Skip to main content Accessibility help
×
  • Cited by 96
Publisher:
Cambridge University Press
Online publication date:
June 2014
Print publication year:
2014
Online ISBN:
9781107261457

Book description

This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] T., Athorne. The coalgebraic structure of cell complexes. Theory Appl. Categ., 26(11):304–330, 2012.
[2] T., Barthel, J. P., May, and E., Riehl. Six model structures for dg-modules over dgas: Model category theory in homological action. Preprint, arXiv:1310.1159 [math.CT], 2013.
[3] T., Barthel and E., Riehl. On the construction of functorial factorizations for model categories. Algebr. Geom. Topol., 13(2):1089–1124, 2013.
[4] T., Beke. Sheafifiable homotopy model categories. Math. Proc. Cambridge Philos. Soc., 129(3):447–475, 2000.
[5] C., Berger and I., Moerdijk. On an extension of the notion of Reedy category. Math. Z., 269(3-4):977-1004, 2011.
[6] J. E., Bergner. A model category structure on the category of simplicial categories. Trans. Amer. Math. Soc., 359(5):2043–2058, 2007.
[7] A. J., Blumberg and E., Riehl. Homotopical resolutions associated to deformable adjunctions. Preprint, arXiv:1208.2844 [math.AT], 2012.
[8] J. M., Boardman and R. M., Vogt. Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer, Berlin, 1973.
[9] F., Borceux. Handbook of categorical algebra. 2. Encyclopedia of Mathematics and Its Applications, vol. 51. Cambridge University Press, Cambridge, 1994.
[10] A. K., Bousfield and D. M., Kan. Homotopy limits, completions and localizations. Lecture Notes in Mathematics, Vol. 304. Springer, Berlin, 1972.
[11] M. C., Bunge. Relative functor categories and categories of algebras. J. Algebra, 11:64-101, 1969.
[12] J. D., Christensen and M., Hovey. Quillen model structures for relative homological algebra. Math. Proc. Cambridge Philos. Soc., 133(2):261–293, 2002.
[13] M., Cole. Mixing model structures. Topology Appl., 153(7):1016–1032, 2006.
[14] J.-M., Cordier and T., Porter. Maps between homotopy coherent diagrams. Topology Appl., 28(3):255–275, 1988.
[15] G. S. H., Cruttwell. Normed spaces and the change of base for enriched categories. PhD thesis, Dalhousie University, 2008.
[16] E. J., Dubuc. Kan extensions in enriched category theory. Lecture Notes in Mathematics, Vol. 145. Springer, Berlin, 1970.
[17] D., Dugger. Replacing model categories with simplicial ones. Trans. Amer. Math. Soc., 353(12):5003–5027, 2001.
[18] D., Dugger. A primer on homotopy colimits. Preprint in progress, available from http://pages.uoregon.edu/ddugger/, 2008.
[19] D., Dugger and D. C., Isaksen. Topological hypercovers and A1 -realizations. Math. Z., 246(4):667–689, 2004.
[20] D., Dugger and D. I., Spivak. Mapping spaces in quasi-categories. Algebr. Geom. Topol., 11(1):263–325, 2011.
[21] D., Dugger and D. I., Spivak. Rigidification of quasi-categories. Algebr. Geom. Topol., 11(1):225–261, 2011.
[22] W. G., Dwyer, P. S., Hirschhorn, D. M., Kan, and J. H., Smith. Homotopy limit functors on model categories and homotopical categories. Mathematical Surveys and Monographs, vol. 113. American Mathematical Society, Providence, RI, 2004.
[23] W. G., Dwyer and D. M., Kan. A classification theorem for diagrams of simplicial sets. Topology, 23(2):139–155, 1984.
[24] W. G., Dwyer and J., Spaliński. Homotopy theories and model categories. In Handbook of algebraic topology, pages 73-126. North-Holland, Amsterdam, 1995.
[25] A. D., Elmendorf, I., Kříž, M. A., Mandell, and J. P., May. Modern foundations for stable homotopy theory. In Handbook of algebraic topology, pages 213-253. North-Holland, Amsterdam, 1995.
[26] T. M., Fiore and W., Lück. Waldhausen additivity: Classical and quasicategorical. Preprint, arXiv:1207.6613. [math.AT], 2012.
