasmas. J. Quant. Spect. Rad. Trans., 19, 11–50.
[12]Boiko, V. A., Pikuz, S. A., and Faenov, A. Y. 1979. The determination of laser plasma electron density by K spectra of multicharged ions. J. Phys. B., 12, 1889–1910.
[13]Bombarda, F., Giannella, R., Kallne, et al. 1988. Observations and comparisons with theory of the heliumlike and hydrogenlike resonance lines and satellites of nickel from the JET tokamak. Phys. Rev. A, 37, 504–522.
[14]Burgess, A., and Tully, J. A. 1978. On the Bethe approximation. J. Phys. B, 11, 4271–4282.
[15]Campbell, G., Conn, R. W., and Shoji, T. 1991 (Feb. 5). High density plasma deposition and etching apparatus. US Patent 4,990,229.
[16]Chandrasekhar, S. 1930. The ionization formula and the new statistics. Phil. Mag., 9, 292–299.
[17]Chen, F. F. 1984. Plasma physics and controlled fusion. Plenum, New York, US.
[18]Chung, H. K., Chen, M. H., Morgan, W. L., Ralchenko, Y., and Lee, R. W. 2005. FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energ. Dens. Phys., 1, 3–12.
[19]Ciricosta, O., Vinko, S. M., Barbrel, et al. 2016. Measurements of continuum lowering in solid-density plasmas created from elements and compounds. Nat. Commun., 7, 11713.
[20]Colvin, J., and Larsen, J. 2014. Extreme physics: properties and behavior of matter at extreme conditions. Cambridge University Press, Cambridge, UK.
[21]Crowley, B. J. B. 2014. Continuum lowering – a new perspective. High Energ. Dens. Phys., 13, 84–102.
[22]Crowley, B. J. B., and Harris, J. W. 2001. Modelling of plasmas in an average-atom local density approximation: the CASSANDRA code. J. Quant. Spec. Rad. Trans., 71, 257–272.
[23]Dendy, R. O. 1990. Plasma dynamics. Oxford Science Publications, Oxford, UK.
[24]Dere, K. P., Landi, E., Mason, H. E., Fossi, B. C. M., and Young, P. R. 1997. CHIANTI – an atomic database for emission lines I. Wavelengths greater than 50 Angstrom. Astron. Astrophys. Suppl. Ser., 125, 149–173.
[25]Dicke, R. H. 1953. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev., 89, 472–473.
[26]Dirac, P. A. M. 1948. The principles of quantum mechanics. Clarendon Press, Oxford, UK.
[27]Djaoui, A., and Rose, S. J. 1992. Calculation of the time-dependent excitation and ionization in a laser-produced plasma. J. Phys. B, 25, 2745–2762.
[28]Drake, R. P. 2006. High-energy-density physics. Springer, Berlin, Germany.
[29]El-Naschie, M. S. 2014. Casimir-like energy as a double Eigenvalues of quantumly entangled system leading to the missing dark energy density of the cosmos. Int. J. High Energy Phys., 1(5), 55–63.
[30]Emma, P., Akre, R., Arthur, et al. 2010. First lasing and operation of an angstromwavelength free-electron laser. Nat. Photonics, 4, 641–647.
[31]Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., and Verner, E.M. 1998. CLOUDY 90: numerical simulation of plasmas and their spectra. Publ. Astron. Soc. Pac., 110, 761–778.
[32]Fletcher, L. B., Kritcher, A. L., Pak, A. et al. 2014. Observations of continuum depression in warm dense matter with X-ray Thomson scattering. Phys. Rev. Lett., 112, 145004.
[33]Florescu-Mitchella, A. I., and Mitchel, J. B. A. 2006. Dissociative recombination. Phys. Rep., 430, 277.
[34]Forslund, D. W., Kindel, J. M., Lee, K., Lindman, E. L., and Morse, R. L. 1975. Theory and simulation of resonant absorption in a hot plasma. Phys. Rev. A, 11(Feb.), 679–683.
[35]Freidberg, J. P. 2007. Plasma physics and fusion energy. Cambridge University Press, Cambridge, UK.
[36]Fridman, A. 2008. Plasma chemistry. Cambridge University Press, Cambridge, UK.
[37]Gabriel, A. H. 1972. Dielectronic satellite spectra for highly-charged helium-like lines. Monthly Not. R. Astron. Soc., 160, 99–119.
[38]Griem, H. R. 1997. Principles of plasma spectroscopy. Cambridge University Press, Cambridge, UK.
