Skip to main content Accessibility help
×
  • Cited by 67
Publisher:
Cambridge University Press
Online publication date:
September 2015
Print publication year:
2015
Online ISBN:
9781107705968

Book description

This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang–Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behavior of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] Adams, D. 1996. Perturbative expansion in gauge theories on compact manifolds. hep-th/9602078.
[2] Affleck, I. 1980. Testing the instanton method. Phys. Lett., B 92, 149–152.
[3] Affleck, I. 1981. Quantum statistical metastability. Phys. Rev. Lett., 46, 388–391.
[4] Affleck, I. 1981. Mesons in the large N collective field method. Nucl. Phys., B 185, 346–364.
[5] Aguado, M. and Asorey, M. 2011. Theta-vacuum and large N limit in CPN−1 sigma models. Nucl. Phys., B 844, 243–265.
[6] Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H. and Oz, Y. 1990. Large N field theories, string theory and gravity. Phys. Rep., 323, 183–386.
[7] Akemann, G., Baik, J. and Di Francesco, P. (eds.) 2011. The Oxford Handbook ofRandom Matrix Theory. Oxford University Press.
[8] Akhiezer, N. I. 1990. Elements of the Theory of Elliptic Functions. American Mathematical Society.
[9] Altland, A. and Simons, B. 2006. Condensed Matter Field Theory. Cambridge University Press.
[10] Álvarez, G. 1988. Coupling-constant behavior of the resonances of the cubic anharmonic oscillator. Phys. Rev., A 37, 4079–4083.
[11] Álvarez, G. 2004. Langer–Cherry derivation of the multi-instanton expansion for the symmetric double well. J. Math. Phys., 45, 3095–3108.
[12] Álvarez-Gaumé, L. and Vázquez-Mozo, M. A. 2012. An Invitation to Quantum Field Theory. Springer-Verlag.
[13] Ambjorn, J., Chekhov, L., Kristjansen, C. F. and Makeenko, Y. 1993 Matrix model calculations beyond the spherical limit. Nucl. Phys., B 404, 127–172.
[14] Aniceto, I., Schiappa, R. and Vonk, M. 2012. The resurgence of instantons in string theory. Commun. Num. Theor. Phys., 6, 339–496.
[15] Appelquist, T. and Chodos, A. 1983. The quantum dynamics of Kaluza–Klein theories. Phys. Rev., D 28, 772–784.
[16] Atiyah, M. F., Hitchin, N. J., Drinfeld, V. G. and Manin, Y. I. 1978. Construction of instantons. Phys. Lett., A 65, 185–187.
[17] Baacke, J. and Lavrelashvili, G. 2004. One-loop corrections to the metastable vacuum decay. Phys. Rev., D 69, 025009.
[18] Balian, R., Parisi, G. and Voros, A. 1978. Discrepancies from asymptotic series and their relation to complex classical trajectories. Phys. Rev. Lett., 41, 1141–1144.
[19] Balian, R., Parisi, G. and Voros, A. 1979. Quartic oscillator. In: Feynman Path Integrals, Lecture Notes in Physics 106, pp. 337–360, Springer-Verlag.
[20] Bar-Natan, D. 1995. On the Vassiliev knot invariants. Topology, 34, 423–472.
[21] Bars, I. and Green, M. B. 1978. Poincare and gauge invariant two-dimensional QCD. Phys. Rev., D 17, 537–545.
[22] Basar, G., Dunne, G. V. and Unsal, M. 2013. Resurgence theory, ghost-instantons, and analytic continuation of path integrals. JHEP, 1310, 041.
[23] Bauer, C., Bali, G. S. and Pineda, A. 2012. Compelling evidence of renormalons in QCD from high order perturbative expansions. Phys. Rev. Lett., 108, 242002.
[24] Belavin, A. A. and Polyakov, A.M. 1977. Quantum fluctuations of pseudoparticles. Nucl. Phys., B 123, 429–444.
[25] Belavin, A. A., Polyakov, A. M., Schwartz, A. S. and Tyupkin, Y. S. 1975. Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett., B 59, 85–87.
[26] Bender, C. M. 1978. Perturbation Theory in large order. Adv. Math., 30, 250–267.
[27] Bender, C. M. and Caswell, W. E. 1978. Asymptotic graph counting techniques in ψ2N field theory. J. Math. Phys., 19, 2579–2586.
