Skip to main content Accessibility help
×
  • Cited by 11
Publisher:
Cambridge University Press
Online publication date:
October 2011
Print publication year:
2011
Online ISBN:
9780511978111

Book description

The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
References
[1] J., Adámek, H., Herrlich, G., Strecker. Abstract and Concrete Categories–The Joy of Cats. John Wiley and Sons (1990), online edition available at http://katmat.math.uni-bremen.de/acc/.
[2] J., Adámek, J., Rosický. Locally Presentable and Accessible Categories. LONDON MATH. SOC. LECTURE NOTE SERIES 189, Cambridge University Press (1994).
[3] J., Adams. Infinite Loop Spaces. ANNALS OF MATH. STUDIES 90, Princeton University Press (1978).
[4] M., Artin. Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165–189.
[5] D., Ara. Sur les ∞-groupoïdes de Grothendieck et une variante ∞-catégorique. Doctoral thesis, Université de Paris 7 (2010).
[6] H., Bacard. Segal enriched categories I. Arxiv preprint arXiv:1009.3673 (2010).
[7] B., Badzioch. Algebraic theories in homotopy theory. Ann. Math. 155 (2002), 895–913.
[8] J., Baez, J., Dolan. Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36 (1995), 6073–6105.
[9] J., Baez, J., Dolan. n-Categories, sketch of a definition. Letter to R. Street, 29 Nov. and 3 Dec. 1995. Available online at http://math.ucr.edu/home/baez/ncat.def.html.
[10] J., Baez. An introduction to n-categories. In Category Theory and Computer Science (Santa Margherita Ligure 1997). LECT. NOTES IN COMPUTER SCIENCE 1290, Springer-Verlag (1997), 1–33.
[11] J., Baez, J., Dolan. Higher-dimensional algebra III: n-categories and the algebra of opetopes. Adv. Math. 135 (1998), 145–206.
[12] J., Baez, J., Dolan. Categorification. In Higher Category Theory (Evanston, 1997). CONTEMP. MATH. 230, A.M.S. (1998), 1–36.
[13] J., Baez, P., May. Towards Higher Categories. IMA VOLUMES MATH. APPL. 152, Springer-Verlag (2009).
[14] I., Baković, B., Jurčo. The classifying topos of a topological bicategory. Homology, Homotopy Appl. 12 (2010), 279–300.
[15] C., Balteanu, Z., Fiedorowicz, R., Schwänzl, R., Vogt. Iterated monoidal categories. Adv. Math. 176 (2003), 277–349.
[16] C., Barwick. (∞, n) – Cat as a closed model category. Doctoral dissertation, University of Pennsylvania (2005).
[17] C., Barwick. ∞-groupoids, stacks, and Segal categories. Seminars 2004–2005 of the Mathematical Institute, University of Göttingen (Y. Tschinkel, ed.). Universitätsverlag Göttingen (2005), 155–195.
[18] C., Barwick. On (enriched) left Bousfield localization of model categories. Arxiv preprint arXiv:0708.2067 (2007), now in [20].
[19] C., Barwick. On Reedy model categories. Preprint arXiv: 0708.2832 (2007), now in [20].
[20] C., Barwick. On left and right model categories and left and right Bousfield localizations. Homology, Homotopy Appl. 1 (2010), 1–76.
[21] C., Barwick, D., Kan. Relative categories: Another model for the homotopy theory of homotopy theories. Preprint arXiv:1011.1691 (2010).
[22] C., Barwick, D., Kan. A Thomason-like Quillen equivalence between quasi-categories and relative categories. Preprint arXiv:1101.0772 (2011).
[23] C., Barwick, D., Kan. n-relative categories: a model for the homotopy theory of n-fold homotopy theories. Preprint arXiv:1102.0186 (2011).
[24] C., Barwick. On the Yoneda lemma and the strictification theorem for homotopy theories. Preprint (2008).
[25] M., Batanin. On the definition of weak ω-category. Macquarie mathematics report number 96/207, Macquarie University, Australia.
[26] M., Batanin. Monoidal globular categories as a natural environment for the theory of weak n-categories. Adv. Math. 136 (1998), 39–103.
[27] M., Batanin. Homotopy coherent category theory and A∞ structures in monoidal categories. J. Pure Appl. Alg. 123 (1998), 67–103.
[28] M., Batanin. On the Penon method of weakening algebraic structures. J. Pure Appl. Alg. 172 (2002), 1–23.
[29] M., Batanin. The Eckmann–Hilton argument and higher operads. Adv. Math. 217 (2008), 334–385.
[30] M., Batanin, D., Cisinski, M., Weber. Algebras of higher operads as enriched categories II. Preprint arXiv:0909.4715v1 (2009).
