Skip to main content Accessibility help
×
  • This product is now available open access under ISBN 9781009291309
  • This book is no longer available to purchase from Cambridge Core
  • Cited by 47
Publisher:
Cambridge University Press
Online publication date:
July 2016
Print publication year:
2016
Online ISBN:
9781139523950

Book description

This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this the perfect reference companion on the topic.

Reviews

'The work serves as an excellent reference on conformal methods for advanced students and researchers. … the text is written well, thoroughly researched, and self-contained.'

A. Spero Source: Choice

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
Abraham, R., and Robbin, J. 1967. Transversal mapping and flows. W. A. Benjamin.
Aceña, A. 2009. Convergent null data expansions at spacelike infinity of stationary vacuum solutions. Ann. Henri Poincaré, 10, 275.
Aceña, A., and Valiente Kroon, J. A. 2011. Conformal extensions for stationary spacetimes. Class. Quantum Grav., 28, 225023.
Alcubierre, M. 2008. Introduction to 3+1 numerical relativity. Oxford University Press.
Ambrosetti, A., and Prodi, G. 1995. A primer of nonlinear analysis. Cambridge University Press.
Anderson, M. T. 2000. On stationary vacuum solutions to the Einstein equations. Ann. Henri Poincaré 1, 977.
Anderson, M. T. 2005a. Existence and stability of even dimensional asymptotically de Sitter spaces. Ann. Henri Poincaré, 6, 801.
Anderson, M. T. 2005b. Geometric aspects of the AdS/CFT correspondence. Page 1 of: Biquard, O. (ed), AdS/CFT correspondence: Einstein metrics and their conformal boundaries. Euro. Math. Soc. Zürich.
Anderson, M. T. 2006. On the uniqueness and global dynamics of AdS spacetimes. Class. Quantum Grav., 23, 6935.
Anderson, M. T., and Chruściel, P. T. 2005. Asymptotically simple solutions of the vacuum Einstein equations in even dimensions. Comm. Math. Phys., 260, 557.
Anderson, M. T., Chruściel, P. T., and Delay, E. 2002. Non-trivial static, geodesically complete vacuum spacetimes with a negative cosmological constant. JHEP, 10, 6.
Andersson, L. 2006. On the relation between mathematical and numerical relativity. Class. Quantum Grav., 23, S307.
Andersson, L., and Chruściel, P. T. 1993. Hyperboloidal Cauchy data for vacuum Einstein equations and obstructions to smoothness of null infinity. Phys. Rev. Lett., 70, 2829.
Andersson, L., and Chruściel, P. T. 1994. On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of scri. Comm. Math. Phys., 161, 533.
Andersson, L., Chruściel, P. T., and Friedrich, H. 1992. On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations. Comm. Math. Phys., 149, 587.
Anguige, K., and Tod, K. P. 1999a. Isotropic cosmological singularities I. Polytropic perfect fluid spacetimes. Ann. Phys., 276, 257.
Anguige, K., and Tod, K. P. 1999b. Isotropic cosmological singularities II. The Einstein- Vlasov system. Ann. Phys., 276, 294.
Appel, W. 2007. Mathematics for physics and physicists. Princeton University Press.
Arnowitt, R., Deser, S., and Misner, C. W. 1962. The dynamics of general relativity. Page 227 of:Witten, L. (ed), Gravitation: an introduction to current research. John Wiley & Sons.
Arnowitt, R., Deser, S., and Misner, C. 2008. Reprint of: The dynamics of general relativity. Gen. Rel. Grav., 40, 1997.
Ashtekar, A. 1980. Asymptotic structure of the gravitational field at spatial infinity. Page 37 of: Held, A. (ed), General relativity and gravitation: one hundred years after the birth of Albert Einstein, vol. 2. Plenum Press.
Ashtekar, A. 1984. Asymptotic properties of isolated systems: recent developments. Page 37 of: Bertotti, B., Felice, de F., and Pascolini, A. (eds), General relativity and gravitation. D. Reidel Publishing Company.
Ashtekar, A. 1987. Asymptotic quantization. Bibliopolis.
Ashtekar, A. 1991. Lectures on non-perturbative canonical gravity. World Scientific.
Ashtekar, A. 2014. Geometry and physis of null infinity. Page 99 of: Bieri, L., and Yau, S.-T. (eds), One hundred years of general relativity. Surveys in Differential Geometry, vol. 20. International Press.
Ashtekar, A., and Das, S. 2000. Asymptotically anti-de Sitter spacetimes: conserved quantities. Class. Quantum Grav., 17, L17.
Ashtekar, A., and Dray, T. 1981. On the existence of solutions to Einstein's field equations with non-zero Bondi news. Comm. Math. Phys., 79, 581.
Ashtekar, A., and Hansen, R. O. 1978. A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys., 19, 1542.
Ashtekar, A., and Magnon, A. 1984. Asymptotically anti-de Sitter space-times. Class. Quantum Grav., 1, L39.
Ashtekar, A., and Schmidt, B. G. 1980. Null infinity and Killing fields. J. Math. Phys., 21, 862.
Ashtekar, A., and Xanthopoulos, B. C. 1978. Isometries compatible with asymptotic flatness at null infinity: a complete description. J. Math. Phys., 19, 2216.
Ashtekar, A., Horowitz, G. T., and Magnon-Ashtekar, A. 1982. A generalization of tensor calculus and its applications to physics. Gen. Rel. Grav., 14, 411.
Aubin, T. 1976. équations différentielles non linéaires et le problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl., 55, 269.
Bäckdahl, T. 2007. Axisymmetric stationary solutions with arbitrary multipole moments. Class. Quantum Grav., 24, 2205.
Bäckdahl, T. 2009. Relating the Newman-Penrose constants to the Geroch-Hansen multipole moments. Class. Quantum Grav., 26, 231102.
Bäckdahl, T., and Herberthson, M. 2005a. Explicit multipole moments of stationary axisymmetric spacetimes. Class. Quantum Grav., 22, 3585.
Bäckdahl, T., and Herberthson, M. 2005b. Static axisymmetric space-times with prescribed multipole moments. Class. Quantum Grav., 22, 1607.
Bäckdahl, T., and Herberthson, M. 2006. Calculations of, and bounds for, the multipole moments of stationary spacetimes. Class. Quantum Grav., 23, 5997.
Bäckdahl, T., and Valiente Kroon, J. A. 2010a. Geometric invariant measuring the deviation from Kerr data. Phys. Rev. Lett., 104, 231102.
Bäckdahl, T., and Valiente Kroon, J. A. 2010b. On the construction of a geometric invariant measuring the deviation from Kerr data. Ann. Henri Poincaré, 11, 1225.
Bartnik, R. 1986. The mass of an asymptotically flat manifold. Comm. Pure Appl. Math., 661.
Bartnik, R., and Isenberg, J. 2004. The constraint equations. Page 1 of: Chruściel, P. T., and Friedrich, H. (eds), The Einstein equations and the large scale behaviour of gravitational fields. Birkhauser.
Baston, R. J., and Mason, L. J. 1987. Conformal gravity, the Einstein equation and spaces of complex null geodesics. Class. Quantum Grav., 4, 815.
Baumgarte, T. W., and Shapiro, S. L. 2010. Numerical relativity: solving Einstein's equations on the computer. Cambridge University Press.
Beig, R. 1984. Integration of Einstein's equations near spatial infinity. Proc. Roy. Soc. Lond. A, 391, 295.
Beig, R. 1985. A remarkable property of spherical harmonics. J. Math. Phys., 26, 769.
Beig, R. 1991. Conformal properties of static spacetimes. Class. Quantum Grav., 8, 263.