[28] Bender, C. M. and Orszag, S. A. 1999. Advanced Mathematical Methods for Scientists and Engineers. Springer-Verlag.
[29] Bender, C. M. and Wu, T. T. 1969. Anharmonic oscillator. Phys. Rev., 184, 1231–1260.
[30] Bender, C.M. and Wu, T. T. 1973. Anharmonic oscillator. 2: a study of perturbation theory in large order. Phys. Rev., D 7, 1620–1636.
[31] Bender, C. M. and Wu, T. T. 1976. Statistical analysis of Feynman diagrams. Phys. Rev. Lett., 37, 117–120.
[32] Beneke, M. 1999. Renormalons. Phys. Rep., 317, 1–142.
[33] Berg, B. and Lüscher, M. 1979. Computation of quantum fluctuations around multiinstanton fields from exact Green's functions: the ℂℙN−1 case. Commun. Math. Phys., 69, 57–80.
[34] Bernard, C. W. 1979. Gauge zero modes, instanton determinants, and QCD calculations. Phys. Rev., D 19, 3013–3019.
[35] Bessis, D., Itzykson, C. and Zuber, J. B. 1980. Quantum field theory techniques in graphical enumeration. Adv. Appl. Math., 1, 109–157.
[36] Bogomolny, E. B. and Fateev, V. A. 1977. Large order calculations in gauge theories. Phys. Lett., B 71, 93–96.
[37] Brézin, E. and Wadia, S. (eds.) 1991. The Large N Expansion in Quantum Field Theory and Statistical Physics. World Scientific.
[38] Brézin, E., Le Guillou, J. C. and Zinn-Justin, J. 1977. Perturbation theory at large order. 1. The ψ2N interaction. Phys. Rev., D 15, 1544–1557.
[39] Brézin, E., Le Guillou, J. C. and Zinn-Justin, J. 1977. Perturbation theory at large order. 2. Role of the vacuum instability. Phys. Rev., D 15, 1558–1564.
[40] Brézin, E., Itzykson, C., Parisi, G. and Zuber, J. B. 1978. Planar diagrams. Commun. Math. Phys., 59, 35–51.
[41] Brower, R. C., Spence, W. L. and Weis, J. H. 1979. Bound states and asymptotic limits for QCD in two-dimensions. Phys. Rev., D 19, 3024–3049.
[42] Caliceti, E., Graffi, S. and Maioli, M. 1980. Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys., 75, 51–66.
[43] Caliceti, E., Meyer-Hermann, M., Ribeca, P., Surzhykov, A. and Jentschura, U. D. 2007. From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep., 446, 1–96.
[44] Callan, C. G. and Coleman, S. R. 1977. The fate of the false vacuum. 2. First quantum corrections. Phys. Rev., D 16, 1762–1768.
[45] Callan, C. G., Dashen, R. F. and Gross, D. J. 1976. The structure of the gauge theory vacuum.Phys. Lett., B 63, 334–340.
[46] Chadha, S., Di Vecchia, P., D'Adda, A. and Nicodemi, F. 1977. Zeta function regularization of the quantum fluctuations around the Yang–Mills pseudoparticle. Phys. Lett., B 72, 103–108.
[47] Christos, G. A. 1984. Chiral symmetry and the U(1) problem. Phys. Rep., 116, 251–336.
[48] Cicuta, G. M. 1982. Topological expansion for SO(N) and Sp(2n) gauge theories. Lett. Nuovo Cimento, 35 87–92.
[49] Coleman, S. R. 1977. The fate of the false vacuum. 1. Semiclassical theory. Phys. Rev., D 15, 2929–2936.
[50] Coleman, S. 1985. Aspects of Symmetry. Cambridge University Press.
[51] Coleman, S. R. and De Luccia, F. 1980. Gravitational effects on and of vacuum decay. Phys. Rev., D 21, 3305–3315.
[52] Coleman, S. R., Glaser, V. and Martin, A. 1978. Action minima among solutions to a class of Euclidean scalar field equations. Commun. Math. Phys., 58, 211–221.
[53] Collins, J. C. and Soper, D. E. 1978. Large order expansion in perturbation theory. Ann. Phys., 112, 209–234.
[54] Cooper, F. and Freedman, B. 1983. Aspects of supersymmetric quantum mechanics. Ann. Phys., 146, 262–288.
[55] Cooper, F., Khare, A. and Sukhatme, U. 1995. Supersymmetry and quantum mechanics. Phys. Rep., 251, 267–385.
