Skip to main content Accessibility help
×
  • Cited by 8
Publisher:
Cambridge University Press
Online publication date:
December 2012
Print publication year:
2012
Online ISBN:
9781139048149

Book description

Balancing concise mathematical analysis with the real-world examples and practical applications that inspire students, this textbook provides a clear and approachable introduction to the physics of waves. The author shows through a broad approach how wave phenomena can be observed in a variety of physical situations and explains how their characteristics are linked to specific physical rules, from Maxwell's equations to Newton's laws of motion. Building on the logic and simple physics behind each phenomenon, the book draws on everyday, practical applications of wave phenomena, ranging from electromagnetism to oceanography, helping to engage students and connect core theory with practice. Mathematical derivations are kept brief and textual commentary provides a non-mathematical perspective. Optional sections provide more examples along with higher-level analyses and discussion. This textbook introduces the physics of wave phenomena in a refreshingly approachable way, making it ideal for first- and second-year undergraduate students in the physical sciences.

Reviews

‘This gem of a book will enable students to appreciate the core theme: that understanding wave motion is fundamental to almost every contemporary aspect of physics. This is an ideal purchase for undergraduates as it fills a gap left by traditional textbooks treating the same topics in a stereotyped manner which is too mathematical. Freegarde’s lucid prose alongside the simple, effective and contemporary examples are noteworthy features. The numerous end-of-chapter exercises will be useful for instructors and students alike.’

Ifan G. Hughes - Durham University

‘Freegarde's text on waves allows construction of a more cohesive physics curriculum, one with significant 'scaffolding', designed to revisit, reinforce and refine student understanding of core concepts, both within the bounds of this foundational course and, quite naturally, in subsequent courses that follow within the physics major. This stands in contrast to traditional modern physics … with a set of instructional labs consisting of historically entrenched experiments that are largely disconnected from one another. For example, I cannot think of any department which asks its students to do the Millikan oil drop experiment and then later asks them to 'build' upon that in any significant sense. Focused treatment of oscillations and waves allows early development of core formalism necessary for the major, which also lends itself toward supporting a more cohesive set instructional labs, building toward further work in E&M, optics, and quantum mechanics.’

Gabe Spalding - Illinois Wesleyan University

‘Tim Freegarde is a physicist who is clearly fascinated by waves. His book is an introductory text that covers a broad range of wave phenomena throughout optics, electromagnetism, sound, oceanography and much more. It is written in an engaging style and includes many unexpected topics at this level, such as tsunamis, frayed guitar strings and retarded electromagnetic potentials. Freegarde does not shy away from detailed mathematical treatments where appropriate and physics students who invest in this book early in their undergraduate career will find themselves returning to it on many occasions.’

Richard Thompson - Imperial College London

'There are already some excellent textbooks on wave phenomena available, but Freegarde has introduced a helpful new volume that balances brief mathematical derivations with new examples and practical applications. He expanded in a fascinating manner his undergraduate physics lecture notes from the past fifteen years. This book will help students to appreciate that understanding wave motion is fundamental to almost every branch of physics. It covers a broad range of wave phenomena in optics, electromagnetism, sound, quantum mechanics, oceanography and other fields. The exercises at the end of each chapter will be useful for instructors and students alike. I recommend it as a textbook for undergraduate students in the physical sciences.'