Beig, R., and Heinzle, J. M. 2005. CMC-slicings of Kottler-Schwarzschild-de Sitter Cosmologies. Comm. Math. Phys., 260, 673.
Beig, R., and Husa, S. 1994. Initial data for general relativity with toroidal conformal symmetry. Phys. Rev. D, 50, R7116.
Beig, R., and O'Murchadha, N. 1991. Trapped surfaces due to concentration of gravitational radiation. Phys. Rev. Lett., 66, 2421.
Beig, R., and O'Murchadha, N. 1994. Trapped surfaces in vacuum spacetimes. Class. Quantum Grav., 11, 419.
Beig, R., and O'Murchadha, N. 1996. The momentum constraints of general relativity and spatial conformal isometries. Comm. Math. Phys., 176, 723.
Beig, R., and O'Murchadha, N. 1998. Late time behaviour of the maximal slicing of the Schwarzschild black hole. Phys. Rev. D, 57, 4728.
Beig, R., and Schmidt, B. G. 1982. Einstein's equation near spatial infinity. Comm. Math. Phys., 87, 65.
Beig, R., and Schmidt, B. G. 2000. Time-independent gravitational fields. Page 325 of: Schmidt, B. G. (ed), Einstein's field equations and their physical implications. Springer.
Beig, R., and Simon, W. 1980a. Proof of a multipole conjecture due to Geroch. Comm. Math. Phys., 75, 79.
Beig, R., and Simon, W. 1980b. The stationary gravitational field near spatial infinity. Gen. Rel. Grav., 12, 1003.
Beig, R., and Simon, W. 1981. On the multipole expansions for stationary space-times. Proc. Roy. Soc. Lond. A, 376, 333.
Beig, R., and Szabados, L. B. 1997. On a global invariant of initial data sets. Class. Quantum Grav., 14, 3091.
Bekenstein, J. 1974. Exact solutions of Einstein-conformal scalar equations. Ann. Phys., 82, 535.
Bernal, A. N., and Sánchez, M. 2007. Globally hyperbolic spacetimes can be defined as ‘causal’ instead of strongly causal. Class. Quantum Grav., 24, 745.
Besse, A. L. 2008. Einstein manifolds. Springer Verlag.
Beyer, F. 2007. Asymptotics and singularities in cosmological models with positive cosmological constant. PhD thesis, University of Potsdam.
Beyer, F. 2008. Investigations of solutions of Einstein's field equations close to lambda- Taub-NUT. Class. Quantum Grav., 25, 235005.
Beyer, F. 2009a. Non-genericity of the Nariai solutions: I. Asymptotics and spatially homogeneous perturbations. Class. Quantum Grav., 26, 235015.
Beyer, F. 2009b. Non-genericity of the Nariai solutions: II. Investigations within the Gowdy class. Class. Quantum Grav., 26, 235016.
Beyer, F. 2009c. A spectral solver for evolution problems with spatial S3-topology. J. Comput. Phys., 228, 6496.
Beyer, F., Doulis, G., Frauendiener, J., and Whale, B. 2012. Numerical space-times near space-like and null infinity. The spin-2 system on Minkowski space. Class. Quantum Grav., 29, 245013.
Bičák, J. 2000. Selected solutions of Einstein's field equations: their role in general relativity and astrophysics. In: Schmidt, B. G. (ed), Einstein field equations and their physical implications (selected essays in honour of Juergen Ehlers). Springer Verlag.
Bičák, J., and Krtouš, P. 2001. Accelerated sources in de Sitter spacetime and the insufficiency of retarded fields. Phys. Rev. D, 64, 124020.
Bičák, J., and Krtouš, P. 2002. The fields of uniformly accelerated charges in de Sitter spacetime. Phys. Rev. Lett., 88, 211101.
Bičák, J., and Schmidt, B. G. 1989. Asymptotically flat radiative space-times with boost-rotation symmetry: the general structure. Phys. Rev. D, 40, 1827.
Bičák, J., Scholtz, M., and Tod, K. P. 2010. On asymptotically flat solutions of Einstein's equations periodic in time: II. Spacetimes with scalar-field sources. Class. Quantum Grav., 27, 175011.
Bizon, P. 2013. Is AdS stable? Gen. Rel. Grav., 46, 1724.
Bizon, P., and Friedrich, H. 2012. A remark about wave equations on the extreme Reissner-Nordström black hole exterior. Class. Quantum Grav., 30, 065001.
Bizon, P., and Rostworowski, A. 2011. Weakly turbulent instability of anti-de Sitter spacetime. Phys. Rev. Lett., 107, 031102.
Bondi, H., Burg, van der M. G. J., and Metzner, A. W. K. 1962. Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. Proc. Roy. Soc. Lond. A, 269, 21.
Brännlund, J. 2004. Conformal isometry of the Reissner-Nordström-de Sitter Black Hole. Gen. Rel. Grav., 36, 883.
Branson, T., Eastwood, M., and Wang, M. 2004. Conformal geometry. In www.birs.ca/workshops/2004/04w5006/report04w5006.pdf.
Brill, D.R., and Hayward, S. A. 1994. Global structure of a black hole cosmos and its extremes. Class. Quantum Grav., 11, 359.
Buchdahl, H. A. 1959. Reciprocal static metrics and scalar fields in the general theory of relativity. Phys. Rev., 115, 1325.
Butscher, A. 2002. Exploring the conformal constraint equations. Page 195 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of spacetime: geometry, analysis, numerics. Lect. Notes. Phys. Springer.
Butscher, A. 2007. Perturbative solutions of the extended constraint equations in general relativity. Comm. Math. Phys., 272, 1.
Cagnac, F. 1981. Problème de Cauchy sur un conoïde caractéristique pour des equations quasi-lineaires. Ann. Mat. Pure Appl., 129, 13.
Carmeli, M. 1977. Group theory and general relativity: representations of the Lorentz group and their applications to the gravitational field. McGraw-Hill.
Carter, B. 1966a. The complete analytic extension of the Reissner-Nordström metric in the special case e2 = m2. Phys. Rev. Lett., 21, 423.
Carter, B. 1966b. Complete analytic extension of the symmetry axis of Kerr's solution of Einstein's equations. Phys. Rev., 141, 1242.
Carter, B. 1968. Global structure of the Kerr family of gravitational fields. Phys. Rev., 174, 1559.
Carter, B. 1971. Causal structure in space-time. Gen. Rel. Grav., 1, 349.
Carter, B. 1973. Black hole equilibrium states. Page 61 of: DeWitt, C., and DeWitt, B.S. (eds), Black holes: les astres occlus. Gordon and Breach.
Chaljub-Simon, A. 1982. Decomposition of the space of covariant two-tensors on R3. Gen. Rel. Grav., 14, 743.
Chaljub-Simon, A., and Choquet-Bruhat, Y. 1980. Global solutions of the Licnerowicz equation in general relativity on an asymptotically Euclidean manifold. Gen. Rel. Grav., 12, 175.
Chang, S.-Y. A., Qing, J., and Yang, P. 2007. Some progress in conformal geometry. Sigma, 3, 122.
Choptuik, M. W. 1993. Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett., 70, 9.
Choquet-Bruhat, I., Isenberg, J., and York, J. W. Jr. 2000. Einstein constraints on asymptotically Euclidean manifolds. Phys. Rev. D, 61, 084034.
Choquet-Bruhat, Y. 2007. Results and open problems in mathematical general relativity. Milan J. Math., 75, 273.
Choquet-Bruhat, Y. 2008. General relativity and the Einstein equations. Oxford University Press.
Choquet-Bruhat, Y., and Christodoulou, D. 1981. Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3+1 dimensions. Ann. Sci. l'E.N.S., 14, 481.
