Skip to main content Accessibility help
×
  • Cited by 3
Publisher:
Cambridge University Press
Online publication date:
March 2022
Print publication year:
2022
Online ISBN:
9781108991674

Book description

Studies of Sr isotopic composition of thousands of samples of marine sediments and fossils have yielded a curve of 87Sr/86Sr versus age for seawater Sr that extends back to 1 billion years. The ratio has fluctuated with large amplitude during this time period, and because the ratio is always uniform in the oceans globally at any one time, it is useful as a stratigraphic correlation and age-dating tool. The ratio also appears to reflect major tectonic and climatic events in Earth history and hence provides clues as to the causes, timing, and consequences of those events. The seawater 87Sr/86Sr ratio is generally high during periods marked by continent-continent collisions, and lower when continental topography is subdued, and seafloor generation rates are high. There is evidence that major shifts in the seawater ratio can be ascribed to specific orogenic events and correlate with large shifts in global climate.

References

Allegre, C. J., Louvat, P., Gaillardet, J. et al., 2010, The fundamental role of island arc weathering in the Sr isotope budget. Earth Planet. Sci. Lett., vol. 292, 5156 (Important summary of riverine Sr inputs to the oceans and arguing that weathering on oceanic islands constitutes a major fraction of the Sr derived from “ocean floor” type sources with low 87Sr/86Sr.)
Arthur, M. A., and Schlanger, S. O., 1979, Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields. AAPG Bull., vol. 63, 870885.
Beck, A. J., Charette, M. A., Cochran, J. K., Gonneea, M. E., and Peiucker-Ehrenbrink, B., 2013, Dissolved strontium in the subterranean estuary – Implications for the marine strontium isotope budget. Geochim. Cosmochim. Acta, vol. 117, 3352.
Broecker, W. S. and Peng, T. H. (1982) Tracers in the Sea. Eldigio Press, New York, 690pp.
Capo, R. C., and DePaolo, D. J., 1990, Seawater strontium isotopic variations: 2.5 Ma to the present. Science, vol. 249, 5155.
Capo, R. C., and DePaolo, D. J., 1992, Homogeneity of Sr isotopes in the ocean. EOS, Trans. Am. Geophys. Union 73, 272.
Chakrabarti, R., Mondal, S., Shankar Achary, S., Lekha, J. S., and Sengupta, D., 2018, Submarine groundwater discharge derived strontium from the Bengal Basin traced in Bay of Bengal water samples. Nat. Sci. Rep., vol. 8, 4383. http://doi.org/10.1038/s41598-018-22299-5
Chen, C.-H, DePaolo, D. J., and Lan, C.-Y., 1996, Rb-Sr microchrons in the Manaslu granite: Implications for Himalayan thermochronology. Earth Planet. Sci. Lett., vol. 143, 125135.
DeConto, R. M., and Pollard, D., 2003, Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, vol. 421, 245249.
DePaolo, D. J. and Ingram, B. L., 1985, High resolution stratigraphy with Strontium isotopes: Science vol. 227, 938941.
DePaolo, D. J., and Finger, K. L., 1991, High resolution strontium isotope stratigraphy and biostratigraphy of the Miocene Monterey Formation, central California.Geol. Soc. Am. Bull., vol. 103, 112124.
DePaolo, D. J., Harrison, T. M., Wielicki, M. et al., 2019, Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32 Ma at the southern margin of Tibet. Gondwana Res. Vol. 73, 123135. http://doi.org/10.1016/j.gr.2019.03.011
Engebretson, D. C., Kelley, K. P., Cashman, H. J., and Richards, M. A., 1992, 180 million years of subduction. Geol. Soc. Am. Today, vol. 2, 9395.
Fantle, M. S., and DePaolo, D. J., 2006, Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years. Geochim. Cosmochim. Acta, vol. 70, 38833904.
Goldstein, S. J., and Jacobsen, J., 1987, The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chem. Geol., vol. 66, 245272.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (eds), 2020, The Geologic Time Scale. Elsevier.
Halevy, I., and Bachan, A., 2017, The geologic history of seawater pH. Science, vol. 355, 10691071.
Hess, J., Bender, M. L., and Schilling, J.-G., 1986, Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science, vol. 231, 979984.
Huang, K. F., You, C. F., Chung, C. H., and Lin, I. T., 2011, Nonhomogeneous seawater Sr isotopic composition in the coastal oceans: A novel tool for tracing water masses and submarine groundwater discharge. Geochem. Geophys. Geosyst., vol. 12, 5. http://doi.org/10.1029/2010GC003372
Ingram, B. L., 1995, High-resolution dating of deep-sea clays using Sr isotopes in fossil fish teeth. Earth Planet. Sci. Lett., vol. 134, 545555.
Ingram, B. L., and DePaolo, D. J., 1993, A 4,500-year strontium-isotope record of paleosalinity and freshwater inflow in San Francisco Bay, California. Earth Planet. Sci. Lett., vol. 119, 103119.
Ingram, B. L., Hein, J. R., and Farmer, G. L., 1990, Age determinations and growth rates of Pacific ferromanganese deposits using Sr isotopes. Geochim. Cosmochim. Acta, vol. 54, 17091721.
Ingram, B. L., and Sloan, D., 1992, Strontium isotopic composition in estuarine sediments as paleosalinity and paleoclimate indicator. Science, vol. 255, 6872.
