Skip to main content Accessibility help
×
  • Cited by 8
Publisher:
Cambridge University Press
Online publication date:
December 2014
Print publication year:
2014
Online ISBN:
9781107282032

Book description

Probability theory has been extraordinarily successful at describing a variety of phenomena, from the behaviour of gases to the transmission of messages, and is, besides, a powerful tool with applications throughout mathematics. At its heart are a number of concepts familiar in one guise or another to many: Gauss' bell-shaped curve, the law of averages, and so on, concepts that crop up in so many settings they are in some sense universal. This universality is predicted by probability theory to a remarkable degree. This book explains that theory and investigates its ramifications. Assuming a good working knowledge of basic analysis, real and complex, the author maps out a route from basic probability, via random walks, Brownian motion, the law of large numbers and the central limit theorem, to aspects of ergodic theorems, equilibrium and nonequilibrium statistical mechanics, communication over a noisy channel, and random matrices. Numerous examples and exercises enrich the text.

Reviews

'… packs a great deal of material into a moderate-sized book, starting with a synopsis of measure theory and ending with a taste of current research into random matrices and number theory. The book ranges more widely than the title might suggest … There are numerous exercises sprinkled throughout the book. Most of these are exhortations to fill in details left out of the main discussion or illustrative examples. The exercises are a natural part of the book, unlike the exercises in so many books that were apparently grafted on after-the-fact at a publisher’s insistence. McKean has worked in probability and related areas since obtaining his PhD under William Feller in 1955. His book contains invaluable insights from a long career.'

John D. Cook Source: MAA Reviews

'The scope is wide, not restricted to ‘elementary facts’ only. There is an abundance of pretty details … This book is highly recommendable …'

Jorma K. Merikoski Source: International Statistical Review

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Ahlfors, L. V. 1979. Complex Analysis (3rd ed.). McGraw-Hill, New York.
Andréief, C. 1883. Note sur une relation entre les intégrales définies des produits des fonctions. Mem. Soc. Sci., Bordeaux, 2, 1–14.
Arnold, V.I. 1978. Mathematical Methods of Classical Mechanics. Springer-Verlag, Berlin.
Artin, E. 1924. Ein mechanisches System mit quasi-ergodischen Bahnen. Abh. aus dem Math. Seminar Hamburg, 3, 170–175.
Ash, R. 1965. Information Theory. Interscience, J. Wiley & Sons, New York.
Baik, J., Deift, P., and Johansson, K. 1999. On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc., 12, 1119–1178.
Baik, J., Deift, P., and Suidan, T. 2014. Some Combinatorial Problems and Random Matrix Theory. AMS, Providence RI.
Berry, A.C. 1941. The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc., 49, 122–136.
Bateman, H., 1953. Higher Transcendental Functions (2). McGraw-Hill, New York.
Billingsley, P. 1960. Hausdorff dimension in probability theory, Illinois J. Math., 4, 187–209.
Billingsley, P. 1965. Ergodic Theory and Information. J. Wiley & Sons, New York.
Billingsley, P. 1974. The probability theory of additive arithmetic functions. Ann. Probability, 2, 749–791.
Billingsley, P. 1979. Probability and Measure. J. Wiley & Sons, New York.
Birkhoff, G.D. 1931. Proof of the ergodic theorem. Proc. Nat. Acad. Sci. U.S.A., 17, 656–660.
Boltzmann, L. 1872. Weitere Studienüber das Wöarmegleichgewicht unter Gasmolekülen. Sitzungsberichter Akad. Wiss., 66, 275–370.
Boltzmann, L. 1912. Vorlesungenüber Gastheorie. Ambrosius Barth, Leipzig. See also Lectures on Gas Theory. U. Calif. Press, Berkeley, CA (1964) & Dover, New York (1995).
Breiman, L. 1957. The individual ergodic theorem of information theory. Ann. Math. Stat., 28, 809–811.