Choquet-Bruhat, Y., and Geroch, R. 1969. Global aspects of the Cauchy problem in general relativity. Comm. Math. Phys., 14, 329.
Choquet-Bruhat, Y., and York, J. W. Jr. 1980. The Cauchy problem. In: Held, A. (ed), General relativity and gravitation, Vol. I. Plenum Press.
Choquet-Bruhat, Y., Dewitt-Morette, C., and Dillard-Bleck, M. 1982. Analysis, manifolds and physics: part I. North Holland Publishing Company.
Choquet-Bruhat, Y., Chruściel, P. T., and Martín-García, J. M. 2011. The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions. Ann. Henri Poincaré, 12, 419.
Christodoulou, D. 1986. The problem of a self-gravitating scalar field. Comm. Math. Phys., 105, 337.
Christodoulou, D., and Klainerman, S. 1993. The global nonlinear stability of the Minkowski space. Princeton University Press.
Christodoulou, D., and O'Murchadha, N. 1981. The boost problem in general relativity. Comm. Math. Phys., 80, 271.
Chruściel, P. T. 1991. On the uniqueness in the large of solutions of Einstein's equations (“Strong Cosmic Censorship”). Centre for Mathematics and Its Applications, Australian National University.
Chruściel, P. T., and Delay, E. 2002. Existence of non-trivial, vacuum, asymptotically simple spacetimes. Class. Quantum Grav., 19, L71.
Chruściel, P. T., and Delay, E. 2003. On mapping properties of the general relativistic constraint operator in weighted function spaces, with applications. Mem. Soc. Math. France, 94, 1.
Chruściel, P. T., and Delay, E. 2009. Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature. Comm. Anal. Geom., 17, 343.
Chruściel, P. T., and Paetz, T.-T. 2012. The many ways of the characteristic Cauchy problem. Class. Quantum Grav., 29, 145006.
Chruściel, P. T., and Paetz, T.-T. 2013. Solutions of the vacuum Einstein equations with initial data on past null infinity. Class. Quantum Grav., 30, 235037.
Chruściel, P. T., MacCallum, M. A. H., and Singleton, D. B. 1995. Gravitational waves in general relativity XIV. Bondi expansions and the “polyhomogeneity” of I. Phil. Trans. Roy. Soc. Lond. A, 350, 113.
Chruściel, P. T., ölz, C. R., and Szybka, S. J. 2012a. Space-time diagrammatics. Phys. Rev. D, 86, 124041.
Chruściel, P. T., and Costa, J. L., and Heusler, M. 2012b. Stationary black holes: uniqueness and beyond. Living Rev. Relativity 15, 7. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2012-7.
Cocke, W. J. 1989. Table for constructing spin coefficients in general relativity. Phys. Rev. D, 40, 650.
Cook, G. B. 2000. Initial data for numerical relativity. Living Rev. Relativity, 3, 5. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2000-5.
Corvino, J. 2000. Scalar curvature deformations and a gluing construction for the Einstein constraint equations. Comm. Math. Phys., 214, 137.
Corvino, J. 2007. On the existence and stability of the Penrose compactification. Ann. Henri Poincaré, 8, 597.
Corvino, J., and Schoen, R. 2006. On the asymptotics for the Einstein constraint vacuum equations. J. Diff. Geom., 73, 185.
Cotton, é. 1899. Sur les variétés à trois dimensions. Ann. Fac. Sci. Toulouse 2e série, 1, 385.
Couch, W. E., and Torrence, R. J. 1984. Conformal invariance under spatial inversion of extreme Reissner-Nordström black holes. Gen. Rel. Grav., 16, 789.
Courant, R., and Hilbert, D. 1962. Methods of mathematical physics. Vol. II. John Wiley & Sons.
Courant, R., and John, F. 1989. Introduction to calculus and analysis II/1. Springer.
Cutler, C. 1989. Properties of spacetimes that are asymptotically flat at timelike infinity. Class. Quantum Grav., 6, 1075.
Cutler, C., and Wald, R. M. 1989. Existence of radiating Einstein-Maxwell solutions which are C ∞ on all of I+ and I -. Class. Quantum Grav., 6, 453.
Dafermos, M. 2003. Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations. Ann. Math., 158, 875.
Dafermos, M. 2005. The interior of charged black holes and the problem of uniqueness in general relativity. Comm. Pure Appl. Math., 58, 0445.
Dafermos, M., and Rodnianski, I. 2005. A proof of Price's law for the collapse of a self-gravitating scalar field. Invent. Math., 162, 381.
Dafermos, M., and Rodnianski, I. 2010. Lectures on black holes and linear waves. Page 97 of: Ellwood, D., Rodnianski, I., Staffilani, G., and Wunsch, J. (eds), Evolution equations. Clay Mathematics Proceedings, Vol. 17. American Mathematical Society-Clay Mathematics Institute.
Dain, S. 2001a. Initial data for a head-on collision of two Kerr-like black holes with close limit. Phys. Rev. D, 64, 124002.
Dain, S. 2001b. Initial data for stationary spacetimes near spacelike infinity. Class. Quantum Grav., 18, 4329.
Dain, S. 2001c. Initial data for two Kerr-like black holes. Phys. Rev. Lett., 87, 121102.
Dain, S. 2006. Elliptic systems. Page 117 of: Frauendiener, J., Giulini, D., and Perlick, V. (eds), Analytical and numerical approaches to general relativity. Lect. Notes. Phys., vol. 692. Springer Verlag.
Dain, S., and Friedrich, H. 2001. Asymptotically flat initial data with prescribed regularity at infinity. Comm. Math. Phys., 222, 569.
Dain, S., and Gabach-Clement, M. E. 2011. Small deformations of extreme Kerr black hole initial data. Class. Quantum Grav., 28, 075003.
Damour, T., and Schmidt, B. 1990. Reliability of perturbation theory in general relativity. J. Math. Phys., 31, 2441.
Dossa, M. 1986. Solution globale d'un probléme de Cauchy caractéristique non linéare. Comptes Rendus de l'Academie des Sciences. Series I, 303, 795.
Dossa, M. 1997. Espaces de Sobolev non isotropes à poids et problémes de Cauchy quasi-linéaires sur un conoïde caractéristique. Ann. Inst. H. Poincaré Phys. Théor., 1, 37.
Dossa, M. 2002. Solutions C∞ d'une classe de problèmes de Cauchy quasi-linéaires hyperboliques du second ordre sur un conoïde caractéristique. Annales de la faculté des sciences de Toulouse Sér. 6, 11, 351.
Eastwood, M. 1996. Notes on conformal differential geometry. Page 57 of: Slovák, J. (ed), Proceedings of the 15th Winter School “Geometry and Physics”. Rendiconti del Circolo Matematico de Palermo, Serie II, vol. Supplemento No. 43. Circolo Matematico di Palermo.
Ehlers, J. 1973. Spherically symmetric spacetimes. Page 114 of: Israel, W. (ed), Relativity, astrophysics and cosmology. D. Reidel Publishing Company.
Ellis, G. F. R. 1984. Relativistic cosmology: its nature, aims and problems. In: Bertotti, B., Felice, de F., and Pascolini, A. (eds), General relativity and gravitation. D. Reidel Publishing Company.
Ellis, G. F. R. 2002. The state of cosmology 2001: two views and a middle way. In: Bishop, N. T., and Maharaj, S. D. (eds), General relativity and gravitation. World Scientific.
Ellis, G. F. R., and Elst, van H. 1998. Cosmological models: Cargese lectures 1998. NATO Adv. Study Inst. Ser. C. Math. Phys. Sci., 541, 1.
Ellis, G. F. R., Maartens, R., and MacCallum, M. A. H. 2012. Relativistic cosmology. Cambridge University Press.