[27] R., Fritsch and R. A., Piccinini. Cellular structures in topology. Cambridge Studies in Advanced Mathematics, vol. 19. Cambridge University Press, Cambridge, 1990.
[28] P., Gabriel and M., Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35. Springer, New York, 1967.
[29] N., Gambino. Weighted limits in simplicial homotopy theory. J. Pure Appl. Algebra, 214(7):1193–1199, 2010.
[30] R., Garner. Cofibrantly generated natural weak factorisation systems. Preprint, arXiv:math/0702290. [math.CT], 2007.
[31] R., Garner. Understanding the small object argument. Appl. Categ. Structures, 17(3):247–285, 2009.
[32] P. G., Goerss and J. F., Jardine. Simplicial homotopy theory. Progress in Mathematics, vol. 174. Birkhäuser, Basel, 1999.
[33] M., Grandis and W., Tholen. Natural weak factorization systems. Arch. Math. (Brno), 42(4):397-408, 2006.
[34] B., Gray. Homotopy theory. Pure and Applied Mathematics, Vol. 64. Academic Press, New York, 1975.
[35] A., Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[36] P. S., Hirschhorn. Model categories and their localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence, RI, 2003.
[37] J., Hollender and R. M., Vogt. Modules of topological spaces, applications to homotopy limits and E∞ structures. Arch. Math. (Basel), 59(2):115–129, 1992.
[38] M., Hovey. Model categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence, RI, 1999.
[39] M., Hovey, B., Shipley, and J., Smith. Symmetric spectra. J. Amer. Math. Soc., 13(1):149–208, 2000.
[40] A., Joyal. Quasi-categories and Kan complexes. J. Pure Appl. Algebra, 175(1-3):207-222, 2002. Special volume celebrating the 70th birthday of Professor Max Kelly.
[41] A., Joyal. The theory of quasi-categories and its applications. Preprint in progress, 2008.
[42] A., Joyal. The theory of quasi-categories I. Preprint in progress, 2008.
[43] A., Joyal and M., Tierney. Quasi-categories vs Segal spaces. In Categories in algebra, geometry and mathematical physics. Contemp. Math., vol. 431, pages 277-326. American Mathematical Society, Providence, RI, 2007.
[44] G. M., Kelly. Doctrinal adjunction. In Category Seminar (Proc. Sem., Sydney, 1972/1973). Lecture Notes in Mathematics, Vol. 420, pages 257-280. Springer, Berlin, 1974.
[45] G. M., Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc., 22(1):1–83, 1980.
[46] G. M., Kelly. Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories. Reprint of the 1982 original by Cambridge University Press, Cambridge.
[47] G. M., Kelly and R., Street. Review of the elements of 2-categories. In Category Seminar(Proc. Sem., Sydney, 1972/1973). Lecture Notes in Mathematics, Vol.420, pages 75-103. Springer, Berlin, 1974.
[48] S., Lack. Homotopy-theoretic aspects of 2-monads. J. Homotopy Relat. Struct., 2(2):229–260, 2007.
[49] J., Lurie. Higher topos theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton, NJ, 2009.
[50] S., Mac Lane. Categories for the working mathematician, 2nd ed. Graduate Texts in Mathematics, vol. 5. Springer, New York, 1998
[51] P. J., Malraison Jr.Fibrations as triple algebras. J. Pure Appl. Algebra, 3:287-293, 1973.
[52] G., Maltsiniotis. Le théorème de Quillen, d'adjonction des foncteurs dérivés, revisité. C. R. Math. Acad. Sci. Paris, 344(9):549–552, 2007.
[53] M. A., Mandell and J. P., May. Equivariant orthogonal spectra and S-modules. Mem. Amer. Math. Soc., 159(755):x+108, 2002.
[54] M. A., Mandell, J. P., May, S., Schwede, and B., Shipley. Model categories of diagram spectra. Proc. London Math. Soc., 82(2):441–512, 2001.
[55] J. P., May. Simplicial objects in algebraic topology. Chicago Lectures in Mathematics. Reprint of the 1967 original by University of Chicago Press, Chicago, IL.
[56] J. P., May. Classifying spaces and fibrations. Mem. Amer. Math. Soc., 1(1, 155):xiii+98, 1975.