Breiman, L. 1967. Introduction to Measure and Integral. Addison-Wesley Co., Reading MA.
Breiman, L. 1968. Probability. Addison-Wesley Co., Reading MA.
Cameron, R.H. and Martin, W.T. 1944. A transformation of Wiener integrals. Ann. Math. 45, 380–386.
Cameron, R.H. and Martin, W.T. 1947. The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals. Ann. Math. 48, 385–392.
Carleman, T. 1922. Sur les fonctions quasi-analytiques. 5ème Congrès des Math. Scand., Helsinfors, 181–196.
Carleman, T. 1957. Problèmes Mathématiques dans la Théorie Cinétique des Gaz. Almqvist-Wiksells, Uppsala, reprinted in Édition Complète des Articles de Torsten Carleman. Inst. Mittag-Leffler, Uppsala (1960).
Carlen, E., Carvalho, M.C., and Gabetta, E. 2000. Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math. 53, 370–397.
Cercignani, C. 1969. Mathematical Methods in Kinetic Theory. Plenum Press, New York.
Cercignani, C., Illner, R., and Pulvirenti, M. 1994. The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin.
Chapman, S. 1916. On the law of distribution of molecular velocities. Publ. Trans. Royal Soc. London, 216, 279–348.
Choquet, G. 1956. Existence des représentations intégrales au moyen des points extrémaux dans les cônes convexes. C.R. Acad. Sci. Paris, 243, 699–702; 736–737.
Chung, K-L. 1973. Probabilistic approach in potential theory to the equilibrium problem. Ann. Inst. Fourier (Grenoble), 23, 313–322.
Ciesielski, Z. 1961. Hölder conditions for realizations of Gaussian processes. Trans. Amer. Math. Soc., 99, 403–413.
Conrey, J.B. 2003. The Riemann hypothesis. Notices Amer. Math. Soc., 50, 341–353.
Courant, R. and Robbins, A. 1951. What is Mathematics?Oxford University Press, Oxford/London/New York.
Cover, T.M. and Thomas, J.A. 1991. Elements of Information Theory. J. Wiley & Sons, New York.
Cramér, H. 1936. Über eine Eigenschaft der normalen Verteilungsfunktion. Math. Zeit., 41, 405–414.
Cramér, H. 1938. Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Scientifiques et Industrielles, 736, 5–33, Hermann & Cie, Paris.
Deift, P. 1999. Orthogonal Polynomials and Random Matrices: a Riemann– Hilbert Approach. Courant Lecture Notes in Mathematics, 3, Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc., Providence RI.
Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., and Zhou, X. 1999. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math., 52, 1335–1425.
Dobrushin, R.-L. 1965. Existence of a phase transition in the two-dimensional and three-dimensional Ising models, Theory Probab. Appl., 10, 193–213.
Donsker, M.D. 1951. An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc., 6, 1–12.
Donsker, M.D. and Varadhan, S.R.S. 1975. Asymptotic evaluation of certain Markov process expectations for large time, I & II. Comm. Pure Appl. Math., 28, 1–47; 279–301.
Donsker, M.D. and Varadhan, S.R.S. 1976. Asymptotic evaluation of certain Markov process expectations for large time, III. Comm. Pure Appl. Math., 29, 389–461.
Doob, J.L. 1949. Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Statistics, 20, 393–403.
Doob, J.L. 1953. Stochastic Processes. J. Wiley & Sons, New York.
Doyle, P.G. and Snell, J.L. 1984. Random Walks and Electrical Networks. Math. Assoc. of America, Washington, D.C.
Dresden, M. 1956. Kinetic Theory Applied to Hydrodynamics. Magnolia Petroleum Co., Dallas, TX.
Durrett, R. 1991. Probability: Theory and Examples. Wadsworth and Brooks/Cole Advanced Books & Software, Pacific Grove CA.
Dvoretsky, A. and Erd˝os, P. 1950. Some problems on random walk in space. Proc. 2nd Berkeley Symp. on Math. Statist. and Prob. (1950), California University Press, Berkeley CA, pp. 360–367.