[39]Gu, M. F. 2008. The flexible atomic code. Can. J. Phys., 86, 675–689.
[40]Guillot, T. 1999. Interiors of giant planets inside and outside the solar system. Science, 286, 72–77.
[41]Guzman, F., O'Mullane, M., and Summers, H. P. 2013. ADAS tools for collisionalradiative modelling of molecules. J. Nucl. Mater., 438, S585.
[42]Haan, S. W., Lindl, J. D., Callahan, D. A. et al. 2011. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001.
[43]Haken, H., and Wolf, H. C. 1994. The physics of atoms and quanta. Berlin, Heidelberg: Springer Berlin Heidelberg.
[44]Hammer, J. H., and Rosen, M. D. 2003. A consistent approach to solving the radiation diffusion equation. Phys. Plasmas, 10, 1829–1845.
[45]Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Scott, R. A. 1968. Observation of a rapidly pulsating radio source. Nature, 217, 709–713.
[46]Hill, E. G., and Rose, S. J. 2012. Modelling of Silicon in inertial confinement fusion conditions. High Energ. Dens. Phys., 8, 307–312.
[47]Hirata, C. M. 1992. Wouthuysen-Field coupling strength and application to highredshift 21-cm radiation. Mon. Note. R. Astron. Soc., 367, 259–274.
[48]Hoarty, D. J., Allan, P., James, S. F. et al. 2013. Observations of the effect of ionization-potential depression in hot dense plasma. Phys. Rev. Lett., 110(26), 265003.
[49]Hughes, T. P. 1975. Plasma and laser light. Institute of Physics, Bristol, UK.
[50]Hurricane, O. A., Callahan, D. A., Casey, D. T. et al. 2014. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343–348.
[51]Hutchinson, I. H. 2002. Principles of plasma diagnostics. Cambridge University Press, Cambridge, UK.
[52]Ichimaru, S. 1982. Strongly coupled plasmas – high density classical plasmas and degenerate electron liquids. Rev. Mod. Phys., 54(4), 1017–1059.
[53]Iglesias, C. A. 2015. Enigmatic photon absorption in plasmas near solar interior conditions. High Energ. Dens. Phys., 15(Jun), 4–7.
[54]Irons, F. E. 1979. The escape factor in plasma spectroscopy I. The escape factor defined and evaluated. J. Quant. Spect. Rad. Trans., 22, 1–20.
[55]Ishikawa, T., Aoyagi, H., Asaka, T. et al. 2012. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photonics, 6(8), 540–544.
[56]Janicki, C. 1990. A computer program for the free-free and bound-free Gaunt factors of Rydberg systems. Comput. Phys. Commun., 60, 281.
[57]Karzas, W. J., and Latter, R. 1961. Electron radiative transitions in a coulomb field. Astrophys. J. Suppl. V, 55, 167.
[58]Keldysh, L. V. 1965. Ionization in field of a strong electromagentic wave. Sov. Phys. JETP, 20, 1307.
[59]Killiana, T. C., Pattard, T., Pohl, T. et al. 2007. Ultracold neutral plasmas. Phys. Rep., 449, 77–130.
[60]Kim, Y., and Rudd, M. E. 1994. Binary encounter dipole model for electron-impact ionization. Phys. Rev. A., 50, 3954–3967.
[61]Kohn, W. 1999. Nobel lecture: electronic structure of matterwave functions and density functionals. Rev. Mod. Phys., 71, 1253–1266.
[62]Kramers, H. A. 1923. On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag., 46, 836–871.
[63]Kramida, A., Ralchenko, Y., Reader, J., and NIST ASD Team. 2015. NIST Atomic Spectra Database (ver. 5.3). Available: http://physics.nist.gov/asd (accessed 13 April 2017). National Institute of Standards and Technology, Gaithersburg, MD.
[64]Lamoreaux, S. K. 1997. Demonstration of the Casimir force in the 0.6 to 6 mm Range. Phys. Rev. Lett., 78, 5–8.
[65]Larsen, J. 2017. Foundations of high energy density physics. Cambridge University Press, Cambridge, UK.
[66]Lindl, J. D. 1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933–4024.
[67]Lindl, J. D., Amendt, P., Berger, R. L. et al. 2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339–491.
[68]Lotz, W. 1967. An empirical formula for the electron-impact ionization crosssection. Z. Physik, 206, 205–211.
[69]Loudon, R. 1983. The quantum theory of light. Oxford University Press, Oxford, UK.
[70]Marchand, E. W. 1978. Gradient index optics. Academic Press, New York, US.