[31] F., Bauer, T., Datuashvili. Simplicial model category structures on the category of chain functors. Homology, Homotopy Appl. 9 (2007), 107–138.
[32] H., Baues. Combinatorial Homotopy and 4-Dimensional Complexes. de Gruyter, Berlin (1991).
[33] T., Beke. Sheafifiable homotopy model categories. Math. Proc. Cambridge Phil. Soc. 129 (2000), 447–475.
[34] J., Bénabou. Introduction to Bicategories. LECT. NOTES IN MATH. 47, Springer-Verlag (1967).
[35] C., Berger. Double loop spaces, braided monoidal categories and algebraic 3-type of space. Contemp. Math. 227 (1999), 49–65.
[36] C., Berger. A cellular nerve for higher categories. Adv. Math. 169 (2002), 118–175.
[37] C., Berger. Iterated wreath product of the simplex category and iterated loop spaces. Adv. Math. 213 (2007), 230–270.
[38] C., Berger, I., Moerdijk. On an extension of the notion of Reedy category. Math. Z. DOI 10.1007/s00209-010-0770-x (2010), 1–28.
[39] J., Bergner. A model category structure on the category of simplicial categories. Trans. Amer. Math. Soc. 359 (2007), 2043–2058.
[40] J., Bergner. Three models for the homotopy theory of homotopy theories. Topology 46 (2007), 397–436.
[41] J., Bergner. Adding inverses to diagrams encoding algebraic structures. Homology, Homotopy Appl. 10 (2008), 149–174.
[42] J., Bergner. A characterization of fibrant Segal categories. Proc. Amer. Math. Soc. 135 (2007), 4031–4037.
[43] J., Bergner. Rigidification of algebras over multi-sorted theories. Alg. Geom. Topol. 6 (2006), 1925–1955.
[44] J., Bergner. A survey of (∞, 1)-categories. In Towards Higher Categories (J., Baez, P., May, eds.). IMA VOLUMES MATH APPL. 152, Springer-Verlag (2009).
[45] J., Bergner. Simplicial monoids and Segal categories. Contemp. Math. 431 (2007), 59–83.
[46] J., Bergner. Homotopy fiber products of homotopy theories. Arxiv preprint arXiv:0811.3175 (2008).
[47] J., Bergner. Homotopy limits of model categories and more general homotopy theories. Arxiv preprint arXiv:1010.0717 (2010).
[48] J., Bergner. Models for (∞, n)-categories and the cobordism hypothesis. Arxiv preprint arXiv:1011.0110 (2010).
[49] B., Blander. Local projective model structures on simplicial presheaves. K-theory 24 (2001), 283–301.
[50] J., Boardman, R., Vogt. Homotopy Invariant Algebraic Structures on Topological Spaces. LECTURE NOTES IN MATH. 347, Springer-Verlag (1973).
[51] A., Bondal, M., Kapranov. Enhanced triangulated categories. Math. U.S.S.R. Sb. 70 (1991), 93–107.
[52] R., Bott, L., Tu. Differential Forms in Algebraic Topology. GRADUATE TEXTS IN MATH. 82, Springer-Verlag (1982).
[53] D., Bourn. Anadèses et catadèses naturelles. C.R. Acad. Sci. Paris Sér. A–B 276 (1973), A1401–A1404.
[54] D., Bourn. Sur les ditopos. C. R. Acad. Sci. Paris 279 (1974), 911–913.
[55] D., Bourn. La tour de fibrations exactes des n-catégories. Cah. Top. Géom. Différ. Catég. (1984).
[56] D., Bourn, J.-M., Cordier. A general formulation of homotopy limits. J. Pure Appl. Alg. 29 (1983), 129–141.
[57] A., Bousfield. Cosimplicial resolutions and homotopy spectral sequences in model categories. Geometry & Topology 7 (2003) 1001–1053.
[58] A., Bousfield, D., Kan. Homotopy Limits, Completions and Localizations. LECTURE NOTES IN MATH. 304, Springer-Verlag (1972).
[59] L., Breen. On the Classification of 2-Gerbs and 2-Stacks. ASTÉRISQUE 225, S.M.F. (1994).
[60] L., Breen. Monoidal categories and multiextensions. Compositio Math. 117 (1999), 295–335.
[61] E., Brown Jr, Finite computability of Postnikov complexes. Ann. Math. 65 (1957), 1–20
[62] K., Brown. Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc. 186 (1973), 419–458.
[63] K., Brown, S., Gersten. Algebraic K-theory as Generalized Sheaf Cohomology. LECTURE NOTES IN MATH. 341, Springer-Verlag (1973), 266–292.
[64] R., Brown. Groupoids and crossed objects in algebraic topology. Homology Homotopy Appl. 1 (1999), 1–78.