Dym, H. and McKean, H.P. 1972. Fourier Series and Integrals. Academic Press, New York.
Dynkin, E.B. 1965. Markov Processes. Springer-Verlag, Berlin.
Dyson, F.J. 1962. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys., 3, 1191–1198.
Edwards, H.M. 2001. Riemann's Zeta Function. Dover, Mineola NY.
Eggleston, H.G. 1949. The fractional dimension of a set defined by decimal properties. Quart. J. Math. Oxford Ser., 20, 31–36.
Einstein, A. 1956. Investigations on the Theory of the Brownian Movement. Fürth, R. and Cowper, A.D., eds., Dover, New York.
Elias, P. 1961. Coding and decoding. In Lectures on Communication System Theory, E.J., Baghdady (ed), McGraw-Hill, Chapter 13, pp. 321–344.
Ellis, R.S. 1985. Entropy, Large Deviations, and Statistical Mechanics. Springer-Verlag, Berlin.
Enskog, D. 1917. Kinetische Theorie der Vorgöange in möassig verdünnten Gasen. Amlqvist-Wiksells, Uppsala.
Erd˝os, P. 1942. On the law of the iterated logarithm. Ann. Math. 43, 419–436.
Erd˝os, P. 1949. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. USA., 35, 374–384.
Erd˝os, P. and Kac, M. 1940. The Gaussian law of error in the theory of additive number-theoretic functions. Amer. J. Math. 62, 728–742.
Erd˝os, P. and Kac, M. 1947. On the number of positive sums of n independent random variables, Bull. Amer. Math. Soc. 53, 1011–1020.
Esseen, C.-G. (1942). On the Liapunoff limit of error in the theory of probability. Arkiv för Mat., Astr. & Fys, A28, 1–19.
Fano, R.M. 1961. Transmission of Information: A Statistical Theory of Communications. MIT Press, Cambridge MA.
Feinstein, A. 1954. A new basic theorem of information theory. Trans. Inst. Radio Eng., 4, 2–22B.
Feller, W. 1948. On the Kolmogorov–Smirnov limit theorems for empirical distributions. Ann. Math. Statistics, 19, 177–189.
Feller, W. 1966. An Introduction to Probability Theory and its Applications, II (2nd ed.). John Wiley & Sons, New York.
Feller, W. 1968. An Introduction to Probability Theory and its Applications, I. (2nd ed.). John Wiley & Sons, New York.
Fenchel, W. 1949. On conjugate convex functions. Canadian J. Math., 1, 73–77.
Fermi, E. 1956. Thermodynamics. Dover, New York.
Feynman, R. 1963. Lectures on Physics, vol. 1. Addison-Wesley Co., Reading MA.
Feynman, R. 1964. Lectures on Physics, vol. 2. Addison-Wesley Co., Reading MA.
Feynman, R. 1965. Lectures on Physics, vol. 3. Addison-Wesley Co., Reading MA.
Flanders, M. and Swan, D. 1963. The second law of thermodynamics, in At the Drop of another Hat, Angel Records, #PMC1216.
Fokas, A.S., Its, A.R., Kapaev, A.A., and Novokshenov, V.Y. 2006. Painlevé Transcendents. The Riemann–Hilbert Approach. Mathematical Surveys and Monographs, 128, American Mathematical Society, Providence RI.
Garsia, A. 1965. A simple proof of E. Hopf's maximal ergodic theorem. J. Math. Mech., 14, 381–382.
Gauss, C.F. 1827. Arithmetisch Geometriches Mittel. Werke, Bd 3, 361–432, Teubner, Leipzig.
Gauss, C.F. 1884. Allgemeine Lehrsöatze in Beziehung auf die im verkehrten Verhöaltnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abstossungskröafte. Ostwalds Klassiker der exacten Wissenschaften, no 2, Teubner, Leipzig.