[71]Marjoribanks, R. S., Richardson, M. C., Jaanimagi, P. A., and Epstein, R. 1992. Electron-temperature measurement in laser-produced plasmas by the ratio of isoelectronic line intensities. Phys. Rev. A., 46, R1747–R1750.
[72]Massey, H. S. W., and Burhop, E. H. S. 1952. Electronic and ionic impact phenomena. Clarendon Press, Oxford, UK.
[73]Menzel, D. H., and Pekeris, C. L. 1935. Absorption coefficients and hydrogen line intensities. Monthly Not. R. Astron. Soc., 96(1), 0077–0111.
[74]Morales, M. F., and Wyithe, J. S. B. 2010. Reionization and cosmology with 21-cm fluctuations. Ann. Rev. Astron. Astrophys., 48, 121–171.
[75]Mott, N.F., and Massey, H.S.W. 1949. The theory of atomic collisions. Clarendon Press, Oxford, UK.
[76]Nagler, B., Zastrau, U., Faeustlin, R. R. et al. 2009. Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys., 5(9), 693–696.
[77]Nikiforov, A. F., Novikov, V. G., and Uvarov, V. B. 2005. Quantum statistical models of hot dense matter. Birkhauser, Basel, Switzerland.
[78]Pal'chikov, V. G. 1998. Relativistic transition probabilities and oscillator strengths in hydrogen-like atoms. Phys. Scr., 57, 581–593.
[79]Parail, V., Belo, P., Boerner, P. et al. 2009. Integrated modelling of ITER reference scenarios. Nuclear Fusion, 49(7), 075030.
[80]Paris, A., and Davies, E. 2015. Hydrogen clouds from comets 266/P Christensen and P/2008 Y2 (Gibbs) are candidates for the source of the 1977 WOW signal. Washington Acad. Sci., 25–31.
[81]Peacock, N. J., Robinson, D. C., Forrest, M. J., Wilcock, P. D., and Sannikov, V. V. 1969. Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3. Nature, 224, 488–490.
[82]Pert, G. J. 1978. The analytic theory of linear resonant absorption. Plasma Phys., 20, 175–188.
[83]Pert, G. J. 1990. Models of collisional-radiative recombination. J. Phys. B., 23, 619–650.
[84]Pert, G. J. 2013. Introductory fluid mechanics for physicists and mathematicians. Wiley, Oxford, UK.
[85]Phillips, K. J. H. 2004. The solar flare 3.8–10 keV X-ray spectrum. Astrophys. J., 605, 921–930.
[86]Pradhan, A. K., and Nahar, S. N. 2011. Atomic astrophysics and spectroscopy. Cambridge University Press, Cambridge, UK.
[87]Purcell, E. M. 1985. Electricity and magnetism. McGraw-Hill, New York, US.
[88]McWhirter, R. W. P. 1965. Plasma diagnostic techniques. Edited by Huddlestone, R. H., and Leonard, S. L. Academic Press, New York, US.
[89]Ralchenko, Y. 2016. Modern methods in collisional-radiative modeling of plasmas. Springer, Berlin, Germany.
[90]Randewich, A., and Danson, C. 2014. High energy density physics at the Atomic Weapons Establishment. High Power Laser Sci. Eng., 2, e40.
[91]Rocca, J. J. 1999. Table-top soft X-ray lasers. Rev. Sci. Instrum., 70(10), 3799–3827.
[92]Rutherford, E. 1911. The scattering of α and β particles by matter and the structure of the atom. Phil. Mag., 21, 669.
[93]Rybicki, G. B., and Lightman, A. P. 1979. Radiative processes in astrophysics. Wiley-Interscience, New York, US.
[94]Sagan, C., Sagan, L. S., and Drake, F. 1972. A message from Earth. Science, 175, 881–884.
[95]Salzmann, D. 1998. Atomic physics in hot plasmas. Oxford University Press, Oxford, UK.
[96]Sampson, D. H., and Zhang, H. L. 1992. Use of the van Regemorter formula for collision strengths or cross sections. Phys. Rev., A45, 1556.
[97]Samukawa, S., Hori, M., Rauf, S. et al. 2012. The 2012 Plasma Roadmap. J. Phys. D., 45, 253001.
[98]Schawlow, A. L. 1984. Lasers in historical perspective. IEEE J. Quant. Electron., QE-20, 558.
[99]Sheffield, J., Froula, D., Glenzer, S. H., and Luhmann, N. C. 2011. Plasma scattering of electromagnetic radiation: theory and measurement techniques. Academic Press, Amsterdam, The Netherlands.