[56] Costin, O. 2009. Asymptotics and Borel Summability. Chapman-Hall.
[57] Cvitanovic, P. 1976. Group theory for Feynman diagrams in non-Abelian gauge theories. Phys. Rev., D 14, 1536–1553.
[58] Cvitanovic, P. 2008. Group Theory: Birdtracks, Lie's and Exceptional groups. Princeton University Press.
[59] Cvitanovic, P. et al. 2011. Chaos: Classical and Quantum. Gone with the Wind Press. http://chaosbook.org/.
[60] D'Adda, A., Di Vecchia, P. and Luscher, M. 1978. A 1/N expandable series of nonlinear sigma models with instantons. Nucl. Phys., B 146, 63–76.
[61] D'Adda, A., Di Vecchia, P. and Luscher, M. 1979. Confinement and chiral symmetry breaking in ℂℙn−1 models with quarks. Nucl. Phys., B 152, 125–144.
[62] Daniel, M. and Viallet, C. M. 1980. The geometrical setting of gauge theories of the Yang–Mills type. Rev. Mod. Phys., 52, 175–197.
[63] Dashen, R. F., Hasslacher, B. and Neveu, A. 1974. Nonperturbative methods and extended hadron models in field theory. 1. Semiclassical functional methods. Phys. Rev., D 10, 4114–4129.
[64] David, F. 1991. Phases of the large N matrix model and non-perturbative effects in 2-D gravity. Nucl. Phys., B 348, 507–524.
[65] David, F. 1993. Non-perturbative effects in matrix models and vacua of twodimensional gravity. Phys. Lett., B 302, 403–410.
[66] Delabaere, E., Dillinger, H. and Pham, F. 1997. Exact semiclassical expansions for one-dimensional quantum oscillators. J. Math. Phys., 38, 6126–6184.
[67] Del Debbio, L., Giusti, L. and Pica, C. 2005. Topological susceptibility in the SU(3) gauge theory. Phys. Rev. Lett., 94, 032003.
[68] Di Francesco, P. 2006. 2D quantum gravity, matrix models and graph combinatorics. In: Applications of Random Matrices in Physics, E., Brézin et al. (eds.), pp. 33–88. Springer-Verlag.
[69] Di Francesco, P., Ginsparg, P. H. and Zinn-Justin, J. 1995. 2-D gravity and random matrices. Phys. Rep., 254, 1–133.
[70] Dingle, R. B. 1973. Asymptotic Expansions: their Derivation and Interpretation. Academic Press.
[71] Di Vecchia, P. 1979. An effective Lagrangian with no U(1) problem in ℂℙn−1 models and QCD. Phys. Lett., B 85, 357–360.
[72] Di Vecchia, P. and Veneziano, G. 1980. Chiral dynamics in the large n limit. Nucl. Phys., B 171, 253–272.
[73] Donaldson, S. K. and Kronheimer, P. B. 1990. The Geometry of Four-Manifolds. Oxford University Press.
[74] Donoghue, J. F., Golwich, E. and Holstein, B. R. 1994. Dynamics of the Standard Model. Cambridge University Press.
[75] Dorey, N., Hollowood, T. J., Khoze, V. V. and Mattis, M. P. 2002. The calculus of many instantons. Phys. Rep., 371, 231–459.
[76] Dorigoni, D. 2014. An introduction to resurgence, trans-series and alien calculus. arXiv:1411.3585 [hep-th].
[77] Dunne, G. V. 2002. Perturbative–nonperturbative connection in quantum mechanics and field theory. In: Continuous Advances in QCD, K. A., Olive et al. (eds.), pp. 478– 505. World Scientific.
[78] Dunne, G. V. 2008. Functional determinants in quantum field theory. J. Phys. A: Math. Theor., 41, 304006.
[79] Dunne, G. V. and Min, H. 2005. Beyond the thin-wall approximation: precise numerical computation of prefactors in false vacuum decay. Phys. Rev., D 72, 125004.
[80] Dunne, G. V. and Unsal, M. 2012. Resurgence and trans-series in quantum field theory: the ℂℙN−1 model. JHEP, 1211, 170.
[81] Dunne, G. V. and Unsal, M. 2014. Uniform WKB, multi-instantons, and resurgent trans-series. Phys. Rev., D 89, 105009.