[65] R., Brown. Computing homotopy types using crossed n-cubes of groups. Adams Memorial Symposium on Algebraic Topology, Vol. 1 (N., Ray, G, Walker, eds.). Cambridge University Press (1992) 187–210.
[66] R., Brown, N.D., Gilbert. Algebraic models of 3-types and automorphism structures for crossed modules. Proc. London Math. Soc. (3) 59 (1989), 51–73.
[67] R., Brown, P., Higgins. The equivalence of ∞-groupoids and crossed complexes. Cah. Top. Géom. Différ. Catég. 22 (1981), 371–386.
[68] R., Brown, P., Higgins. The classifying space of a crossed complex. Math. Proc. Cambridge Phil. Soc. 110 (1991), 95–120.
[69] R., Brown, J.-L., Loday. Van Kampen theorems for diagrams of spaces. Topology 26 (1987), 311–335.
[70] R., Brown, J.-L., Loday. Homotopical excision, and Hurewicz theorems, for n-cubes of spaces. Proc. London Math. Soc. 54 (1987), 176–192.
[71] J., Cabello, A., Garzon. Closed model structures for algebraic models of n-types. J. Pure Appl. Alg. 103 (1995), 287–302.
[72] E., Cheng. The category of opetopes and the category of opetopic sets. Th. Appl. Cat. 11 (2003), 353–374.
[73] E., Cheng. An omega-category with all duals is an omega groupoid. Appl. Cat. Struct. 15 (2007), 439–453.
[74] E., Cheng. Comparing operadic theories of n-category. Preprint arXiv:0809.2070 (2008).
[75] E., Cheng, A., Lauda. Higher-Dimensional Categories: an Illustrated Guidebook (2004). http://cheng.staff.shef.ac.uk/guidebook/guidebook-new.pdf
[76] E., Cheng, M., Makkai. A note on the Penon definition of n-category. Preprint arXiv:0907.3961 (2009).
[77] D., Cisinski. Les Préfaisceaux Comme Modèles des Types d'Homotopie. ASTÉRISQUE 308, S.M.F. (2006).
[78] D., Cisinski. Batanin higher groupoids and homotopy types. In Categories in Algebra, Geometry and Mathematical Physics, Proceedings of Streetfest (M., Bataninet al., eds.), Contemporary Math. 431 (2007), 171–186.
[79] D., Cisinski. Propriétés universelles et extensions de Kan dérivées. Th. Appl. Cat. 20 (2008), 605–649.
[80] F., Cohen, T., Lada, J. P., May. The homology of iterated loop spaces. LECTURE NOTES IN MATH. 533, Springer-Verlag (1976).
[81] J., Cordier. Comparaison de deux catégories d'homotopie de morphismes cohérents. Cah. Top. Géom. Différ. Catég. 30 (1989), 257–275.
[82] J., Cordier, T., Porter. Vogt's theorem on categories of homotopy coherent diagrams. Math. Proc. Cambridge Phil. Soc. 100 (1986), 65–90.
[83] J., Cordier, T., Porter. Homotopy coherent category theory. Trans. Amer. Math. Soc. 349 (1997), 1–54.
[84] J., Cranch. Algebraic theories and (∞, 1)-categories. PhD thesis, University of Sheffield, arXiv:1011.3243 (2010).
[85] S., Crans. Quillen closed model structures for sheaves. J. Pure Appl. Alg. 101 (1995), 35–57.
[86] S., Crans. A tensor product for Gray-categories. Th. Appl. Cat. 5 (1999), 12–69.
[87] S., Crans. On braidings, syllapses and symmetries. Cah. Top. Géom. Différ. Catég. 41 (2000), 2–74.
[88] E., Curtis. Lower central series of semisimplicial complexes. Topology 2 (1963), 159–171.
[89] E., Curtis. Some relations between homotopy and homology. Ann. Math. 82 (1965), 386–413.
[90] P., Deligne. Théorie de Hodge, III. Publ. Math. I.H.E.S. 44 (1974), 5–77.
[91] P., Deligne, D., Mumford. On the irreducibility of the space of curves of a given genus. Publ. Math. I.H.E.S. 36 (1969), 75–109.
[92] P., Deligne, A., Ogus, J., Milne, K., Shih. Hodge Cycles, Motives, and Shimura Varieties. LECTURE NOTES IN MATH. 900, Springer-Verlag (1982).
[93] V., Drinfeld. DG quotients of DG categories. J. Alg. 272 (2004), 643–691.
[94] E., Dror Farjoun, A., Zabrodsky. The homotopy spectral sequence for equivariant function complexes. In Algebraic Topology, Barcelona, 1986. LECTURE NOTES IN MATH. 1298, Springer-Verlag (1987), 54–81.