Reva Garg Source: Optics and Photonics News

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] Arfken, G. B., Weber, H.-J., and Harris, F. 2005. Mathematical Methods for Physicists. Sixth edn. New York: Academic Press.
[2] Atal, B. S., and Schroeder, M. R. 1966. Apparent sound source translator.US Patent 3, 236, 949.
[3] Bally, J., O'Dell, C. R., and McCaughrean, M. J. 2000. Disks, microjets, windblown bubbles, and outflows in the Orion Nebula. Astronomical Journal, 119, 2919–2959.
[4] Benade, A. H. 1960. The physics of woodwinds. Scientific American, 203(4), 145–154.
[5] Benade, A. H. 1973. The physics of brasses. Scientific American, 229(1), 24–35.
[6] Benade, A. H. 1992. Horns, Strings and Harmony. New York: Dover.
[7] Billingham, J., and King, A. C. 2000. Wave Motion. Cambridge: Cambridge University Press.
[8] Boas, M. L. 2005. Mathematical Methods in the Physical Sciences. Third edn. Chichester: Wiley.
[9] Boyle, R. 1664. Experiments and Considerations Touching Colours. London: Henry Herringman. Available from http://infomotions.com/etexts/gutenberg/dirs/1/4/5/0/14504/14504.htm.
[10] Bragg, W. L. 1922. The diffraction of X-rays by crystals. Nobel lecture. Available from http://nobelprize.org/nobel_prizes/physics/laureates/1915/wl-bragg-lecture.pdf.
[11] Čerenkov, P. A. 1958. Radiation of particles moving at a velocity exceeding that of light, and some of the possibilities for their use in experimental physics. Nobel lecture. Available from http://www.nobelprize.org/nobel_prizes/physics/laureates/1958/cerenkov-lecture.html.
[12] Chanaud, R. C. 1970. Aerodynamic whistles. Scientific American, 222(1), 40–46.
[13] Concise Oxford Dictionary of Current English. 1990. Eighth edn. Oxford: Oxford University Press.
[14] Coulomb, C.-A. de. 1785. Premier mémoire sur l'électricitéetlemagnétisme. Histoire de l'Académie Royale des Sciences, pp. 569–577. Available from http://books.google.co.uk/books?id=by5EAAAAcAAJ&pg=PA569.
[15] Coulson, C. A., and Jeffrey, A. 1977. Waves. London: Longman.
[16] Crawford, F. S. Jr., 1965. Waves. Berkeley Physics Course. New York: McGraw-Hill.
[17] Dholakia, K., Spalding, G., and MacDonald, M. 2002. Optical tweezers: the next generation. Physics World, 15, 31–35.
[18] Doppler, C. A. 1842. Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abhandlungen der königlichen böhmischen Gesellschaft der Wissenschaften zu Prag, 2, 465–482. Available from http://www.archive.org/details/ueberdasfarbigel00doppuoft.
[19] Einstein, A.Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322(10), 891–921.
[20] Farkas, I., Helbing, D., and Vicsek, T. 2002. Mexican waves in an excitable medium. Nature, 419, 131–132. Further details are given in the website http://angel.elte.hu/wave/.
[21] Fermat, P. de. 1657. Letter to Marin Cureau de la Chambre. Available from http://wlym.com/~animations/fermat/16570800Fermat todelaChambre.pdf.
[22] Feynman, R. P. 1990. QED – The Strange Theory of Light and Matter. London: Penguin.
[23] Feynman, R. P., Leighton, R. B., and Sands, M. 1971. Lectures on Physics. Reading, MA: Addison-Wesley.
[24] Fleisch, D. 2008. A Student's Guide to Maxwell's Equations. Cambridge: Cambridge University Press.
[25] Fletcher, N. H., and Thwaites, S. 1983. The physics of organ pipes. Scientific American, 248(1), 94–103.
[26] Fourier, J. B. J. 1822. Théorie analytique de la chaleur. Paris: Firmin Didot, père et fils. Available from http://www.archive.org/stream/thorieanalytiqu00fourgoog.
[27] Franklin, B., Brownrigg, W., and Mr Farish, . 1774. On the stilling of waves by means of oil. Philosophical Transactions of the Royal Society of London, 64, 445–460. Available from http://rstl.royalsocietypublishing.org/content/64.toc.
[28] Franklin, R. E., and Gosling, R. G. 1953. Molecular configuration in sodium thymonucleate. Nature, 171, 740–741.
[29] French, A. P. 1971. Vibrations and Waves. London: Chapman and Hall.
[30] Frisch, D. H., and Wilets, L. 1956. Development of the Maxwell–Lorentz equations from special relativity and Gauss's law. American Journal of Physics, 24(8), 574–579.
[31] Gabor, D. 1948. The new microscopic principle. Nature, 161, 777–778.
[32] Gabor, D. 1971. Holography, 1948–1971. Nobel lecture. Available from http://nobelprize.org/nobel_prizes/physics/laureates/1971/gabor-lecture.pdf.
[33] Goos, H. F. G., and Häanchen, H. 1947. Ein neuer und fundamentaler Versuch zur Totalreflexion. Annalen der Physik, 436(7–8), 333–346.