Gibbs, J.W. 1902. Elementary Principles in Statistical Mechanics. Yale University Press, New Haven CT, Dover, New York (1960).
Goldstein, S. 1951. Diffusion by discontinuous movement and on the telegraph equation. Quart. J. Math. (Oxford), 4, 129–156.
Glasser, M.L. and Zucker, I.J. 1977. Extended Watson integrals for the cubic lattices. Proc. Nat. Acad. Sci. USA, 74, 1800–1801.
Gosnell, M. 2007. Ice. University of Chicago Press, Chicago.
Grad, H. 1958. Principles of the Kinetic Theory of Gases. Handbuch der Physik, 12, Springer-Verlag, Berlin.
Griffiths, R.B. 1964. Peierls’ proof of spontaneous magnetization in a two-dimensional Ising ferromagnet. Phys. Rev., 136, A437–A439.
Griffiths, R.B. 1967 (a). Correlations in Ising ferromagnets, I, II. J. Math. Phys., 8, 418–483; 484–489.
Griffiths, R.B. 1967 (b). Correlations in Ising ferromagnets, III. Comm. Math. Phys., 6, 121–127.
Grünbaum, F.A. 1971. Propagation of chaos for the Boltzmann equation. Arch.Rat.Mech. &Anal., 42, 323–345.
Grünbaum, F.A. 1972. Linearization for the Boltzmann equation. Trans. Amer. Math. Soc., 165, 425–449.
Halmos, P. and von Neumann, J. 1942. Operator methods in classical mechanics. II. Ann. Math., 43, 332–350.
Hardy, G.H. and Ramanujan, S. 1917. The normal number of prime factors of a numbern. Quart. J. Math., 48, 76–92.
Hedlund, G.A. 1934. On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature. Ann. Math., 35, 787–808.
Hedlund, G.A. 1937. A metrically transitive group defined by the modular groups. Amer. J. Math., 57, 668–678.
Hemmer, P., Kac, M. and Uhlenbeck, G.E. 1963. On the van der Waals theory of the vapor–liquid equilibrium. I, II. J. Mathematical Phys., 4, 216–228; 229–247.
Hemmer, P., Kac, M. and Uhlenbeck, G.E. 1964. On the van der Waals theory of the vapor–liquid equilibrium. III. J. Mathematical Phys., 5, 60–74.
Hewitt, E. & Savage, L.J. 1955. Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80, 470–501.
Hilbert, D. 1912. Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen. Teubner-Verlag, Leipzig.
Hopf, E. 1937. Ergodentheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 5, Springer, Berlin; Chelsea, New York (1948).
Householder, A.S. 1965. The Theory of Matrices in Numerical Analysis. Blaisdell, New York.
Ising, E. 1925. Beitrag zur Theorie des Ferromagnetismus. Zeit. Phys., 31, 253–258.
Itô, K. 1951. Multiple Wiener integral. J.Math.Soc.Japan, 3, 157–169.
Itô, K. and McKean, H.P. 1960. Potentials and the random walk. Illinois J. Math., 4, 119–132.
Its, A. 2003. The Riemann–Hilbert problem and integrable systems. Notices Amer. Math. Soc., 50, 1389–1400.
Jain, N.C. and Pruitt, W.E. 1970. The range of recurrent random walk in the plane. Z. Wahrschein. und Verw. Geb., 16, 279–292.
Jellinek, R. 1968. Probabilistic Information Theory. McGraw-Hill, New York.
Jimbo, M., Miwa, T., Môri, Y. and Sato, M. 1980. Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica D, 1, 80–158.
Kac, M. 1947. Random walk and the theory of Brownian motion. Amer. Math. Monthly, 54, 369–391.
Kac, M. 1947. On the notion of recurrence in discrete stochastic processes. Bull. AMS, 53, 1002–1010.
Kac, M. 1949. On the distribution of certain Wiener functionals. Trans. Amer. Math. Soc., 65, 1–13.