Estabrook, F., Wahlquist, H., Christensen, S., DeWitt, B., Smarr, L., and Tsiang, E. 1973. Maximally slicing a black hole. Phys. Rev. D, 7, 2814.
Evans, L. C. 1998. Partial differential equations. American Mathematical Society.
Exton, A. R., Newman, E. T., and Penrose, R. 1969. Conserved quantites in the Einstein-Maxwell theory. J. Math. Phys., 10, 1566.
Fefferman, C., and Graham, C. R. 1985. Conformal invariants. Page 95 of: Élie Cartan et les mathématiques d'aujord'hui. The mathematical heritage of Élie Cartan, Sémin. Lyon 1984. Astérisque, No. Hors Sér.
Fefferman, C., and Graham, C. R. 2012. The ambient metric. Annals of Mathematical Studies, vol. 178. Princeton University Press.
Fischer, A. E., and Marsden, J. E. 1972. The Einstein evolution equations as a firstorder quasi-linear symmetric hyperbolic system. I. Comm. Math. Phys., 28, 1.
Fourès-Bruhat, Y. 1952. Théorème d'existence pour certains systèmes d'équations aux derivées partielles non linéaires. Acta Mathematica, 88, 141.
Frances, C. 2005. The conformal boundary of anti de Sitter spacetimes. Page 205 of: Biquard, O. (ed), AdS/CFT correspondence: Einstein metrics and their conformal boundaries. Euro. Math. Soc. Zürich.
Frankel, T. 2003. The geometry of physics. Cambridge University Press.
Frauendiener, J. 1998a. Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations. Phys. Rev. D, 58, 064002.
Frauendiener, J. 1998b. Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The evolution equations. Phys. Rev. D, 58, 064003.
Frauendiener, J. 2002. Some aspects of the numerical treatment of the conformal field equations. Page 261 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of space-time: geometry, analysis, numerics. Springer.
Frauendiener, J. 2004. Conformal infinity. Living Rev. Relativity, 7, 1. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2004-1.
Frauendiener, J., and Hein, M. 2002. Numerical evolution of axisymmetric, isolated systems in general relativity. Phys. Rev. D, 66, 124004.
Frauendiener, J., and Hennig, J. 2014. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. Class. Quantum Grav., 31, 085010.
Frauendiener, J., and Sparling, G. A. 2000. Local twistors and the conformal field equations. J. Math. Phys., 41, 437.
Frauendiener, J., and Szabados, L. B. 2001. The kernel of the edth operators on highergenus spacelike 2-surfaces. Class. Quantum Grav., 18, 1003.
Friedrich, H. 1981a. The asymptotic characteristic initial value problem for Einstein's vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system. Proc. Roy. Soc. Lond. A, 378, 401.
Friedrich, H. 1981b. On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations. Proc. Roy. Soc. Lond. A, 375, 169.
Friedrich, H. 1982. On the existence of analytic null asymptotically flat solutions of Einstein's vacuum field equations. Proc. Roy. Soc. Lond. A, 381, 361.
Friedrich, H. 1983. Cauchy problems for the conformal vacuum field equations in General Relativity. Comm. Math. Phys., 91, 445.
Friedrich, H. 1984. Some (con-)formal properties of Einstein's field equations and consequences. In: Flaherty, F. J. (ed), Asymptotic behaviour of mass and spacetime geometry. Lecture notes in physics 202. Springer Verlag.
Friedrich, H. 1985. On the hyperbolicity of Einstein's and other gauge field equations. Comm. Math. Phys., 100, 525.
Friedrich, H. 1986a. Existence and structure of past asymptotically simple solutions of Einstein's field equations with positive cosmological constant. J. Geom. Phys., 3, 101.
Friedrich, H. 1986b. On the existence of n-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure. Comm. Math. Phys., 107, 587.
Friedrich, H. 1986c. On purely radiative space-times. Comm. Math. Phys., 103, 35.
Friedrich, H. 1988. On static and radiative space-times. Comm. Math. Phys., 119, 51.
Friedrich, H. 1991. On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Diff. Geom., 34, 275.
Friedrich, H. 1992. Asymptotic structure of space-time. Page 147 of: Janis, A. I., and Porter, J. R. (eds), Recent advances in general relativity. Einstein Studies, vol. 4. Birkhauser.
Friedrich, H. 1995. Einstein equations and conformal structure: existence of anti-de Sitter-type space-times. J. Geom. Phys., 17, 125.
Friedrich, H. 1996. Hyperbolic reductions for Einstein's equations. Class. Quantum Grav., 13, 1451.
Friedrich, H. 1998a. Einstein's equation and geometric asymptotics. Page 153 of: Dadhich, N., and Narlinkar, J. (eds), Proceedings of the GR-15 conference. Inter-University Centre for Astronomy and Astrophysics.
Friedrich, H. 1998b. Evolution equations for gravitating ideal fluid bodies in general relativity. Phys. Rev. D, 57, 2317.
Friedrich, H. 1998c. Gravitational fields near space-like and null infinity. J. Geom. Phys., 24, 83.
Friedrich, H. 1999. Einstein's equation and conformal structure. Page 81 of: Huggett, S. A., Mason, L. J., Tod, K. P., Tsou, S. T., and Woodhouse, N. M. J. (eds), The geometric universe: science, geometry and the work of Roger Penrose. Oxford University Press.
Friedrich, H. 2002. Conformal Einstein evolution. Page 1 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of spacetime: geometry, analysis, numerics. Lecture Notes in Physics. Springer.
Friedrich, H. 2003a. Conformal geodesics on vacuum spacetimes. Comm. Math. Phys., 235, 513.
Friedrich, H. 2003b. Spin-2 fields on Minkowski space near space-like and null infinity. Class. Quantum Grav., 20, 101.
Friedrich, H. 2004. Smoothness at null infinity and the structure of initial data. In: Chruściel, P. T., and Friedrich, H. (eds), 50 years of the Cauchy problem in general relativity. Birkhausser.
Friedrich, H. 2005. On the non-linearity of the subsidiary systems. Class. Quantum Grav., 22, L77.
Friedrich, H. 2007. Static vacuum solutions from convergent null data expansions at space-like infinity. Ann. Henri Poincaré, 8, 817.
Friedrich, H. 2008a. Conformal classes of asymptotically flat, static vacuum data. Class. Quantum Grav., 25, 065012.
Friedrich, H. 2008b. One-parameter families of conformally related asymptotically flat, static vacuum data. Class. Quantum Grav., 25, 135012.
Friedrich, H. 2009. Initial boundary value problems for Einstein's field equations and geometric uniqueness. Gen. Rel. Grav., 41, 1947.
Friedrich, H. 2011. Yamabe numbers and the Brill-Cantor criterion. Ann. Inst. H. Poincaré, 12, 1019.
Friedrich, H. 2013. Conformal structure of static vacuum data. Comm. Math. Phys., 321, 419.
Friedrich, H. 2014a. On the AdS stability problem. Class. Quantum Grav., 31, 105001.
Friedrich, H. 2014b. The Taylor expansion at past time-like infinity. Comm. Math. Phys., 324, 263.
Friedrich, H. 2015a. Geometric asymptotics and beyond. Page 37 of: Bieri, L., and Yau, S.-T. (eds), One hundred years of general relativity. Surveys in Differential Geometry, vol. 20. International Press.
Friedrich, H. 2015b. Smooth non-zero rest-mass evolution across time-like infinity. Ann. Henri Poincaré, 16, 2215.
Friedrich, H., and Kánnár, J. 2000a. Bondi-type systems near space-like infinity and the calculation of the NP-constants. J. Math. Phys., 41, 2195.