[95] D., Dugger. Combinatorial model categories have presentations. Adv. Math. 164 (2001), 177–201.
[96] D., Dugger, D., Spivak. Mapping spaces in quasi-categories. Preprint arXiv:0911. 0469 (2009).
[97] G., Dunn. Uniqueness of n-fold delooping machines. J. Pure Appl. Alg. 113 (1996), 159–193.
[98] J., Duskin. Simplicial matrices and the nerves of weak n-categories I: nerves of bicategories. Th. Appl. Cat. 9 (2002), 198–308.
[99] W., Dwyer, P., Hirschhorn, D., Kan. Model categories and more general abstract homotopy theory, a work in what we like to think of as progress. (This historically important manuscript was later integrated into the next reference.)
[100] W., Dwyer, P., Hirschhorn, D., Kan, J., Smith. Homotopy Limit Functors on Model Categories and Homotopical Categories. MATH. SURVEYS AND MONOGRAPHS 113, A.M.S. (2004).
[101] W., Dwyer, D., Kan. Simplicial localizations of categories. J. Pure Appl. Alg. 17 (1980), 267–284.
[102] W., Dwyer, D., Kan. Calculating simplicial localizations. J. Pure Appl. Alg. 18 (1980), 17–35.
[103] W., Dwyer, D., Kan. Function complexes in homotopical algebra. Topology 19 (1980), 427–440.
[104] W., Dwyer, D., Kan, J., Smith. Homotopy commutative diagrams and their realizations. J. Pure Appl. Alg. 57 (1989), 5–24.
[105] W., Dwyer, J., Spalinski. Homotopy theories and model categories. In Handbook of Algebraic Topology (I. M., James, ed.), Elsevier (1995).
[106] J., Dydak. A simple proof that pointed, connected FANR spaces are regular fundamental retracts of ANRs. Bull. Acad. Polon. Sci. Ser. Sci. Math. Phys. 25 (1977), 55–62.
[107] J., Dydak. 1-movable continua need not be pointed 1-movable. Bull. Acad. Polon. Sci. Ser. Sci. Math. Phys. 25 (1977), 485–488.
[108] E., Dyer, R., Lashoff. Homology of iterated loop spaces. Amer. J. Math. 84 (1962), 35–88.
[109] J., Elgueta. On the regular representation of an (essentially) finite 2-group. Preprint arXiv:0907.0978 (2009).
[110] G., Ellis. Spaces with finitely many nontrivial homotopy groups all of which are finite. Topology 36 (1997), 501–504.
[111] Z., Fiedorowicz. Classifying spaces of topological monoids and categories. Amer. J. Math. 106 (1984), 301–350.
[112] Z., Fiedorowicz, R., Vogt. Simplicial n-fold monoidal categories model all n-fold loop spaces. Cah. Top. Géom. Différ. Catég. 44 (2003), 105–148.
[113] T., Fiore. Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory. Mem. Amer. Math. Soc. 182 (2006).
[114] P., Freyd, A., Heller. Splitting homotopy idempotents, II. J. Pure Appl. Alg. 89 (1993), 93–106.
[115] K., Fukaya. Morse homotopy, A∞-category and Floer homologies. In Proceedings of GARC Workshop on Geometry and Topology (H. J., Kim, ed.), Seoul National University, (1993).
[116] C., Futia. Weak omega categories I. Preprint arXiv:math/0404216 (2004).
[117] P., Gabriel, M., Zisman. Calculus of Fractions and Homotopy Theory. Springer-Verlag (1967).
[118] N., Gambino. Homotopy limits for 2-categories. Math. Proc. Cambridge Phil. Soc. 145 (2008), 43–63.
[119] R., Garner, N., Gurski. The low-dimensional structures that tricategories form. Preprint arXiv:0711.1761 (2007).
[120] P., Gaucher. Homotopy invariants of higher dimensional categories and concurrency in computer science. Math. Struct. Comp. Sci. 10 (2000), 481–524.
[121] J., Giraud. Cohomologie Nonabélienne. GRUNDLEHREN DER WISSENSCHAFTEN IN EINZELDARSTELLUNG 179, Springer-Verlag (1971).
[122] P., Goerss, R., Jardine. Simplicial Homotopy Theory. PROGRESS IN MATH. 174, Birkhäuser (1999).
[123] R., Gordon, A.J., Power, R., Street. Coherence for tricategories. Memoirs A.M.S. 117 (1995), 558 ff.
[124] M., Grandis. Directed homotopy theory, I. The fundamental category. Cah. Top. Géom. Différ. Catég. 44 (2003), 281–316.
[125] M., Grandis, R., Paré. Limits in double categories. Cah. Top. Géom. Différ. Catég. 40 (1999), 162–220.