[34] Gouy, L. G. 1890a. Sur la propagation anomale des ondes. Comptes rendus hebdomadaires des séances de l'Académie des Sciences de Paris, 111, 33–35. Available from http://gallica.bnf.fr/ark:/12148/bpt6k3067d.image.
[35] Gouy, L. G. 1890b. Sur une propriété nouvelle des ondes lumineuses. Comptes rendus hebdomadaires des séances de l'Académie des Sciences de Paris, 110, 1251–1253. Available from http://gallica.bnf.fr/ark:/12148/bpt6k30663.image.
[36] Grier, D. G. 2003. A revolution in optical manipulation. Nature, 424, 810–816.
[37] Grimaldi, F. M. 1665. Physico-mathesis de Lumine, Coloribus, et Iride. Bologna: Hæredis Victorij Benatij. Available from http://fermi.imss.fi.it/rd/bdv?/bdviewer/bid=300682\#.
[38] Häansch, T. W., and Schawlow, A. L. 1975. Cooling of gases by laser radiation. Optics Communications, 13, 68–69.
[39] Heaviside, O. 1912. Electromagnetic Theory, vol. III. London: “The Electrician” Printing and Publishing Company. Available from http://openlibrary.org/books/OL7145891M/Electromagnetic_theory.
[40] Hecht, E. 2002. Optics. Fourth edn. San Francisco, CA: Addison-Wesley.
[41] Helene, O., and Yamashita, M. T. 2006. Understanding the tsunami with a simple model. European Journal of Physics, 27, 855–863.
[42] Helmholtz, H. 1954. On the Sensations of Tone. New York: Dover.
[43] Hooke, R. 1665. Micrographia. London: John Martyn and James Allestry. Available from http://www.gutenberg.org/files/15491/15491-h/15491-h.htm\#obsIX.
[44] Horowitz, P., and Hill, W. 1989. The Art of Electronics. Second edn. Cambridge: Cambridge University Press.
[45] Houghton, J. T. 2002. The Physics of Atmospheres. Third edn. Cambridge: Cambridge University Press.
[46] Huygens, C. 1690. TraitédelaLumière. Leiden: Pieter van der Aa. Available from http://gallica.bnf.fr/ark:/12148/bpt6k5659616j. Translated as Treatise on Light by S. P. Thompson, Macmillan, London, 1912; reprinted by various publishers. Available from http://www.gutenberg.org/ebooks/14725.
[47] Jackson, J. D. 1998. Classical Electrodynamics. Third edn. New York: John Wiley & Sons.
[48] James, J. F. 2002. A Student's Guide to Fourier Transforms. Second edn. Cambridge: Cambridge University Press.
[49] Janah, A. R., Padmanabhan, T., and Singh, T. P. 1988. On Feynman's formula for the electromagnetic field of an arbitrarily moving charge. American Journal of Physics, 56(11), 1036–1038.
[50] Sir Jeans, J. H. 1968. Science and Music. New York: Dover.
[51] Jones, R. C. 1941. A new calculus for the treatment of optical systems. Journal of the Optical Society of America, 31(7), 488–493.
[52] Khintchine, A. Ya. 1934. Korrelationstheorie der stationäaren stochastischen Prozesse. Mathematische Annalen, 109, 604–615.
[53] Kirchhoff, G. R. 1882. Zur Theorie der Lichtstrahlen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, II, 641–669.
[54] Laplace, P.-S. 1799. Mécanique céleste, vol. 1. Paris: Crapelet. Available from http://www.archive.org/stream/traitdemcani01lapl#page/136/mode/2up, Chapter II, p. 136.
[55] Lay, T., Kanamori, H., Ammon, C. J. et al. 2005. The Great Sumatra–Andaman Earthquake of 26 December 2004. Science, 308, 1127–1133.
[56] Lipson, A., Lipson, S. G., and Lipson, H. 2011. Optical Physics. Fourth edn. Cambridge: Cambridge University Press.
[57] Longhurst, R. S. 1974. Geometrical and Physical Optics. Third edn. London: Longman.
[58] Lorentz, H. A. 1895. Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern. Leiden: E. J. Brill. Reprinted by Adament Media Corporation, 2001.
[59] Lorrain, P., Corson, D. R., and Lorrain, F. 1988. Electromagnetic Fields and Waves. Third edn. San Francisco, CA: W. H. Freeman.
[60] Main, I. G. 1993. Vibrations and Waves in Physics. Third edn. Cambridge: Cambridge University Press.
[61] Margaritondo, G. 2005. Explaining the physics of tsunamis to undergraduate and non-physics students. European Journal of Physics, 26, 401–407.
See corrigendum in European Journal of Physics, 28, 779 (2007).
[62] Matthews, P. T. 1974. Introduction to Quantum Mechanics. Third edn. New York: McGraw-Hill.
[63] Michelson, A. A. 1881. The relative motion of the Earth and of the luminiferous ether. American Journal of Science, 22, 120–129. Available from http://www.archive.org/stream/americanjournal62unkngoog\#page/n142/.
[64] Michelson, A. A., and Morley, E. W. 1887. On the relative motion of the Earth and the luminiferous ether. American Journal of Science, 34, 333–345. Available from http://www.aip.org/history/gap/PDF/michelson.pdf.