Kac, M. 1956. Foundations of kinetic theory. Proc. Berkeley Symp. Math. Stat. Prob. (1954–1955), 3, 171–197.
Kac, M. 1959a. Probability and Related Topics in the Physical Sciences. Interscience, London & New York.
Kac, M. 1959b. Statistical Independence in Probability, Analysis, and Number Theory. Carus Math. Monographs, no. 23, Math. Assoc. of America. J. Wiley & Sons, New York.
Kac, M. 1974. A stochastic model related to the telegrapher's equation. Rocky Mountain Math. J., 4, 491–509.
Kac, M. 1980. Integration in Function Spaces and some of its Applications. Lezioni Fermiane, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa.
Kac, M. and Ward, J.C. 1952. A combinatorial solution of the two-dimensional Ising model. Phys. Rev., 88, 1332–1337.
Kallianpur, G. and Robbins, H. 1953. Ergodic property of the Brownian motion. Proc. Nat. Acad. Sci. USA, 39, 525–533.
van Kampen, N.G. 1964. Condensation of a classical gas with long-range attraction. Phys. Rev., 135, A362–A369.
Karlin, S. and McGregor, J. 1959. Coincidence probabilities. Pacific. J. Math., 2, 1141–1164.
Kauffman, B. 1949. Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev., 76, 1232–1243.
Kaufman, B. and Onsager, J. 1949. Crystal statistics. III. Short-range order in a binary Ising lattice, Phys. Rev., 76, 1244–252.
Kellogg, O.D. 1929. Foundations of Potential Theory. Grundlehren der Math. Wiss., no. 31, Springer-Verlag, Berlin.
Kelly, D.E. and Sherman, S. 1968. General Griffiths's inequalities on correlations in Ising ferromagnets. J. Math. Phys., 9, 460–484.
Kelly, J. 1956. A new interpretation of information rate. Bell Syst. Tech. J., 35, 917–926.
Khinchine, A. 1923. Über dyadische Brüche. Math. Zeit., 18, 109–116.
Khinchine, A. 1924. Über einen Satz der Wahrscheinlichkeitsrechnung. Fund. Math., 6, 9–20.
Khinchine, A. 1933. Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 2, Springer, Berlin; Chelsea, New York (1948).
Knight, F. 1962. On the random walk and Brownian motion. Trans. Amer. Math. Soc., 108, 218–228.
Knight, F. 1963. Random walks and a sejourn density process of Brownian motion. Trans. Amer. Math. Soc., 109, 58–89.
Kolmogorov, A.N. 1933a. Sulla determinazione empirica di una legge di distribuzione. Giorn. 1st. Ital. Attuari, 4, 83–91.
Kolmogorov, A.N. 1933b. Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 3, Springer, Berlin; Chelsea, New York (1950).
Kramers, H.A. and Wannier, G.H. 1941. Statistics of the two-dimensional ferromagnet. Phys. Rev., 60, 252–276.
Landau, L. and Lifshitz, E. 1938. Statistical Physics. Oxford University Press, Oxford.
Lanford, O.E. 1975. Time evolution in large classical systems. Dynamical Systems, Theory and Applications, Lecture Notes in Phys., vol. 38, Springer-Verlag, Berlin, pp. 1–111.
Lax, P. 2002. Functional Analysis. J. Wiley & Sons, New York.
Lebowitz, J. and Penrose, O. 1966. Rigorous treatment of the van der Waals–Maxwell theory of the liquid-vapor transition. J. Math. Phys., 7, 98–113.
Le Jan, Y. 1994. The central limit theorem for the geodesic flow on noncompact manifolds of constant negative curvature. Duke Math. J., 74, 159–175.
Levinson, N. 1974. At least one-third of zeroes of Riemann's zeta-function are on σ = 1/2. Proc. Nat. Acad. Sci. USA, 71, 1013–1015.
Lévy, P. 1937. Théorie de l'addition des variables aléatoires. Gauthier-Villars, Paris.