Friedrich, H., and Kánnár, J. 2000b. Calculating asymptotic quantities near space-like infinity and null infinity from Cauchy data. Annalen Phys., 9, 321.
Friedrich, H., and Nagy, G. 1999. The initial boundary value problem for Einstein's vacuum field equation. Comm. Math. Phys., 201, 619.
Friedrich, H., and Rendall, A. D. 2000. The Cauchy problem for the Einstein equations. Lect. Notes. Phys., 540, 127.
Friedrich, H., and Schmidt, B.G. 1987. Conformal geodesics in general relativity. Proc. Roy. Soc. Lond. A, 414, 171.
Friedrich, H., and Stewart, J. 1983. Characteristic initial data and wavefront singularities in general relativity. Proc. Roy. Soc. Lond. A, 385, 345.
Garabedian, P. R. 1986. Partial differential equations. AMS Chelsea Publishing.
García, A. A., Hehl, F. W., Heinicke, C., and Macias, A. 2004. The Cotton tensor in Riemannian spacetimes. Class. Quantum Grav., 21, 1099.
García-Parrado, A., Gasperín, E., and Valiente Kroon, J.A. 2014. Conformal geodesics in the Schwarzshild-de Sitter and Schwarzschild anti-de Sitter spacetimes. In preparation.
Gasperín, E., and Valiente Kroon, J. A. 2015. Spinorial wave equations and the stability of the Milne universe. Class. Quantum Grav., 32, 185021.
Geroch, R. 1968. Spinor structure of spacetimes in general relativity I. J. Math. Phys., 9, 1739.
Geroch, R. 1970a. Multipole moments. I. Flat space. J. Math. Phys., 11, 1955.
Geroch, R. 1970b. Multipole moments. II. Curved space. J. Math. Phys., 11, 2580.
Geroch, R. 1970c. Spinor structure of spacetimes in general relativity II. J. Math. Phys., 11, 343.
Geroch, R. 1971a. A method for generating new solutions of Einstein's equations. J. Math. Phys., 12, 918.
Geroch, R. 1971b. Space-time structure from a global view point. Page 71 of: Sachs, R. K. (ed), General relativity and cosmology. Proceedings of the International School in Physics “Enrico Fermi”, Course 48. Academic Press.
Geroch, R. 1972a. A method for generating new solutions of Einstein's equations. II. J. Math. Phys., 13, 394.
Geroch, R. 1972b. Structure of the gravitational field at spatial infinity. J. Math. Phys., 13, 956.
Geroch, R. 1976. Asymptotic structure of space-time. In: Esposito, E. P., and Witten, L. (eds), Asymptotic structure of spacetime. Plenum Press.
Geroch, R., Held, A., and Penrose, R. 1973. A space-time calculus based on pairs of null directions. J. Math. Phys., 14, 874.
Gourgoulhon, E. 2012. 3 + 1 Formalism in general relativity: bases of numerical relativity. Lect. Notes. Phys. 846. Springer Verlag.
Gowers, T. (ed). 2008. The Princeton companion to mathematics. Princeton University Press.
Graham, C. R., and Hirachi, K. 2005. The ambient obstruction tensor and Q-curvature. Page 59 of: AdS/CFT correspondence: Einstein metrics and their conformal boundaries. IRMA Lect. Math. Theor. Phys., vol. 8. Eur. Math. Soc. Zürich.
Griffiths, J. B., and Podolský, J. 2009. Exact space-times in Einstein's general relativity. Cambridge University Press.
Guès, O. 1990. Problème mixte hyperbolique quasi-linéaire caracteristique. Comm. Part. Diff. Eqns., 15, 595.
Gundlach, C., and Martín-García, J. M. 2007. Critical phenomena in gravitational collapse. Living Rev. Relativity, 10, 5. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2007-5.
Günther, P. 1975. Spinorkalkül und Normalkoordinaten. Z. Angew. Math. Mech., 55, 205.
Guven, J., and O'Murchadha, N. 1995. Constraints in spherically symmetric classical general relativity. I. Optical scalars, foliations, bounds on the configuration space variables, and the positivity of the quasilocal mass. Phys. Rev. D, 52, 758.
Hamilton, R. 1982. The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc., 7, 65.
Hansen, R. O. 1974. Multipole moments of stationary spacetimes. J. Math. Phys., 15, 46.
Hartman, P. 1987. Ordinary differential equations. SIAM.
Hawking, S. W., and Ellis, G. F. R. 1973. The large scale structure of space-time. Cambridge University Press.
Henneaux, M., and Teitelboim, C. 1985. Asymptotically anti-de Sitter spaces. Comm. Math. Phys., 98, 391.
Hennig, J., and Ansorg, M. 2009. A fully pseudospectral scheme for solving singular hyperbolic equations. J. Hyp. Diff. Eqns., 6, 161.
Herberthson, H. 2009. Static spacetimes with prescribed multipole moments: a proof of a conjecture by Geroch. Class. Quantum Grav., 26, 215009.
Herberthson, M., and Ludwig, G. 1994. Time-like infinity and direction-dependent metrics. Class. Quantum Grav., 11, 187.
Holst, M., Nagy, G., and Tsogtgerel, G. 2008a. Far-from-constant mean curvature solutions of Einstein's contraint equations with positive Yamabe metrics. Phys. Rev. Lett., 100, 161101.
Holst, M., Nagy, G., and Tsogtgerel, G. 2008b. Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Comm. Math. Phys., 288, 547.
Hübner, P. 1995. General relativistic scalar-field models and asymptotic flatness. Class. Quantum Grav., 12, 791.
Hübner, P. 1999a. How to avoid artificial boundaries in the numerical calculation of black hole spacetimes. Class. Quantum Grav., 16, 2145.
Hübner, P. 1999b. A scheme to numerically evolve data for the conformal Einstein equation. Class. Quantum Grav., 16, 2823.
Hübner, P. 2001a. From now to timelike infinity on a finite grid. Class. Quantum Grav., 18, 1871.
Hübner, P. 2001b. Numerical calculation of conformally smooth hyperboloidal data. Class. Quantum Grav., 18, 1421.
Hughes, T. J. R., Kato, T., and Marsden, J. E. 1977. Well-posed quasi-linear secondorder hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal., 63, 273.
Husa, S. 2002. Problems and successes in the numerical approach to the conformal field equations. Page 239 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of space-time: geometry, analysis, numerics. Springer.
Ionescu, A. D., and Klainerman, S. 2009a. On the uniqueness of smooth, stationary black holes in vacuum. Inventiones mathematicae, 175, 35.
Ionescu, A. D., and Klainerman, S. 2009b. Uniqueness results for ill-posed characteristic problems in curved spacetimes. Comm. Math. Phys., 285, 873.
Isenberg, J. 1995. Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav., 12, 2249.
Isenberg, J. 2013. Initial value problem in general relativity. In: Ashtekar, A., and Petkov, V. (eds), The Springer handbook of spacetime. Springer Verlag.
Ishibashi, A., and Wald, R. M. 2004. Dynamics in non-globally-hyperbolic spacetimes III: anti de Sitter spacetime. Class. Quantum Grav., 21, 2981.
Jaramillo, J. L., Valiente, Kroon, J.A., and Gourgoulhon, E. 2008. From geometry to numerics: interdisciplinary aspects in mathematical and numerical relativity. Class. Quantum Grav., 25, 093001.
Kánnár, J. 1996a. Hyperboloidal initial data for the vacuum field equations with cosmological constant. Class. Quantum Grav., 13, 3075.
Kánnár, J. 1996b. On the existence of C ∞ solutions to the asymptotic characteristic initial value problem in general relativity. Proc. Roy. Soc. Lond. A, 452, 945.