[65] Newton, I. 1704. Opticks. London: Sam Smith and Benjamin Walford. Available from http://www.rarebookroom.org/Control/nwtopt/index.html.
[66] Pain, H. J. 2005. Vibrations and Waves. Sixth edn. Chichester: John Wiley and Sons.
[67] Panofsky, W. K. H., and Phillips, M. N. 2005. Classical Electricity and Magnetism. Second (revised) edn. New York: Dover.
[68] Pedrotti, F. L., Pedrotti, L. M., and Pedrotti, L. S. 2006. Introduction to Optics. Third edn. San Francisco, CA: Addison-Wesley.
[69] Pliny the Elder. 77 A.D. The wonders of fountains and rivers, Chapter 106 of Naturalis Historia, vol. II. Available from http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.02.0138. Translated as Natural History by John Bostock, Taylor and Francis, London (1855), Available from http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.02.0137.
[70] Poincaré, H. 1885. Sur les courbes définies par les équations différentielles (3ème partie). Journal de mathématiques pures et appliquées, 4, 167–244.
[71] Poynting, J. H. 1884. On the transfer of energy in the electromagnetic field. Philosophical Transactions of the Royal Society of London, 175, 343–361.
[72] Pretor-Pinney, G. 2010. The Wavewatcher's Companion. London: Bloomsbury.
[73] Ramsauer, C. W. 1921. Über den Wirkungsquerschnitt der Gasmoleküle gegenüber langsamen Elektronen. Annalen der Physik, 369(6), 513–540.
[74] Rossby, C.-G. A., and collaborators. 1939. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. Journal of Marine Research, 2(1), 38–55.
[75] Rossing, T. D. 1982. The physics of kettle drums. Scientific American, 247(5), 172–178.
[76] Russell, J. S. 1844. Report on waves. Report of the British Association for the Advancement of Science, 14(September), 311–390. Available from http://books.google.com/books?id=994EAAAAYAAJ.
[77] Schrödinger, E. 1926. Quantisierung als Eigenwertproblem. Annalen der Physik, 384(4), 361–376.
[78] Smith, G. S. 1997. An Introduction to Classical Electromagnetic Radiation. First edn. Cambridge: Cambridge University Press.
[79] Smith, W. H. F., Scharroo, R., Titov, V. V., Arcas, D., and Arbic, B. K. 2005. Satellite altimeters measure tsunami. Oceanography, 18(2), 11–13. See also http://www.noaanews.noaa.gov/stories2005/s2365.htm (10 January 2005).
[80] Stokes, G. G. 1852. Transactions of the Cambridge Philosophical Society, 9, 399–416.
[81] Tessman, J. R., and Finnell, J. T. Jr., 1967. Electric field of an accelerating charge. American Journal of Physics, 95(6), 523–527.
[82] Teufel, J. D., Donner, T., Li, D. et al. 2011. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475, 359–363.
[83] Sir Thomson, J. J. 1904. Electricity and Matter. London: Archibald Constable. Available from http://www.archive.org/stream/electricityandma00thomiala.
[84] Sir Thomson, W. (Lord, Kelvin). 1879. On gravitational oscillations of rotating water. Proceedings of the Royal Society of Edinburgh, 10, 92–100.
[85] Sir Thomson, W. (Lord, Kelvin). 1887. On ship waves. Proceedings of the Institution of Mechanical Engineers, 38, 409–434.
[86] Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., and González, F. I. 2005. The global reach of the 26 December 2004 Sumatra tsunami. Science, 309, 2045–2048.
[87] Townsend, J. S. E., and Bailey, V. A. 1921. The motion of electrons in gases. Philosophical Magazine, Series 6, 42(252), 873–891.
[88] von Laue, M. 1915. Concerning the detection of X-ray interferences. Nobel lecture. Available from http://nobelprize.org/nobel_prizes/physics/laureates/1914/laue-lecture.pdf.
[89] Website: LIGO: Laser Interferometric Gravitational-Wave Observatory. http://www.ligo.caltech.edu.
[90] Website: LISA: Laser Interferometer Space Antenna. http://sci.esa.int/home/lisa.
[91] Website: GEO600: the German–British gravitational wave detector. http://www.geo600.org.
[92] Westcott, W. J. 1970. Bells and Their Music. New York: G. P. Putnam. Available from https://www.msu.edu/~carillon/batmbook/.
[93] Wood, A. 1913. The Physical Basis of Music. Cambridge: Cambridge University Press.
[94] Young, T. 1804. The Bakerian Lecture. Experiments and calculations relative to physical optics. Philosophical Transactions of the Royal Society of London, 94, 1–16. Available from http://rstl.royalsocietypublishing.org/content/94.toc.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.