[82] Dyson, F. J. 1952. Divergence of perturbation theory in quantum electrodynamics. Phys. Rev., 85, 631–632.
[83] Einhorn, M. B. and Wudka, J. 2003. On the Vafa–Witten theorem on spontaneous breaking of parity. Phys. Rev., D 67, 045004.
[84] Eynard, B. 2004. Topological expansion for the 1-Hermitian matrix model correlation functions. JHEP, 0411, 031.
[85] Eynard, B. and Orantin, N. 2007. Invariants of algebraic curves and topological expansion. Commun. Num. Theor. Phys., 1, 347–452.
[86] Feynman, R. P. 1998. Statistical Mechanics. Westview Press.
[87] Forrester, P. J. 2010. Log-Gases and Random Matrices. Princeton University Press.
[88] Forrester, P. J. and Warnaar, S. O. 2008. The importance of the Selberg integral. Bull. Am. Math. Soc. (N.S.), 45, 489–534.
[89] Frishman, Y. and Sonnenschein, J. 2010. Non-Perturbative Field Theory. Cambridge University Press.
[90] Fujikawa, K. 1980. Path integral for gauge theories with fermions. Phys. Rev., D 21, 2848–2858.
[91] Fujikawa, K. and Suzuki, H. 2004. Path Integrals and Quantum Anomalies. Oxford University Press.
[92] Gasser, J. and Leutwyler, H. 1984. Chiral perturbation theory to one loop. Ann. Phys., 158, 142–210.
[93] Gibbons, G. W. and Hawking, S. W. 1977. Action integrals and partition functions in quantum gravity. Phys. Rev., D 15, 2752–2756.
[94] Ginsparg, P. H. and Moore, G. W. 1993. Lectures on 2-D gravity and 2-D string theory. hep-th/9304011.
[95] Ginsparg, P. H. and Zinn-Justin, J. 1990. 2-d gravity + 1-d matter. Phys. Lett., B 240, 333–340.
[96] Giusti, L., Rossi, G. C. and Veneziano, G. 2002. The UA(1) problem on the lattice with Ginsparg–Wilson fermions. Nucl. Phys., B 628, 234–252.
[97] Giusti, L., Rossi, G. C. and Testa, M. 2004. Topological susceptibility in full QCD with Ginsparg–Wilson fermions. Phys. Lett., B 587, 157–166.
[98] Giusti, L., Petrarca, S. and Taglienti, B. 2007. Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice. Phys. Rev., D 76, 094510.
[99] Gopakumar, R. 1996. The master field revisited. Nucl. Phys. Proc. Suppl., 45B, 244–250.
[100] Graffi, S., Grecchi, V. and Simon, B. 1970. Borel summability: application to the anharmonic oscillator. Phys. Lett., B 32, 631–634.
[101] Gross, D. J. and Matytsin, A. 1994. Instanton induced large N phase transitions in two-dimensional and four-dimensional QCD. Nucl. Phys., B 429, 50–74.
[102] Gross, D. J. and Witten, E. 1980. Possible third order phase transition in the large N lattice gauge theory. Phys. Rev., D 21, 446–453.
[103] Gross, D. J., Pisarski, R. D. and Yaffe, L. G. 1981. QCD and instantons at finite temperature. Rev. Mod. Phys., 53, 43–80.
[104] Gross, D. J., Perry, M. J. and Yaffe, L. G. 1982. Instability of flat space at finite temperature. Phys. Rev., D 25, 330–355.
[105] Grunberg, G. 1994. Perturbation theory and condensates. Phys. Lett., B 325, 441–448.
[106] Herbst, I. W. and Simon, B. 1978. Some remarkable examples in eigenvalue perturbation theory. Phys. Lett., B 78, 304–306.
[107] Herrera-Siklody, P., Latorre, J. I., Pascual, P. and Taron, J. 1997. Chiral effective Lagrangian in the large N(c) limit: the nonet case. Nucl. Phys., B 497, 345–386.
[108] Huang, S., Negele, J. W. and Polonyi, J. 1988. Meson structure in QCD in twodimensions. Nucl. Phys., B 307, 669–704.
[109] Jack, I. and Osborn, H. 1984. Background field calculations in curved space-time. 1. General formalism and application to scalar fields. Nucl. Phys., B 234, 331–364.
[110] Jackiw, R. 1977. Quantum meaning of classical field theory. Rev. Mod. Phys., 49, 681–706.