Lévy, P. 1939. Sur certains processus stochastiques homogènes. Compositio Math., 7, 283–339.
Lévy, P. 1948. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris.
Lévy, P. 1951. Problèmes Concrets d'Analyse Fonctionnelle. Gauthier-Villars, Paris.
Linnik, Yu.V. 1949. On the theory of nonuniform Markov chains. Izv. Akad. Nauk SSSR Ser. Mat., 13, 65–94.
Malliavin, P. 1997. Stochastic Analysis. Grundlehren der Math. Wiss., no. 137, Springer-Verlag, Berlin.
Maxwell, J.C. 1861. On the dynamical theory of gases. Phil. Trans. Royal Soc. London, 157, 49–88.
Maxwell, J.C. 1873. The Scientific Letters and Papers of James Clerk Maxwell: 1862–1873, vol. 2. Cambridge University Press, Cambridge (1995).
Maxwell, J.C. 1892. A Treatise on Electricity and Magnetism. Clarendon Press, London & New York.
McCoy, B., Tracy, C., and Wu, F. T. 1977. Painlevé functions of the third kind. J. Math. Phys., 18, 1058–1072.
McKean, H.P. 1960. The Bessel motion and a singular integral equation. Mem. Coll. Sci. Kyoto, 33, 317–322.
McKean, H.P. 1963. Entropy is the only increasing functional of Kac's one-dimensional caricature of a Maxwellian gas. Z. Wahrschein. und Verw. Geb., 2, 167–172.
McKean, H.P. 1966a. Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rat. Mech. Anal., 21, 343–367.
McKean, H.P. 1966b. A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. USA, 56, 1907–1911.
McKean, H.P. 1967. Chapman–Enskog–Hilbert expansion of a class of solutions of the telegraph equation. J. Math. Phys., 8, 547–552.
McKean, H.P. 1969. Stochastic Integrals. Academic Press, New York; AMS-Chelsea, Providence RI (2005).
McKean, H.P. 1973. Geometry of differential space. Ann. Probability, 1, 197–206.
McKean, H.P. 1975. The central limit theorem for Carleman's equation. Israel J. Math., 21, 54–92.
McKean, H.P. 1975b. Fluctuations in the kinetic theory of gases. Comm. Pure Appl. Math., 28, 435–455.
McKean, H.P. 2011. Fredholm determinants. Cent. Eur. J. Math., 9, 205–243.
McKean, H.P. and Moll, V. 1997. Elliptic Curves. Cambridge University Press, Cambridge.
McMillan, B. 1952. Two inequalities implied by unique decipherability. IEEE Trans. Information Theory, 2, 115–116.
Mehler, F.G.Über die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung. J. Reine Angew. Math., 66, 161–176.
Mehta, M.L. 1967. Random Matrices. Academic Press, Boston MA and Elsevier/Academic Press, Amsterdam (2004).
Milnor, J.W. (1963). Topology from the Differentiable Viewpoint. University of Virginia Press, Charlottesville, VA.
Mischler, S. and Mouhot, C. 2013. Kac's program in kinetic theory. Invent. Math. 193, 1–147.
Munroe, M.E. 1953. Introduction to Measure and Integration. Addison-Wesley, Cambridge MA.
Münster, A. 1956. Statistical Theromodynamics. Springer-Verlag, Berlin.
Nagell, T. 1964. Introduction to Number Theory. Chelsea Publ. Co., New York.
Needham, T. 1997. Visual Complex Analysis. Oxford University Press, Oxford.
Nirenberg, L. 1959. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13, 115–162.
Odlyzko, A.M. 2001. The 1022-nd zero of the Riemann zeta function. In Dynamical, Spectral, and Arithmetic Zeta Functions, van Frankenhuysen, M. and Lapidus, M.L., eds., Contemporary Math., 290, Amer. Math. Soc., Providence RI, pp. 139–144.
