Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-28T15:47:59.703Z Has data issue: false hasContentIssue false

5 - Hausdorff dimension of exceptional sets

Published online by Cambridge University Press:  12 August 2009

Yann Bugeaud
Affiliation:
Université de Strasbourg
Get access

Summary

In the preceding Chapters, we have encountered several sets of real numbers of Lebesgue measure zero, including the set of Liouville numbers, the set of real numbers with bounded partial quotients, the set of very well approximable numbers, and the set of S*-numbers of *-type strictly greater than 1. Some of them are certainly strictly larger than others: indeed, as it may be seen by considering continued fraction expansions (see Exercise 1.5), there are very well approximable numbers other than the Liouville numbers. On the other hand, the set of S*-numbers of *-type at least 2 contains the set of S*-numbers of *-type at least 3, but the results of Chapters 1 to 4 do not enable us to decide whether the inclusion is strict or not.

In the present Chapter, we introduce a powerful tool for discriminating between the sets of Lebesgue measure zero, namely the notion of Hausdorff dimension, developed by Hausdorff in 1919 [276]. Shortly thereafter, Jarník [288, 292] and, independently, Besicovitch [100], applied it to number theoretical problems, and they determined the Hausdorff dimension of sets of real numbers very close to infinitely many rational numbers (Theorem 5.2). Their result has been subsequently generalized in many directions. For instance, A. Baker and Schmidt [45] showed in 1970 that there exist S*-numbers of arbitrarily large but finite *-type (Theorem 5.5). In the present Chapter, we prove both these results and we quote some other extensions of the Jarník–Besicovitch Theorem. Further refinements are stated in Chapter 6.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×