[126] J., Gray. Formal Category Theory: Adjointness for 2-Categories. LECTURE NOTES IN MATH. 391, Springer-Verlag (1974).
[127] J., Gray. Closed categories, lax limits and homotopy limits. J. Pure Appl. Alg. 19 (1980), 127–158.
[128] J., Gray. The existence and construction of lax limits. Cah. Top. Géom. Différ. Catég. 21 (1980), 277–304.
[129] A., Grothendieck. Sur quelques points d'algèbre homologique, I. Tohoku Math. J. 9 (1957), 119–221.
[130] A., Grothendieck. Techniques de construction et théorèmes d'existence en géométrie algébrique. III. Préschemas quotients. Séminaire Bourbaki, 13e année, 1960/61 212 (1961).
[131] A., Grothendieck. Revetements Etales et Groupe Fondamental (SGA I), LECTURE NOTES IN MATH. 224, Springer-Verlag (1971).
[132] A., Grothendieck. Pursuing Stacks.
[133] A., Grothendieck. Les Dérivateurs (G., Maltsiniotis, ed.) Available online at http://people.math.jussieu.fr/ maltsin/textes.html.
[134] N., Gurski. An algebraic theory of tricategories. Ph.D. thesis, University of Chicago (2006).
[135] R., Hain. Completions of mapping class groups and the cycle C – C-. In Mapping Class Groups and Moduli Spaces of Riemann Surfaces: Proceedings of Workshops held in Göttingen and Seattle. CONTEMPORARY MATH. 150, A.M.S. (1993), 75–106.
[136] R., Hain. The de rham homotopy theory of complex algebraic varieties I. K-theory 1 (1987), 271–324.
[137] R., Hain. The Hodge de Rham theory of relative Malcev completion. Ann. Sci. de l'E.N.S. 31 (1998), 47–92.
[138] H., Hastings, A., Heller. Splitting homotopy idempotents. In Shape Theory and Geometric Topology (Dubrovnik, 1981). LECTURE NOTES IN MATH. 870, Springer-Verlag (1981), 23–36.
[139] H., Hastings, A., Heller. Homotopy idempotents on finite-dimensional complexes split. Proc. Amer. Math. Soc. 85 (1982), 619–622.
[140] A., Heller. Homotopy in functor categories. Trans. Amer. Math. Soc. 272 (1982), 185–202.
[141] A., Heller. Homotopy theories. Mem. Amer. Math. Soc. 71 (388) (1988).
[142] C., Hermida, M., Makkai, A., Power. On weak higher-dimensional categories I. J. Pure Appl. Alg. Part 1: 154 (2000), 221–246; Part 2: 157 (2001), 247–277; Part 3: 166 (2002), 83–104.
[143] V., Hinich. Homological algebra of homotopy algebras. Comm. Alg. 25 (1997), 3291–3323.
[144] P., Hirschhorn. Model Categories and their Localizations. MATH. SURVEYS AND MONOGRAPHS 99, A.M.S. (2003).
[145] A., Hirschowitz, C., Simpson. Descente pour les n-champs. Preprint math/9807049 (1998).
[146] J., Hirsh, J., Millès. Curved Koszul duality theory. Preprint, University of Nice (2010).
[147] S., Hollander. A homotopy theory for stacks. Israel J. Math. 163 (2008) 93–124.
[148] M., Hovey. Monoidal model categories. Arxiv preprint math/9803002 (1998).
[149] M., Hovey. Model Categories. MATH. SURVEYS AND MONOGRAPHS 63, A.M.S. (1999).
[150] L., Illusie. Complexe Cotangent et Déformations, II. LECTURE NOTES IN MATH. 283, Springer-Verlag (1972).
[151] I., James. Reduced product spaces. Ann. Math. 62 (1955), 170–197.
[152] G., Janelidze. Precategories and Galois theory. Springer-Verlag (1990).
[153] J.F., Jardine. Simplicial presheaves, J. Pure Appl. Alg. 47 (1987), 35–87.
[154] M., Johnson. The combinatorics of n-categorical pasting. J. Pure Appl. Alg. 62 (1989), 211–225.
[155] M., Johnson. On modified Reedy and modified projective model structures. Preprint arXiv:1004.3922v1 (2010).
[156] A., Joyal. Letter to A. Grothendieck (referred to in Jardine's paper).
[157] A., Joyal. Quasi-categories and Kan complexes. J. Pure Appl. Alg. 175 (2002), 207–222.
[158] A., Joyal. Disks, duality and θ-categories. Preprint (1997).
[159] A., Joyal, J., Kock. Weak units and homotopy 3-types. In Categories in Algebra, Geometry and Mathematical Physics: Conference and Workshop in Honor of Ross Street's 60th Birthday. CONTEMPORARY MATH. 431, A.M.S (2007), 257–276.