[111] Jackiw, R. 1985. Topological investigations of quantized gauge theories. In: Current Algebra and Anomalies, S. B., Treiman, R., Jackiw, B., Zumino and E, Witten (eds.), pp. 240–360. World Scientific.
[112] Jackiw, R. and Rebbi, C. 1976. Vacuum periodicity in a Yang–Mills quantum theory. Phys. Rev. Lett., 37, 172–175.
[113] Jafarizadeh, M. A. and Fakhri, H. 1997. Calculation of the determinant of shape invariant operators. Phys. Lett., A 230, 157–163.
[114] Jentschura, U. D. and Zinn-Justin, J. 2011. Multi-instantons and exact results. IV: Path integral formalism. Ann. Phys., 326, 2186–2242.
[115] Jentschura, U. D., Surzhykov, A. and Zinn-Justin, J. 2010. Multi-instantons and exact results. III: Unification of even and odd anharmonic oscillators. Ann. Phys., 325, 1135–1172.
[116] Jurkiewicz, J. and Zalewski, K. 1983. Vacuum structure of the U(N → infinity) gauge theory on a two-dimensional lattice for a broad class of variant actions. Nucl. Phys., B 220, 167–184.
[117] Kalashnikova, Y. S. and Nefediev, A. V. 2002. Two-dimensional QCD in the Coulomb gauge. Phys. Usp., 45, 347–368.
[118] Kalashnikova, Y. S., Nefediev, A. V. and Volodin, A. V. 2000. Hamiltonian approach to the bound state problem in QCD2. Phys. Atom. Nucl., 63, 1623–1628.
[119] Kaul, R. K. and Rajaraman, R. 1983. Soliton energies in supersymmetric theories. Phys. Lett., B 131, 357–361.
[120] Konishi, K. and Paffuti, G. 2009. Quantum Mechanics. A New Introduction. Oxford University Press.
[121] Koplik, J., Neveu, A. and Nussinov, S. 1977. Some aspects of the planar perturbation series. Nucl. Phys., B 123, 109–131.
[122] Le Guillou, J. C. and Zinn-Justin, J. (eds.) 1990. Large Order Behavior of Perturbation Theory. North-Holland.
[123] Lenz, F., Thies, M., Yazaki, K. and Levit, S. 1991. Hamiltonian formulation of two-dimensional gauge theories on the light cone. Ann. Phys., 208, 1–89.
[124] Li, M., Wilets, M. and Birse, M. C. 1987. QCD In two-dimensions in the axial gauge. J. Phys., G 13, 915–923.
[125] Lipatov, L. N. 1977. Divergence of the perturbation theory series and the quasiclassical theory. Sov. Phys. JETP, 45, 216–223.
[126] Lucini, B. and Panero, M. 2013. SU(N) gauge theories at large N. Phys. Rep., 526, 93–163.
[127] Lüscher, M. 1982. Dimensional regularization in the presence of large background fields. Ann. Phys., 142, 359–392.
[128] Lüscher, M. 1982. A semiclassical formula for the topological susceptibility in a finite space-time volume. Nucl. Phys., B 205, 483–503.
[129] Lüscher, M. 2004. Topological effects in QCD and the problem of short-distance singularities. Phys. Lett., B 593, 296–301.
[130] Lüscher, M. 2010. Properties and uses of the Wilson flow in lattice QCD. JHEP, 1008, 071.
[131] Lüscher, M. and Palombi, F. 2010. Universality of the topological susceptibility in the SU(3) gauge theory. JHEP, 1009, 110.
[132] Majumdar, S. N. and Schehr, G. 2014. Top eigenvalue of a random matrix: large deviations and third order phase transitions. J. Stat. Mech., P01012.
[133] Majumdar, S. N. and Vergassola, M. 2009. Large deviations of the maximum eigenvalue for Wishart and Gaussian random matrices. Phys. Rev. Lett., 102, 060601.
[134] Manohar, A. V. 1998. Large N QCD. arXiv:hep-ph/9802419.
[135] Mariño, M. 2004. Les Houches lectures on matrix models and topological strings. hep-th/0410165.
[136] Mariño, M. 2008. Nonperturbative effects and nonperturbative definitions in matrix models and topological strings. JHEP, 0812, 114.
[137] Mariño, M. 2014. Lectures on non-perturbative effects in large N gauge theories, matrix models and strings. Fortschr. Phys., 62, 455–540.