Kato, T. 1975a. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal., 58, 181.
Kato, T. 1975b. Quasi-linear equations of evolution, with applications to partial differential equations. Lect. Notes Math., 448, 25.
Kennefick, D. 2007. Traveling at the speed of thought: Einstein and the quest for gravitational waves. Princeton University Press.
Kennefick, D., and O'Murchadha, N. 1995. Weakly decaying asymptotically flat static and stationary solutions to the Einstein equations. Class. Quantum Grav., 12, 149.
Klainerman, S. 1984. The null condition and global existence to nonlinear wave equations. Lect. Appl. Math. 23, 293.
Klainerman, S. 2008. Partial differential equations. Page 455 of: Gowers, T., Barrow-Green, J., and Leader, I. (eds), The Princeton companion to mathematics. Princeton University Press.
Kobayashi, S. 1995. Transformation groups in differential geometry. Springer Verlag.
Kobayashi, S., and Nomizu, K. 2009. Foundations of differential geometry. Vol. 1. Wiley.
Kodaira, K. 1986. Complex manifolds and deformation of complex structures. Springer Verlag.
Kozameh, C., Newman, E. T., and Tod, K. P. 1985. Conformal Einstein spaces. Gen. Rel. Grav., 17, 343.
Krantz, S. G. 2006. Geometric function theory. Birkhäuser.
Kreiss, H.-O., and Lorenz, J. 1998. Stability for time-dependent differential equations. Acta Numerica, 7(203).
Kreiss, H.-O., Reula, O., Sarbach, O., and Winicour, J. 2009. Boundary conditions for coupled quasilinear wave equations with applications to isolated systems. Comm. Math. Phys., 289, 1099.
Kulkarni, R. S., and Pinkall, U. (eds). 1988. Conformal geometry. Aspects of Mathematics. Friedrich Vieweg & Sohn.
Kundu, P. 1981. On the analyticity of stationary gravitational fields at spacial infinity. J. Math. Phys., 22, 2006.
Künzle, H. P. 1967. Construction of singularity free spherically symmetric spacetime manifolds. Proc. Roy. Soc. Lond. A, 297, 244.
Lee, J. M. 1997. Riemannian manifolds: an introduction to curvature. Springer Verlag.
Lee, J. M. 2000. Introduction to topological manifolds. Springer Verlag.
Lee, J. M. 2002. Introduction to smooth manifolds. Springer Verlag.
Lee, J. M., and Parker, T. H. 1987. The Yamabe problem. Bull. Am. Math. Soc., 17, 37.
Lehner, L., and Pretorious, F. 2014. Numerical relativity and astrophysics. Ann. Rev. Astron. Astrophys., 52, 661.
Lübbe, C. 2014. Conformal scalar fields, isotropic singularities and conformal cyclic cosmologies. In arXIv:1312.2059.
Lübbe, C., and Valiente Kroon, J. A. 2009. On de Sitter-like and Minkowski-like spacetimes. Class. Quantum Grav., 26, 145012.
Lübbe, C., and Valiente Kroon, J. A. 2010. A stability result for purely radiative spacetimes. J. Hyp. Diff. Eqns., 7, 545.
Lübbe, C., and Valiente Kroon, J. A. 2012. The extended conformal Einstein field equations with matter: the Einstein-Maxwell system. J. Geom. Phys., 62, 1548.
Lübbe, C., and Valiente Kroon, J. A. 2013a. A class of conformal curves in the Reissner- Nordström spacetime. Ann. Henri Poincaré, 15, 1327.
Lübbe, C., and Valiente Kroon, J. A. 2013b. A conformal approach for the analysis of the non-linear stability of pure radiation cosmologies. Ann. Phys., 328, 1.
Lübbe, C., and Valiente Kroon, J. A. 2014. On the conformal structure of the extremal Reissner-Nordström spacetime. Class. Quantum Grav., 31, 175015.
Ludvigsen, M., and Vickers, J. A. G. 1981. The positivity of the Bondi mass. J. Phys. A, 14, L389.
Ludvigsen, M., and Vickers, J. A. G. 1982. A simple proof of the positivity of the Bondi mass. J. Phys. A, 15, L67.
Macedo, R. P., and Ansorg, M. 2014. Axisymmetric fully spectral code for hyperbolic equations. In arXiv:1402.7343.
Machado, M. P., and Vickers, J. A. G. 1995. A space-time calculus invariant under null rotations. Proc. Roy. Soc. Lond. A, 450, 1.
Machado, M. P., and Vickers, J. A. G. 1996. Invariant differential operators and the Karlhede classification of type N vacuum solutions. Class. Quantum Grav., 13, 1589.
Maldacena, J. 1998. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2, 231.
Maliborski, M., and Rostworowski, A. 2013. Lecture notes on turbulent instability of anti-de Sitter spacetime. J. Mod. Phys. A, 28, 1340020.
Martín-García, J. M. 2014. www.xact.es.
Mason, L. J. 1986. The conformal Einstein equations. Twistor Newsletter, 22, 41.
Mason, L. J. 1995. The vacuum and Bach equations in terms of light cone cuts. J. Math. Phys., 36, 3704.
Miao, P. 2003. On the existence of static metric extensions in general relativity. Comm. Math. Phys., 241, 27.
Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973. Gravitation. W. H. Freeman.
Morrey, C. B. 1958. On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. Am. J. Math., 80, 198.
Morris, M. S., and Thorne, K. S. 1988. Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys., 56, 395.
Müller, zu Hagen H. 1970. On the analyticity of stationary vacuum solutions of Einstein's equation. Proc. Camb. Phil. Soc., 68, 199.
Müller, zu Hagen H., and Seifert, H.-J. 1977. On characteristic initial-value and mixed problems. Gen. Rel. Grav., 8, 259.
Newman, E. T., and Penrose, R. 1962. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 3, 566.
Newman, E. T., and Penrose, R. 1963. Errata: an approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 4, 998.
Newman, E. T., and Penrose, R. 1965. 10 exact gravitationally-conserved quantities. Phys. Rev. Lett., 15, 231.
Newman, E. T., and Penrose, R. 1966. Note on the Bondi-Metzner-Sachs group. J. Math. Phys., 7, 863.
Newman, E. T., and Penrose, R. 1968. New conservation laws for zero rest-mass fields in asymptotically flat space-time. Proc. Roy. Soc. Lond. A, 305, 175.
Newman, E. T., and Tod, K. P. 1980. Asymptotically flat space-times. In: Held, A. (ed), General relativity and gravitation: one hundred years after the birth of Albert Einstein. Plenum.
Newman, R. P. A. C. 1989. The global structure of simple space-times. Comm. Math. Phys., 123, 17.
Nicolas, J.-P. 2015. The conformal approach to asymptotic analysis. In arXiv:1508.02592.
O'Donnell, P. 2003. Introduction to 2-spinors in general relativity. World Scientific.
Ogiue,, K. 1967. Theory of conformal connections. Kodai Math. Sem. Rep., 19, 193.
O'Murchadha, N. 1988. The Yamabe problem and general relativity. Proc. Centre Math. Anal. (A.N.U.), 19(137).
O'Neill, B. 1983. Semi-Riemannian geometry with applications to relativity. Academic Press.
O'Neill, B. 1995. The geometry of Kerr black holes. A. K. Peters.
Paetz, T.-T. 2015. Conformally covariant systems of wave equations and their equivalence to Einstein's field equations. Ann. Henri Poincaré, 16, 2059.
Penrose, R. 1960. A spinor approach to general relativity. Ann. Phys. (New York), 10, 171.
Penrose, R. 1963. Asymptotic properties of fields and space-times. Phys. Rev. Lett., 10, 66.