[160] A., Joyal, J., Kock. Coherence for weak units. Preprint arXiv:0907.4553 (2009).
[161] A., Joyal, M., Tierney. Algebraic homotopy types. Occurs as an entry in the bibliography of [8].
[162] A., Joyal, M., Tierney. Quasi-categories vs Segal spaces. In Categories in Algebra, Geometry and Mathematical Physics: Conference and Workshop in Honor of Ross Street's 60th Birthday. CONTEMPORARY MATH. 431, A.M.S. (2007), 277–326.
[163] D., Kan. On c.s.s. complexes. Amer. J. Math. 79 (1957), 449–476.
[164] D., Kan. A combinatorial definition of homotopy groups. Ann. Math. 67 (1958), 282–312.
[165] D., Kan. On homotopy theory and c.s.s. groups. Ann. Math. 68 (1958), 38–53.
[166] D., Kan. On c.s.s. categories. Bol. Soc. Math. Mexicana (1957), 82–94.
[167] M., Kapranov. On the derived categories of coherent sheaves on some homogeneous spaces. Invent. Math. 92 (1988), 479–508.
[168] M., Kapranov, V., Voevodsky. ∞-groupoids and homotopy types. Cah. Top. Géom. Différ. Catég. 32 (1991), 29–46.
[169] L., Katzarkov, T., Pantev, B., Toën. Algebraic and topological aspects of the schematization functor. Compositio Math. 145 (2009), 633–686.
[170] B., Keller. Deriving DG categories. Ann. Sci. E.N.S. 27 (1994), 63–102.
[171] G., Kelly, Basic concepts of enriched category theory. LONDON MATH. SOC. LECTURE NOTES 64, Cambridge University Press (1982).
[172] J., Kock. Weak identity arrows in higher categories. Int. Math. Res. Papers (2006).
[173] J., Kock. Elementary remarks on units in monoidal categories. Math. Proc. Cambridge Phil. Soc. 144 (2008), 53–76.
[174] J., Kock, A., Joyal, M., Batanin, J., Mascari. Polynomial functors and opetopes. Adv. Math. 224 (2010), 2690–2737.
[175] G., Kondratiev. Concrete duality for strict infinity categories. Preprint arXiv:0807.4256 (2008) (see also arXiv:math/0608436).
[176] M., Kontsevich. Homological algebra of mirror symmetry. In Proceedings of I.C.M.-94, Zurich. Birkhäuser (1995), 120–139.
[177] J.-L., Krivine. Théorie Axiomatique des Ensembles, Presses Universitaires de France (1969); English translation by D. Miller, Introduction to Axiomatic Set Theory, D. Reidel Publishing Co. (1971).
[178] S., Lack. A Quillen model structure for Gray-categories. Preprint arXiv:1001. 2366 (2010).
[179] Y., Lafont, F., Métayer, K., Worytkiewicz. A folk model structure on omega-cat. Adv. Math. 224 (2010), 1183–1231.
[180] G., Laumon, L., Moret-Bailly. Champs Algébriques. Springer-Verlag (2000).
[181] F. W., Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. 50 (1963), 869–872.
[182] F. W., Lawvere. Functorial semantics of algebraic theories, Dissertation, Columbia University 1963; reprint in Th. Appl. Cat.5 (2004), 23–107.
[183] T., Leinster. A survey of definitions of n-category. Th. Appl. Cat. 10 (2002,E;), 1–70.
[184] T., Leinster. Higher Operads, Higher Categories. LONDON MATH. SOC. LECTURE NOTES 298, Cambridge University Press (2004).
[185] T., Leinster. Up-to-homotopy monoids. Arxiv preprint math/9912084 (1999).
[186] O., Leroy. Sur une notion de 3-catégorie adaptée à l'homotopie. Preprint Univ. de Montpellier 2 (1994).
[187] L. G., Lewis. Is there a convenient category of spectra?J. Pure Appl. Alg. 73 (1991), 233–246.
[188] J.-L., Loday. Spaces with finitely many non-trivial homotopy groups. J. Pure Appl. Alg. 24 (1982), 179–202.
[189] J., Lurie. On infinity topoi. Preprint arXiv:math/0306109 (2003).
[190] J., Lurie. Higher topos theory. Ann. Math. Studies 170 (2009).
[191] J., Lurie. Derived Algebraic Geometry II–VI. Arxiv preprints (20072009).
[192] J., Lurie. (Infinity,2)-Categories and the Goodwillie Calculus I. Preprint arXiv:0905.0462v2 (2009).
[193] J., Lurie. On the classification of topological field theories. Current Developments in Mathematics Vol. 2008 (2009), 129–280.
[194] D., McDuff. On the classifying spaces of discrete monoids. Topology 18 (1979), 313–320.