Onsager, L. 1944. Crystal statistics. I. A two-dimensional model of an order-disorder transition. Phys. Rev., 65, 117–149.
Onsager, L. 1949. Discussion remark: spontaneous magnetization of the two-dimensional Ising model. Nuovo Cimento Suppl., 6, 261.
Ornstein, L.S. and Uhlenbeck, G.E. 1930. On the theory of Brownian motion. Phys. Rev., 36, 823–841.
Pólya, G.Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann., 84, 149–160.
Peierls, R.F. 1936. On Ising's model of ferromagnetism. Proc. Camb. Phil. Soc., 32, 477–481.
Pogorelov, A.V. 1967. Differential Geometry. Nordhoff, Groningen.
Pollard, H. 1976. Celestial Mechanics. Carus Mathematical Monographs, no. 18, Math. Assoc. America, J. Wiley & Sons, New York.
Ratner, M. 1973. The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature. Israel J. Math., 16, 181–197.
Ray, D. 1963. Sojourn times of a diffusion processes. Illinois J. Math., 7, 615–630.
Riesz, F. 1945. Sur la théorie ergodique. Comm. Math. Helv., 17, 221–239.
Rogers, L.C.G. and Williams, D. 1979. Diffusions, Markov Processes, and Martingales. Vol. 1. J. Wiley & Sons, Chichester.
Rogers, L.C.G. and Williams, D. 1987. Diffusions, Markov Processes, and Martingales. Vol.2. J. Wiley&Sons, NewYork.
Rukeyser, M. 1942. Willard Gibbs: American Genius, Doubleday, New York. Reprinted 1988 Ox Bow Press, Woodbridge CT.
Ryll-Nardzewski, C. 1951. On the ergodic theorem II, Studia Math., 12, 74–79.
Seeley, A. 1966. Introduction to Fourier Series and Integrals. W.A. Benjamin, New York.
Selberg, A. 1949. An elementary proof of the prime-number theorem, Ann. Math. 50, 305–313.
Shannon, C.E. 1948. A mathematical theory of communication. Bell System Tech. J., 27, 379–423; 623–656.
Shannon, C.E. and Weaver, W. 1949. The Mathematical Theory of Communication. The University of Illinois Press, Urbana IL.
Sinai, Y.G. 1960. The central limit theorem for geodesic flows on manifolds of constant negative curvature. Dokl. Akad. Nauk., 133, 1303–1306.
Smirnov, N.V. 1939. On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Mat. Sbornik, 48, 3–26; and Bull. Math. Univ. Moscou2, 3–14.
Sparre-Andersen, E. 1953. On the fluctuations of sums of random variables, I. Math. Scand. 1, 263–285.
Sparre-Andersen, E. 1954. On the fluctuations of sums of random variables, II. Math. Scand. 2, 195–223.
Spitzer, F. 1956. A combinatorial lemma and its applications to probability theory. Trans. Amer. Math. Soc., 82, 323–339.
Spitzer, F. 1957. The Wiener–Hopf equation whose kernel is a probability density. Duke Math. J., 24, 327–343.
Spitzer, F. 1964. Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrschein. und Verw. Geb., 3, 110–121.
Strassen, V. 1964. An invariance principle for the law of the iterated logarithm. Z. Wahrschein. und Verw. Gebiete, 3, 211–226.
Stroock, D. 1981. The Malliavin calculus and its applications. In Stochastic integrals. Lecture Notes in Math., 851, pp. 394–432.
Stroock, D.W. 1993. Probability Theory, an Analytic View. Cambridge University Press, Cambridge.
Sullivan, D. 1982. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math., 149, 215–237.
Sylvester, G.S. 1976. Continuous-spin inequalities for Ising ferromagnets. J. Stat. Phys., 15, 327–342.
Szegö, G. 1939. Orthogonal Polynomials. AMS Colloquium. Publ., vol. 23, Amer. Math. Soc., Providence RI (1975).