[138] Mariño, M. and Putrov, P. 2009. Multi-instantons in large N matrix quantum mechanics. arXiv:0911.3076 [hep-th].
[139] Mariño, M., Schiappa, R. and Weiss, M. 2008. Non-perturbative effects and the large-order behavior of matrix models and topological strings. Commun. Num. Theor. Phys., 2, 349–419.
[140] McKane, A. J. and Tarlie, M. B. 1995. Regularisation of functional determinants using boundary perturbations. J. Phys., A 28, 6931–6942.
[141] Meggiolaro, E. 1998. The topological susceptibility of QCD: from Minkowskian to Euclidean theory. Phys. Rev., D 58, 085002.
[142] Mehta, M. L. 2004. Random Matrices. Elsevier.
[143] Miller, P. 2006. Applied Asymptotic Analysis. American Mathematical Society.
[144] Münster, G. 1982. The 1/N expansion and instantons in ℂℙN−1 models on a sphere. Phys. Lett., B 118, 380–384.
[145] Münster, G. 1983. A study of ℂℙN−1 models on the sphere within the 1/N expansion. Nucl. Phys., B 218, 1–31.
[146] Negele, J. W. 1982. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys., 54, 913–1015.
[147] Negele, J. W. and Orland, H. 1998. Quantum Many-Particle Systems. Westview Press.
[148] Nepomechie, R. I. 1985. Calculating heat kernels. Phys. Rev., D 31, 3291–3292.
[149] Neuberger, H. 1980. Instantons as a bridgehead at N = infinity. Phys. Lett., B 94, 199–202.
[150] Neuberger, H. 1981. Nonperturbative contributions in models with a nonanalytic behavior at infinite N. Nucl. Phys., B 179, 253–282.
[151] Osborn, H. 1981. Semiclassical functional integrals for selfdual gauge fields. Ann. Phys., 135, 373–415.
[152] Parisi, G. 1978. Singularities of the borel transform in renormalizable theories. Phys. Lett., B 76, 65–66.
[153] Perelomov, A. M. 1987. Chiral models: geometrical aspects. Phys. Rep., 146, 135–213.
[154] Peskin, M. E. and Schroeder, D. V. 1995. An Introduction to Quantum Field Theory. Addison-Wesley.
[155] Polyakov, A. M. 1977. Quark confinement and topology of gauge groups. Nucl. Phys., B 120, 429–458.
[156] Polyakov, A. M. 1987. Gauge Fields and Strings. Harwood Academic Publishers.
[157] Rajaraman, R. 1982. Solitons and Instantons. North-Holland.
[158] Ramond, P. 2001. Field Theory. A Modern Primer, second edition. Westview Press.
[159] Salomonson, P. and van Holten, J. W. 1982. Fermionic coordinates and supersymmetry in quantum mechanics. Nucl. Phys., B 196, 509–531.
[160] Schafer, T. and Shuryak, E. V. 1998. Instantons in QCD. Rev. Mod. Phys., 70, 323–426.
[161] Schwab, P. 1982. Semiclassical approximation for the topological susceptibility in ℂℙN−1 models on a sphere. Phys. Lett., B 118, 373–379.
[162] Schwab, P. 1983. Two instanton contribution to the topological susceptibility in ℂℙN−1 models on a sphere. Phys. Lett., B 126, 241–246.
[163] Schwarz, A. S. 1979. Instantons and fermions in the field of instanton. Commun. Math. Phys., 64, 233–268.
[164] Seara, T. M. and Sauzin, D. 2003. Ressumació de Borel i teoria de la ressurgència. Bull. Soc. Catlana Mat., 18, 131–153.
[165] Seiler, E. 2002. Some more remarks on the Witten–Veneziano formula for the etaprime mass. Phys. Lett., B 525, 355–359.
[166] Shenker, S. H. 1992. The strength of nonperturbative effects in string theory. In: Random Surfaces and Quantum Gravity, O., Álvarez, E., Marinari and P., Windey (eds.), pp. 191–200. Plenum Press.
[167] Shifman, M. 2012. Advanced Topics in Quantum Field Theory. Cambridge University Press,
[168] Shore, G. M. 1979. Dimensional regularization and instantons. Ann. Phys., 122, 321–372.
[169] Simon, B. 1982. Large orders and summability of eigenvalue perturbation theory: a mathematical overview. Int. J. Quant. Chem., 21, 3–25.