Penrose, R. 1964. Conformal approach to infinity. In: DeWitt, B. S., and DeWitt, C. M. (eds), Relativity, groups and topology: the 1963 Les Houches lectures. Gordon and Breach.
Penrose, R. 1965. Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. Roy. Soc. Lond. A, 284, 159.
Penrose, R. 1967. Structure of space-time. Page 121 of: DeWitt, C. M., and Wheeler, J. A. (eds), Battelle rencontres: 1967 lectures in mathematics and physics. W. A. Benjamin.
Penrose, R. 1969. Gravitational collapse: the role of general relativity. Rev. Nuovo Cimento, I, 257.
Penrose, R. 1979. Singularities and time asymmetry. Page 581 of: Hawking, S. W., and Israel, W. (eds), General relativity: an Einstein centenary survey. Cambridge University Press.
Penrose, R. 1980. Null hypersurface initial data for classical fields of arbitrary spin and for general relativity. Gen. Rel. Grav., 12, 225.
Penrose, R. 1983. Spinors and torsion in general relativity. Found. Phys., 13, 325.
Penrose, R. 2002. Gravitational collapse: the role of general relativity. Gen. Rel. Grav., 34, 1141.
Penrose, R. 2011. Reprint of: Conformal treatment of infinity. Gen. Rel. Grav., 43, 901.
Penrose, R., and Rindler, W. 1984. Spinors and space-time. Vol. 1: Two-spinor calculus and relativistic fields. Cambridge University Press.
Penrose, R., and Rindler, W. 1986. Spinors and space-time. Vol. 2: Spinor and twistor methods in space-time geometry. Cambridge University Press.
Persides, S. 1979. A definition of asymptotically Minkowskian space-times. J. Math. Phys., 20, 1731.
Persides, S. 1980. Structure of the gravitational field at spatial infinity. II. Asymptotically Minkowski spaces. J. Math. Phys., 21, 142.
Persides, S. 1982a. Timelike infinity. J. Math. Phys., 23, 283.
Persides, S. 1982b. A unified formulation of timelike, null and spatial infinity. J. Math. Phys., 23, 289.
Petersen, P. 1991. Riemannian geometry. Graduate Texts in Mathematics, vol. 171. Springer.
Poisson, E., and Will, C. M. 2015. Gravity: Newtonian, post-Newtonian, relativistic. Cambridge University Press.
Porrill, J. 1982. The structure of timelike infinity for isolated systems. Proc. Roy. Soc. Lond. A, 381, 323.
Pretorious, F. 2009. Binary black hole coalescence. Page 305 of: Colpi, M., Casella, P., Gorini, V., Moschella, U., and Possenti, A. (eds), Physics of relativistic objects in compact binaries: from birth to coalescence. Springer.
Pugliese, D., and Valiente Kroon, J. A. 2012. On the evolution equations for ideal magnetohydrodynamics in curved spacetime. Gen. Rel. Grav., 44, 2785.
Pugliese, D., and Valiente Kroon, J. A. 2013. On the evolution equations for a selfgravitating charged scalar field. Gen. Rel. Grav., 45, 1247.
Quevedo, H. 1990. Multipole moments in general relativity: static and stationary vacuum solutions. Fortsch. der Physik, 38, 733002E
Reinhart, B. L. 1973. Maximal foliations of extended Schwarzschild space. J. Math. Phys., 14, 719.
Reiris, M. 2014a. Stationary solutions and asymptotic flatness I. Class. Quantum Grav., 31, 155012.
Reiris, M. 2014b. Stationary solutions and asymptotic flatness II. Class. Quantum Grav., 31, 155013.
Rendall, A. D. 1990. Reduction of the characteristic initial value problem to the Cauchy problem and its application to the Einstein equations. Proc. Roy. Soc. Lond. A, 427, 221.
Rendall, A. D. 2005. Theorems on existence and global dynamics for the Einstein equations. Living Rev. Relativity, 8, 6. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2005-6.
Rendall, A. D. 2008. Partial differential equations in general relativity. Oxford University Press.
Reula, O. 1989. On existence and behaviour of asymptotically flat solutions to the stationary Einstein equations. Comm. Math. Phys., 122, 615.
Reula, O. 1998. Hyperbolic methods for Einstein's equations. Living Rev. Rel., 3, 1.
Ringström, H. 2009. The Cauchy problem in general relativity. Eur. Math. Soc. Zürich.
Rinne, O. 2010. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices. Class. Quantum Grav., 27, 035014.
Rinne, O. 2014. Formation and decay of Einstein-Yang-Mills black holes. Phys. Rev. D, 90, 124084.
Rinne, O., and Moncrief, V. 2013. Hyperboloidal Einstein-matter evolution and tails for scalar and Yang–Mills fields. Class. Quantum Grav., 30, 095009.
Rodnianski, I., and Speck, J. 2013. The nonlinear future-stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant. J. Eur. Math. Soc., 15, 2369.
Sachs, R. K. 1962a. Asymptotic symmetries in gravitational theory. Phys. Rev., 128, 2851.
Sachs, R. K. 1962b. Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proc. Roy. Soc. Lond. A, 270, 103.
Sachs, R. K. 1962c. On the characteristic initial value problem in gravitational theory. J. Math. Phys., 3, 908.
Sbierski, J. 2013. On the existence of a maximal Cauchy development for the Einstein equations: a dezornification. Ann. Henri Poincaré: Online First.
Schmidt, B., Walker, M., and Sommers, P. 1975. A characterization of the Bondi- Metzner-Sachs group. Gen. Rel. Grav., 5, 489.
Schmidt, B. G. 1978. Asymptotic structure of isolated systems. Page 11 of: Ehlers, J. (ed), Isolated systems in general relativity, Proceedings of the International School of Physics “Enrico Fermi”, Course 67. North Holland Publishing Company.
Schmidt, B. G. 1981. The decay of the gravitational field. Comm. Math. Phys., 78, 447.
Schmidt, B. G. 1986. Conformal geodesics. Lect. Notes. Phys., 261, 135.
Schmidt, B. G. 1987. Gravitational radiation near spatial and null infinity. Proc. Roy. Soc. Lond. A, 410, 201.
Schmidt, B. G. 1996. Vacuum space-times with toroidal null infinities. Class. Quantum Grav., 13, 2811.
Schmidt, B. G., and Walker, M. 1983. Analytic conformal extensions of asymptotically flat spacetimes. J. Phys. A: Math. Gen., 16, 2187.
Schoen, R. 1984. Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom., 20, 479.
Schoen, R., and Yau, S. T. 1979. On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys., 65, 45.
Schouten, J. A. 1921. Ǖber die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Massbestimmung auf eine Mannigfaltigkeit mit euklidischer Massbestimmung. Math. Zeitschrift, 11, 58.
Schwarzschild, K. 1916. Ǖber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitz. Preuss. Akad. Wiss. Berlin, 7, 189–196.
Schwarzschild, K. 2003. “Golden oldie”: on the gravitational field of a mass point according to Einstein's theory. Gen. Rel. Grav., 35, 951.
Sen, A. 1981. On the existence of neutrino “zero-modes” in vacuum spacetimes. J. Math. Phys., 22, 1781.
Sexl, R. U., and Urbantke, H. K. 2000. Relativity, groups, particles: special relativity and relativistic symmetry in field and particle physics. Springer.
Shapiro, I. 1999. A century of relativity. Rev. Mod. Phys., 71, S41.
Shinbrot, M., and Welland, R. R. 1976. The Cauchy-Kowaleskaya. J. Math. An. App., 55, 757.
Simon, W. 1992. Radiative Einstein-Maxwell spacetimes and “no-hair” theorems. Class. Quantum Grav., 9, 241.