[195] M., Mackaay. Spherical 2-categories and 4-manifold invariants. Adv. Math. 143 (1999), 288–348.
[196] S., Mac Lane. Categories for the Working Mathematician. GRADUATE TEXTS IN MATH. 5, Springer-Verlag (1971).
[197] M., Makkai, R., Paré. Accessible Categories: The Foundations of Categorical Model Theory. CONTEMPORARY MATH. 104, A.M.S. (1989).
[198] G., Maltsiniotis. La Théorie de l'Homotopie de Grothendieck. ASTÉRISQUE 301, S.M.F. (2005).
[199] G., Maltsiniotis. Infini groupoïdes non stricts, d'après Grothendieck. Preprint (2007).
[200] G., Maltsiniotis. Infini catégories non strictes, une nouvelle définition. Preprint (2007).
[201] W., Massey. Algebraic Topology: An Introduction. GRADUATE TEXTS IN MATH. 56, Springer-Verlag (1977).
[202] J. P., May. Simplicial Objects in Algebraic Topology. Van Nostrand (1967).
[203] J.P., May. The Geometry of Iterated Loop Spaces. LECTURE NOTES IN MATH. 271, Springer-Verlag (1972).
[204] J. P., May. Classifying spaces and fibrations. Mem. Amer. Math. Soc. 155 (1975).
[205] J. P., May, R., Thomason. The uniqueness of infinite loop space machines. Topology 17 (1978), 205–224.
[206] S., Mochizuki. Idempotent completeness of higher derived categories of abelian categories. K-theory preprint archives n. 970 (2010).
[207] F., Morel, V., Voevodsky. A1-homotopy theory of schemes. Publ. Math. I.H.E.S. 90 (1999), 45–143.
[208] S., Moriya. Rational homotopy theory and differential graded category. J. Pure Appl. Alg. 214 (2010), 422–439.
[209] J., Nichols-Barrer. On quasi-categories as a foundation for higher algebraic stacks. Ph.D. thesis, M.I.T. (2007).
[210] S., Paoli. Weakly globular catn-groups and Tamsamani's model. Adv. Math. 222 (2009), 621–727.
[211] R., Pellissier. Catégories enrichies faibles. Thesis, Université de Nice (2002), available online at http://tel.archives-ouvertes.fr/tel-00003273/fr/.
[212] J., Penon. Approche polygraphique des ∞-catégories non strictes. Cah. Top. Géom. Différ. Catég. 40 (1999), 31–80.
[213] A., Power. Why tricategories? Information and Computation 120 (1995), 251–262.
[214] J., Pridham. Pro-algebraic homotopy types. Proc. London Math. Soc. 97 (2008), 273–338.
[215] D., Quillen. Homotopical Algebra. LECTURE NOTES IN MATH. 43, Springer-Verlag (1967).
[216] D., Quillen. Rational homotopy theory. Ann. Math. 90 (1969), 205–295.
[217] C., Reedy. Homotopy theory of model categories. Preprint (1973) available from P. Hirschhorn.
[218] C., Rezk. A model for the homotopy theory of homotopy theory. Trans. Amer. Math. Soc. 353 (2001), 973–1007.
[219] C., Rezk. A cartesian presentation of weak n-categories. Geometry & Topology 14 (2010), 521–571.
[220] E., Riehl. On the structure of simplicial categories associated to quasi-categories. Preprint arXiv:0912.4809 (2009).
[221] J., Rosický and W., Tholen, Left-determined model categories and universal homotopy theories. Trans. Amer. Math. Soc. 355 (2003), 3611–3623.
[222] J., Rosický. On homotopy varieties. Adv. Math. 214 (2007), 525–550.
[223] J., Rosický. On combinatorial model categories. Appl. Cat. Structures 17 (2009) 303–316.
[224] R., Schwänzl, R., Vogt. Homotopy homomorphisms and the hammock localization. Papers in Honor of José Adem, Bol. Soc. Mat. Mexicana 37 (1992), 431–448.
[225] G., Segal. Homotopy everything H-spaces. Preprint.
[226] G., Segal. Classifying spaces and spectral sequences. Publ. Math. IHES 34 (1968), 105–112.
[227] G., Segal. Configuration spaces and iterated loop spaces. Invent. Math. 21 (1973), 213–221.
[228] G., Segal. Categories and cohomology theories. Topology 13 (1974), 293–312.
[229] B., Shipley, S., Schwede. Equivalences of monoidal model categories. Algebr. Geom. Topol. 3 (2003), 287–334.
[230] C., Simpson. Homotopy over the complex numbers and generalized de Rham cohomology. In Moduli of Vector Bundles (M., Maruyama, ed.). LECTURE NOTES IN PURE AND APPLIED MATH. 179, Marcel Dekker (1996), 229–263.