[170] Stone, M. 1977. Semiclassical methods for unstable states. Phys. Lett., B 67, 186–188.
[171] Stone, M. and Reeve, J. 1978. Late terms in the asymptotic expansion for the energy levels of a periodic potential. Phys. Rev., D 18, 4746–4751.
[172] Takhtajan, L. 2008. Quantum Mechanics for Mathematicians. American Mathematical Society.
[173] 't Hooft, G. 1974. A planar diagram theory for strong interactions. Nucl. Phys., B 72, 461–473.
[174] 't Hooft, G. 1974. A two-dimensional model for mesons. Nucl. Phys., B 75, 461–470.
[175] 't Hooft, G. 1976. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev., D 14, 3432–3450.
[176] Tong, D. 2005. TASI lectures on solitons: instantons, monopoles, vortices and kinks. hep-th/0509216.
[177] Vafa, C. and Witten, E. 1984. Parity conservation in QCD. Phys. Rev. Lett., 53, 535–536.
[178] Vandoren, S. and van Nieuwenhuizen, P. 2008. Lectures on instantons. arXiv:0802.1862 [hep-th].
[179] Vassilevich, D. V. 2003. Heat kernel expansion: user's manual. Phys. Rep., 388, 279–360.
[180] Veneziano, G. 1979. U(1) without instantons. Nucl. Phys., B 159, 213–224.
[181] Vicari, E. 1999. The Euclidean two point correlation function of the topological charge density. Nucl. Phys., B 554, 301–312.
[182] Vicari, E. and Panagopoulos, H. 2009. Theta dependence of SU(N) gauge theories in the presence of a topological term. Phys. Rep., 470, 93–150.
[183] Wadia, S. R. 1979. A study of U(N) lattice gauge theory in 2-dimensions. EFI-79/44-CHICAGO, arXiv:1212.2906 [hep-th].
[184] Wadia, S. R. 1980. N = infinity phase transition in a class of exactly soluble model lattice gauge theories. Phys. Lett., B 93, 403–410.
[185] Weinberg, S. 1975. The U(1) problem. Phys. Rev., D 11, 3583–3593.
[186] Weinberg, S. 1996. The Quantum Theory of Fields. Volume II: Modern Applications. Cambridge University Press.
[187] Witten, E. 1979. Instantons, the quark model, and the 1/N expansion. Nucl. Phys., B 149, 285–320.
[188] Witten, E. 1979. Current algebra theorems for the U(1) goldstone boson. Nucl. Phys., B 156, 269–283.
[189] Witten, E. 1979. Baryons in the 1/N expansion. Nucl. Phys., B 160, 57–115.
[190] Witten, E. 1980. The 1/N expansion in atomic and particle physics. In: Recent Developments in Gauge Theories, G., 't Hooft et al. (eds.), pp. 403–419. Plenum Press.
[191] Witten, E. 1980. Quarks, atoms, and the 1/N expansion. Phys. Today, 33, 38–43.
[192] Witten, E. 1980. Large N chiral dynamics. Ann. Phys., 128, 363–375.
[193] Witten, E. 1981. Dynamical breaking of supersymmetry. Nucl. Phys., B 188, 513–554.
[194] Witten, E. 1982. Instability of the Kaluza–Klein vacuum. Nucl. Phys., B 195, 481–492.
[195] Witten, E. 1998. Theta dependence in the large N limit of four-dimensional gauge theories. Phys. Rev. Lett., 81, 2862–2865.
[196] Yaris, R., Bendler, J., Lovett, R., Bender, C. M. and Fedders, P. A. 1978. Resonance calculations for arbitrary potentials. Phys. Rev., A 18, 1816–1825.
[197] Ynduráin, F. J. 2006. The Theory of Quark and Gluon Interactions. Springer-Verlag.
[198] Zinn-Justin, J. 1983. Multi-instanton contributions in quantum mechanics. 2. Nucl. Phys., B 218, 333–348.
[199] Zinn-Justin, J. 2002. Quantum Field Theory and Critical Phenomena. Oxford University Press.
[200] Zinn-Justin, J. and Jentschura, U. D. 2004. Multi-instantons and exact results I: conjectures, WKB expansions, and instanton interactions. Ann. Phys., 313, 197–267.
[201] Zinn-Justin, J. and Jentschura, U. D. 2004. Multi-instantons and exact results II: specific cases, higher-order effects, and numerical calculations. Ann. Phys., 313, 269–325.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.