[57] J. P., May. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999.
[58] J. P., May and K., Ponto. More concise algebraic topology: Localization, completion, and model categories. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2012.
[59] J. P., May and J., Sigurdsson. Parametrized homotopy theory. Mathematical Surveys and Monographs, vol. 132. American Mathematical Society, Providence, RI, 2006.
[60] M. C., McCord. Classifying spaces and infinite symmetric products. Trans. Amer. Math. Soc., 146:273-298, 1969.
[61] D., McDuff. On the classifying spaces of discrete monoids. Topology, 18(4):313–320, 1979.
[62] J.-P., Meyer. Bar and cobar constructions. I. J. Pure Appl. Algebra, 33(2):163–207, 1984.
[63] J. R., Munkres. Topology: A first course. Prentice Hall, Englewood Cliffs, NJ, 1975.
[64] M. C., Pedicchio and S., Solomini. On a “good” dense class of topological spaces. J. Pure Appl. Algebra, 24:287-295, 1986.
[65] D. G., Quillen. Homotopical algebra. Lecture Notes in Mathematics, vol. 43. Springer, Berlin, 1967.
[66] A., Radulescu-Banu. Cofibrance and completion. PhD thesis, Massachusetts Institute of Technology. arXiv:0612.203. [math.AT], 1999.
[67] G., Raptis. Homotopy theory of posets. Homology, Homotopy Appl., 12(2):211–230, 2010.
[68] C. L., Reedy. Homotopy theory of model categories. Unpublished manuscript, available at the Hopf Topology Archive, ftp://hopf.math.purdue.edu/pub/Reedy/reedy.dvi, 1974.
[69] C., Rezk, S., Schwede, and B., Shipley. Simplicial structures on model categories and functors. Amer. J. Math., 123(3):551–575, 2001.
[70] E., Riehl. A model structure for quasi-categories. Unpublished expository manuscript, available at http://www.math.harvard.edu/~eriehl, 2008.
[71] E., Riehl. Algebraic model structures. New York J. Math., 17:173-231, 2011.
[72] E., Riehl. On the structure of simplicial categories associated to quasi-categories. Math. Proc. Cambridge Philos. Soc., 150(3):489–504, 2011.
[73] E., Riehl. Monoidal algebraic model structures. J. Pure Appl. Algebra, 217(6):1069–1104, 2013.
[74] E., Riehl and D. R. B., Verity. The 2-category theory of quasi-categories. Preprint, arXiv:1306.5144. [math.CT], 2013.
[75] E., Riehl and D. R. B., Verity. Homotopy coherent adjunctions and the formal theory of monads. Preprint, arXiv:1310.8279. [math.CT], 2013.
[76] E., Riehl and D. R. B., Verity. The theory and practice of Reedy categories. Preprint, arXiv:1304.6871. [math.CT], 2013.
[77] G., Segal. Configuration-spaces and iterated loop-spaces. Invent. Math., 21:213-221, 1973.
[78] G., Segal. Categories and cohomology theories. Topology, 13:293-312, 1974.
[79] M., Shulman. Homotopy limits and colimits and enriched homotopy theory. Preprint, arXiv:math/0610194. [math.AT], 2009.
[80] M., Shulman. Comparing composites of left and right derived functors. New York J. Math., 17:75-125, 2011.
[81] N. E., Steenrod. A convenient category of topological spaces. Michigan Math. J., 14:133-152, 1967.
[82] A., Strøm. The homotopy category is a homotopy category. Arch. Math. (Basel), 23:435-441, 1972.
[83] D., Sullivan. Geometric topology. Part I. Massachusetts Institute of Technology, Cambridge, MA, 1971. Localization, periodicity, and Galois symmetry, revised version.
[84] W. P., Thurston. On proof and progress in mathematics. Bull. Amer. Math. Soc. (N.S.), 30(2):161–177, 1994.
[85] D. R. B., Verity. Enriched categories, internal categories and change of base. Repr. Theory Appl. Categ., (20):1-266, 1992.
[86] D. R. B., Verity. Weak complicial sets. I. Basic homotopy theory. Adv. Math., 219(4):1081–1149, 2008.
[87] R. M., Vogt. Convenient categories of topological spaces for homotopy theory. Arch. Math. (Basel), 22:545-555, 1971.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.