[231] C., Simpson. Flexible sheaves. Preprint q-alg/9608025 (1996).
[232] C., Simpson. The topological realization of a simplicial presheaf. Preprint q-alg/9609004 (1996).
[233] C., Simpson. Algebraic (geometric) n-stacks. Preprint alg-geom/9609014 (1996).
[234] C., Simpson. A closed model structure for n-categories, internal Hom, n-stacks and generalized Seifert-Van Kampen. Preprint alg-geom/9704006 (1997).
[235] C., Simpson. Limits in n-categories. Preprint alg-geom 9708010 (1997).
[236] C., Simpson. Effective generalized Seifert–Van Kampen: how to calculate ΩX. Preprint q-alg/9710011 (1997).
[237] C., Simpson. On the Breen–Baez–Dolan stabilization hypothesis. Preprint math.CT/9810058 (1998).
[238] C., Simpson. Homotopy types of strict 3-groupoids. Preprint, math.CT/9810059 (1998).
[239] J., Smith. Combinatorial model categories. Unpublished manuscript referred to in [95].
[240] A., Stanculescu. A homotopy theory for enrichment in simplicial modules. Preprint arXiv:0712.1319 (2007).
[241] J., Stasheff. Homotopy associativity of H-spaces, I, II. Trans. Amer. Math. Soc. 108 (1963), 275–292, 293–312.
[242] R., Street. Elementary cosmoi, I. In Category Seminar (Sydney, 1972/1973). LECTURE NOTES IN MATH. 420, Springer-Verlag (1974), 134–180.
[243] R., Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Alg. 8 (1976), 149–181.
[244] R., Street. The algebra of oriented simplexes. J. Pure Appl. Alg. 49 (1987), 283–335.
[245] R., Street. Weak ω-categories. Diagrammatic Morphisms and Applications (San Francisco, 2000) Contemporary Mathematics 318, A.M.S. (2003), 207–213.
[246] G., Tabuada. Differential graded versus Simplicial categories. Top. Appl. 157 (2010), 563–593.
[247] G., Tabuada. Homotopy theory of spectral categories. Adv. Math. 221 (2009), 1122–1143.
[248] Z., Tamsamani. Sur des notions de n-catégorie et n-groupoïde non-stricte via des ensembles multi-simpliciaux. Thesis, Université Paul Sabatier, Toulouse (1996), first part available as alg-geom/9512006.
[249] Z., Tamsamani. Equivalence de la théorie homotopique des n-groupoïdes et celle des espaces topologiques n-tronqués. Preprint alg-geom alg-geom/9607010 (1996).
[250] Z., Tamsamani. Sur des notions de n-catégorie et n-groupoïde non-stricte via des ensembles multi-simpliciaux. K-theory 16 (1999), 51–99.
[251] D., Tanre. Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan. LECTURE NOTES IN MATH. 1025, Springer-Verlag (1983).
[252] R., Thomason. Homotopy colimits in the category of small categories. Math. Proc. Cambridge Phil. Soc. 85 (1979), 91–109.
[253] R., Thomason. Uniqueness of delooping machines. Duke Math. J. 46 (1979), 217–252.
[254] R., Thomason. Algebraic K-theory and étale cohomology. Ann. Sci. E.N.S. 18 (1985), 437–552.
[255] B., Toën. Champs affines. Selecta Math. 12 (2006), 39–134.
[256] B., Toën. Vers une axiomatisation de la théorie des catégories supérieures. K-theory 34 (2005), 233–263.
[257] B., Toën. The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167 (2007), 615–667.
[258] B., Toën. Anneaux de définition des dg-algèbres propres et lisses. Bull. Lond. Math. Soc. 40 (2008), 642–650.
[259] T., Trimble. Notes on tetracategories. Available online at http://math.ucr.edu/home/baez/trimble/tetracategories.html.
[260] D., Verity. Weak complicial sets I. Basic homotopy theory. Adv. Math. 219 (2008), 1081–1149.
[261] V., Voevodsky. The Milnor conjecture. Preprint (1996).
[262] R., Vogt. Homotopy limits and colimits. Math. Z. 134 (1973), 11–52.
[263] R., Vogt. The HELP-Lemma and its converse in Quillen model categories. Preprint arXiv:1004.5249v1 (2010).
[264] M., Weber. Yoneda Structures from 2-toposes. Appl. Cat. Struct. 15 (2007), 259–323.
[265] G., Whitehead. Elements of Homotopy Theory. Springer-Verlag (1978).
[266] J. H. C., Whitehead. On the asphericity of regions in a 3-sphere. Fund. Math. 32 (1939), 149–166.
[267] M., Zawadowski. Lax Monoidal Fibrations. Preprint arXiv:0912.4464 (2009).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.