[100]Smith, R., Tallents, G. J., Zhang, J. et al. 1999. Saturation behavior of two X-ray lasing transitions in Ni-like Dy. Phys. Rev. A, 59(1), R47–R50.
[101]Smith, R. K., Brickhouse, N. S., Liedahl, D. A, and Raymond, J. C. 2001. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J., 556, L91–L95.
[102]Sobelman, I. I., and Vainshtein, L. A. 1998. Excitation of atoms and broadening of spectral lines. Springer, Berlin, Germany.
[103]Stenzel, R. L. 1999. Whistler waves in space and laboratory plasma. J. Geophys. Res., 104, 14379–14396.
[104]Stewart, J. C., and Pyatt, K. D. 1966. Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203.
[105]Tallents, G., Wagenaars, E., and Pert, G. 2010. Optical lithography: lithography at EUV wavelengths. Nat. Photonics, 4(12), 809–811.
[106]Tallents, G. J. 1980. An experimental study of recombination in a laser-produced plasma. Plasma Phys., 22, 709–718.
[107]Tallents, G. J. 1984. The relative intensities of hydrogen-like fine structure. J. Phys. B., 17, 3677–3691.
[108]Tallents, G. J. 2003. The physics of soft X-ray lasers pumped by electron collisions in laser plasmas. J. Phys. D., 366, R259–R276.
[109]Tallents, G. J. 2016. Free electron degeneracy effects on collisional excitation, ionization, de-excitation and three-body recombination. High Energ. Dens. Phys., 20(9), 9–16.
[110]Tallents, G. J., Wilson, S. A., West, A., Aslanyan, V., Lolley, J., and Rossall, A. K. 2017. The creation of radiation dominated plasmas using laboratory extreme ultraviolet lasers. High Energ. Dens. Phys., 23(3), 129–132.
[111]Tennyson, J. 2011. Astronomical spectroscopy: an introduction to the atomic and molecular physics of astronomical spectra. World Scientific, Singapore.
[112]Trumper, J., Poetscj, W., Reppin, C., Voges, W., Staubert, R., and Kendziorra, E. 1978. Evidence for strong cyclotron line emission in hard X-ray spectrum of Hercules X1. Astrophys. J., 219(3), L105–L110.
[113]Tseng, W. L., Johnson, R. E., Thomsen, M. F., Cassidy, T. A., and Elrod, M. K. 2011. Neutral H2 and H+ 2 ions in the Saturnian magnetosphere. J. Geophys. Res., 116, A03209.
[114]Abels-van Maanen, A. E. P. M. 1985. A package for non-coronal impurity data. JET-DN-T (85)29.
[115]van Regemorter, H. 1962. Rate of collisional excitation in stellar atmospheres. Astrophys. J., A132, 906.
[116]Vinko, S. M., Ciricosta, O., Cho, B. I. et al. 2012. Creation and diagnosis of a soliddensity plasma with an X-ray free-electron laser. Nature, 482(7383), 59–62.
[117]Vinko, S. M., Ciricosta, O., and Wark, J. S. 2014. Density functional theory calculations of continuum lowering in strongly coupled plasmas. Nat. Commun., 5, 3533.
[118]von Frisch, K. 1967. The dance language and orientation of bees. Harvard University Press, Cambridge, MA, US.
[119]Walter, F., Brinks, E., de Blok, W. J. G. et al. 2008. THINGS: the H1 nearby galaxy survey. Astron. J., 136, 2563–2647.
[120]Wang, W. 1999. Generalization of the Thomas-Rieche-Kuhn and the Bethe sum rules. Phys. Rev. A, 60, 262–266.
[121] NASA. Voyager: the interstellar mission, http://voyager.jpl.nasa.gov/spacecraft/ goldenrec1.html (accessed 8 March 2017).
[122]Weinert, F. 1995. Wrong theory-right experiment: the significance of the Stern– Gerlach experiments. Studies in History and Philosophy Mod. Phys., 26, 75–86.
[123]Wing, W. H., Ruff, G. A., Lamb, W. E., and Spezeski, J. J. 1976. Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett., 36, 1488–1491.
[124]Zel'dovich, Ya. B., and Raizer, Yu. P. 1967. Physics of shock waves and high temperature hydrodynamic phenomena. Academic, New York, US.
[125]Zhang, J., MacPhee, A. G., Lin, J. et al. 1997. A saturated X-ray laser beam at 7 nanometers. Science, 276(5315), 1097–1100.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.