Tanaka, H. 1973a. On Markov process corresponding to Boltzmann's equation of Maxwellian gas. Lect. Notes Math., 330, 478–489. Springer-Verlag, Berlin, Heidelberg, New York.
Tanaka, H. 1973b. An inequality for a functional of probability distributions and its applications to Kac's one-dimensional model of a Maxwellian gas. Z. Wahrschein. und Verw. Geb., 27, 47–52.
Tanaka, H. 1978. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrschein. und Verw. Gebiete, 46, 67–105.
Thompson, C.J. 1972. Mathematical Statistical Mechanics. Macmillan Co., New York.
Titchmarsh, E.C. 1959. The Theory of the Riemann Zeta Function. Oxford University Press, Oxford.
Tracy, C. and Widom, H. 1993. Introduction to random matrices. In Geometric and Quantum Aspects of Integrable Systems (Scheveningen, 1992), Lecture Notes in Phys., 424, Springer, Berlin, pp. 103–130.
Tracy, C. and Widom, H. 1994. Level spacing distributions and the Airy kernel. Comm. Math. Phys., 159, 151–174.
Trotter, H.F. 1958. Approximation of semi-groups of operators. Pacific J. Math., 8, 887–919.
Trotter, H.F. 1959. An elementary proof of the central limit theorem. Arch. Math., 10, 226–234.
Trotter, H.F. 1984. Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö. Adv. Math., 54, 67–82.
Varadhan, S.R.S. 1984. Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, 46, SIAM, Philadelphia PA.
Vedenyapin, V.V. 1988. Differential forms in spaces without a norm. A theorem on the uniqueness of Boltzmann's H-function. Uspekhi Mat. Nauk, 43, 159–179, Russian Math. Surveys, 43, 193–219.
Villani, C. 2002. A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam, pp. 71–305.
van der Waerden, B.L. 1941. Die lange Reichweite der regelmassigen Atomanordnung in Mischkristallen. Z. Phys., 118, 473.
Watson, G.N. 1939. Three triple integrals. Quart. J. Math. (Oxford), 10, 266–276.
Wendel, J.G. 1958. Spitzer's formula: a short proof. Proc. Amer. Math. Soc., 9, 905–908.
Wennberg, B. 1993. Stability and Exponential Convergence for the Boltzmann Equation. Thesis. Chalmers University of Technology, Sweden.
Weyl, H. 1916. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77, 313–352.
Weyl, H. 1939. The Classical Groups. Princeton University Press, Princeton NJ.
Wielandt, H. 1950. Unzerlegbare, nicht-negative Matrizen. Math. Zeit., 52, 642–648.
Wiener, N. 1923. Differential space. J. Math. Phys. Mass. Inst. Tech., 2, 131–174.
Wiener, N. 1930. Generalized harmonic analysis. Acta Math., 55, 117–258.
Wiener, N. 1938. The homogeneous chaos. Amer. J. Math. 60, 897–936.
Wiener, N. 1948. Cybernetics. J. Wiley & Sons, New York, and Hermann et Cie, Paris.
Wigner, E. 1958. On the distribution of roots of certain symmetric matrices, Ann. Math., 67, 325–327.
Wigner, E. 1967. Random matrices in physics. SIAM Rev., 9, 1–23.
Wild, E. 1951. On Boltzmann's equation in the kinetic theory of gases. Proc. Camb. Phil. Soc., 41, 602–609.
Wishart, J. 1928. Generalized product moment distribution in samples. Biometrika, 20A, 32–52.
Wolfowitz, J. 1978. Coding Theorems of Information Theory (3rd ed.). Springer-Verlag, Berlin.
Yang, C.N. and Lee, T.D. 1952. Statistical theory of equations of state and phase transitions, I. Theory of condensation. Phys. Rev., 87, 404–409.
Yau, H.-T. 1998. Asymptotic solutions to dynamics of many body systems and classical continuum equations. Current Developments in Mathematics. Internat. Press, Somerville, MA, 155–236.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.