Sommers, P. 1980. Space spinors. J. Math. Phys., 21, 2567.
Speck, J. 2012. The nonlinear future-stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant. Selecta Mathematica, 18, 633.
Spivak, M. 1970. A comprehensive introduction to differential geometry. Vol. I. Publish or Perish.
Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., and Herlt, E. 2003. Exact solutions of Einstein's field equations, 2nd edition. Cambridge University Press.
Stewart, J. 1991. Advanced general relativity. Cambridge University Press.
Synge, J. L. 1960. Relativity: the general theory. North Holland Publishing Company.
Szabados, L. B. 1994. Two-dimensional Sen connections in general relativity. Class. Quantum Grav., 11, 1833.
Szabados, L. B. 2009. Quasi-local energy-momentum and angular momentum in General Relativity. Living Rev. Relativity, 12, 4. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2009-4.
Szegö, G. 1978. Orthogonal polynomials. AMS Colloq. Pub., vol. 23. AMS.
Szekeres, P. 1965. The gravitational compass. J. Math. Phys., 6, 1387.
Tataru, D. 2004. The wave maps equation. Bull. Am. Math. Soc., 41, 185.
Taubes, C. H. 2011. Differential geometry. Oxford University Press.
Taylor, M. E. 1996a. Partial differential equations I: basic theory. Springer Verlag.
Taylor, M. E. 1996b. Partial differential equations II: qualitative studies of linear equations. Springer Verlag.
Taylor, M. E. 1996c. Partial differential equations III: nonlinear equations. Springer Verlag.
Tod, K. P. 1984. Three-surface twistors and conformal embedding. Gen. Rel. Grav., 16, 435.
Tod, K. P. 2002. Isotropic cosmological singularities. Page 123 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of space-time: geometry, analysis, numerics. Lect. Notes. Phys. 604 Springer.
Tod, K. P. 2003. Isotropic cosmological singularities: other matter models. Class. Quantum Grav., 20, 251.
Tod, K. P. 2012. Some examples of the behaviour of conformal geodesics. J. Geom. Phys., 62, 1778.
Torres, del Castillo, G. F. 2003. 3-D spinors, spin-weighted functions and their applications. Birkhäuser.
Trautman, A. 1958. Radiation and boundary conditions in the theory of gravitation. Bull. Academ. Pol. Sciences: Series des Sciences Math. Astron. Phys., 6, 407.
Trudinger, N. 1968. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Sc. Norm. Sup. Pisa, 22, 265.
Valiente Kroon, J. A. 1998. Conserved quantities for polyhomogeneous spacetimes. Class. Quantum Grav., 15, 2479.
Valiente Kroon, J. A. 1999a. A comment on the outgoing radiation condition and the peeling theorem. Gen. Rel. Grav., 31, 1219.
Valiente Kroon, J. A. 1999b. Logarithmic Newman-Penrose constants for arbitrary polyhomogeneous spacetimes. Class. Quantum Grav., 16, 1653.
Valiente Kroon, J. A. 2002. Polyhomogeneous expansions close to null and spatial infinity. Page 135 of: Frauendiner, J., and Friedrich, H. (eds), The conformal structure of spacetimes: geometry, numerics, analysis. Lecture Notes in Physics. Springer.
Valiente Kroon, J. A. 2003. Early radiative properties of the developments of time symmetric conformally flat initial data. Class. Quantum Grav., 20, L53.
Valiente Kroon, J. A. 2004a. Does asymptotic simplicity allow for radiation near spatial infinity? Comm. Math. Phys., 251, 211.
Valiente Kroon, J. A. 2004b. A new class of obstructions to the smoothness of null infinity. Comm. Math. Phys., 244, 133.
Valiente Kroon, J. A. 2004c. Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data. Class. Quantum Grav., 23, 5457.
Valiente Kroon, J. A. 2005. Time asymmetric spacetimes near null and spatial infinity. II. Expansions of developments of initial data sets with non-smooth conformal metrics. Class. Quantum Grav., 22, 1683.
Valiente Kroon, J. A. 2007a. Asymptotic properties of the development of conformally flat data near spatial infinity. Class. Quantum Grav., 24, 3037.
Valiente Kroon, J. A. 2007b. The Maxwell field on the Schwarzschild spacetime: behaviour near spatial infinity. Proc. Roy. Soc. Lond. A, 463, 2609.
Valiente Kroon, J. A. 2009. Estimates for the Maxwell field near the spatial and null infinity of the Schwarzschild spacetime. J. Hyp. Diff. Eqns., 6, 229.
Valiente Kroon, J. A. 2010. A rigidity property of asymptotically simple spacetimes arising from conformally flat data. Comm. Math. Phys., 298, 673.
Valiente Kroon, J. A. 2011. Asymptotic simplicity and static data. Ann. Henri Poincaré, 13, 363.
Valiente Kroon, J. A. 2012. Global evaluations of static black hole spacetimes. In preparation.
Wald, R. M. 1983. Asymptotic behaviour of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D, 28, 2118.
Wald, R. M. 1984. General relativity. University of Chicago Press.
Walker, M. 1970. Block diagrams and the extension of timelike two-surfaces. J. Math. Phys., 11, 2280.
Weyl, H. 1918. Reine Infinitesimalgeometrie. Math. Zeitschrift, 2, 404.
Weyl, H. 1968. Zur Infinitesimal Geometrie: Einordnung der projektiven und der konformen Auffassung. Page 195 of: Gesammelte Abhandlungen., vol. II. Springer Verlag.
Will, C. M. 2014. The confrontation between general relativity and experiment. Living. Rev. Relativity, 17.
Willmore, T. J. 1993. Riemannian geometry. Oxford University Press.
Winicour, J. 2012. Characteristic evolution and matching. Living. Rev. Relativity, 14.
Witten, E. 1998. Anti de Sitter space and holography. Adv. Theor. Math. Phys., 2, 253.
Witten, E., and Yau, S.-T. 1999. Connectedness of the boundary in the AdS/CFT correspondence. Adv. Theor. Math. Phys., 1635.
Wong, W. W.-Y. 2013. A comment on the construction of the maximal globally hyperbolic Cauchy development. J. Math. Phys., 54, 113511.
Yamabe, H. 1960. On a deformation of Riemannian structures on compact manifolds. Osaka J. Mathematics, 12, 6126.
York, J. W. Jr. 1971. Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett., 26, 1656.
York, J. W. Jr. 1972. Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett., 28, 1082.
York, J. W. Jr. 1973. Conformally covariant orthogonal decomposition of symmetric tensor on Riemannian manifolds and the initial value problem of general relativity. J. Math. Phys., 14, 456.
Zenginoglu, A. 2006. A conformal approach to numerical calculations of asymptotically flat spacetimes. PhD thesis, Max-Planck Institute for Gravitational Physics (AEI) and University of Potsdam.
Zenginoglu, A. 2007. Numerical calculations near spatial infinity. J. Phys. Conf. Ser., 66, 012027.
Zenginoglu, A. 2008. A hyperboloidal study of tail decay rates for scalar and Yang-Mills fields. Class. Quantum Grav., 25, 195025.
Zenginoglu, A. 2011a. A geometric framework for black hole perturbations. Phys. Rev. D, 83, 127502.
Zenginoglu, A. 2011b. Hyperboloidal layers for hyperbolic equations on unbounded domains. J. Comput. Phys., 230, 2286.
Zenginoglu, A., and Kidder, L. E. 2010. Hyperboloidal evolution of test fields in three spatial dimensions. Phys. Rev. D, 81, 124010.
Zhiren, J. 1988. A counterexample to the Yamabe problem for complete non-compact manifolds. Lect. Notes Math., 1306, 93.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.