Ingram, B. L., Coccioni, R., Montanari, A. and Richter, F. M., 1994, Strontium isotopic composition of mid-Cretaceous seawater, Science, vol. 264, 546550.
Jacobsen, S. B., and Kaufman, A. J., 1999, The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol., vol. 161, 3757.
Jenkyns, H. C., 2010, Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst., vol. 11, Q03004. http://doi.org/10.1029/2009GC002788
Jones, C. E. and Jenkyns, H. C., 2001, Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci., vol. 301, 112149.
Korte, C., Kozur, H. W., Bruckschen, P., and Veizer, J., 2003, Strontium isotope evolution of Late Permian and Triassic seawater. Geochim. Cosmochim. Acta, vol. 67, 4762. http://doi.org/10.1016 /S0016-7037(02)01035–9
Kump, L. R., 2008, The role of seafloor hydrothermal systems in the evolution of seawater composition during the Phanerozoic. In Lowell, R. P., Seewald, J. S., Metaxas, A., and Perfit, M. (eds), Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers, Geophys. Monogr. Ser., vol. 178. American Geophysical Union, pp. 275283.
Kuznetsov, A. B., Semikhatov, M. A., and Gorokhov, I. M., 2012, The Sr isotope composition of the world ocean, marginal and inland seas: Implications for Sr isotope stratigraphy. Stratigr. Geol. Correl., vol. 20, 501515. © Pleiades Publishing, Ltd., 2012 (Extensive data set showing that modern carbonate shells from multiple oceans are uniform in 87Sr/86Sr to better than ±0.000005.)
Lear, C. H., Elderfield, H., and Wilson, P. A., 2003, A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth Planet. Sci. Lett., vol. 208, 6984.
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V., 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science, vol. 294, 10861088. http://doi.org/10.1126/science.1064280
McArthur, J. M., Howarth, R. J., and Bailey, T. R., 2001, Strontium isotope stratigraphy: LOWESS version 3. Best-fit line to the marine Sr isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. J. Geol., vol. 109, 155169.
McArthur, J. M., Howarth, R. J., and Shields, G. A., 2012, Strontium isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. (eds), The Geologic Time Scale 2012. Elsevier, pp. 127–144 (Comprehensive Phanerozoic seawater Sr curve showing selected data that define the curve. Update in 2020 listed in references.)
McArthur, J. M., Howarth, R. J., Shields, G. A., and Zhou, Y., 2020, Strontium isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (eds), The Geologic Time Scale, vol. 1. Elsevier, pp. 211238.
McCauley, S., and DePaolo, D. J., 1997, marine, The 87Sr/86Sr and δ18O records, Himalayan alkalinity fluxes and δ. In Ruddiman, W. F. (ed), Tectonic Uplift and Climate Change. Plenum, pp. 427467.
Mokadem, F., Parkinson, I. J., Hathorne, E. C. et al., 2015, High precision radiogenic strontium isotope measurements of the modern and glacial ocean: Limits on glacial-interglacial variations in continental weathering. Earth Planet. Sci. Lett., vol. 415, 111120.
Müller, M. N., Krabbenhoft, A., Vollstaedt, H., Brandini, F. P., and Eisennhauer, A., 2018, Stable isotope fractionation of strontium in coccolithophore calcite: Influence of temperature and carbonate chemistry. Geobiology, vol. 16, 297306.
Muller, D. W., and Mueller, P. A., 1991, Origin and age of the Mediterranean evaporates: Implications from Sr isotopes. Earth Planet. Sci. Lett., vol. 107, 112.
Palmer, M. R., and Edmond, J. M., 1989, The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., vol. 92, 1126.
Park, Y., Swanson-Hysell, N. L., MacLennan, S. A., et al., 2020, The lead-up to the Sturtian Snowball Earth: Neoproterozoic chemostratigraphy time-calibrated by the Tambien Group of Ethiopia. Geol. Soc. Am. Bull. Vol. 132, 11191149.
Peucker-Ehrenbrink, B., and Fiske, G. J., 2019, A continental perspective of the seawater 87Sr/86Sr record: A review. Chem. Geol., vol. 510, 140165.
Raymo, M. E., and Ruddiman, W. F., 1992, Tectonic forcing of late Cenozoic climate. Nature, vol. 359, 117122.
Raymo, M. E., Ruddiman, W. F., and Froelich, P. N., 1988, Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, vol. 16, 649653.
Richter, F.M. and DePaolo, D.J., 1988, Diagenesis and Sr isotopic evolution of seawater using data from DSDP 590B and 575: Earth Planet. Sci. Lett. vol. 90, 382394.
Saltzman, M. R., Edwards, C. T., Leslie, S. A. et al., 2014, Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. Geol. Soc. Am. Bull., vol. 126, 15511568. http://doi.org/10.1130/B31038.1
Sedlacek, A. R., Saltzman, M. R., Algeo, T. J. et al., 2014, 87Sr/86Sr stratigraphy from the early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, vol. 42, 779782.
Shields, G., and Veizer, J., 2002, Precambrian marine carbonate isotope database: Version 1.1. Geochem. Geophys. Geosyst., vol. 3. http://doi.org/10.1029/2001GC000266
Sinnesael, M., Montanari, A., Frontalini, F. et al., 2019, Multiproxy Cretaceous-Paleogene boundary event stratigraphy: An Umbria-Marche basinwide perspective. In Koeberl, C., and Bice, D. M. (eds), 250 million years of Earth history in central Italy: Celebrating 25 years of the Geological Observatory of Coldigioco, Special Paper 542. Geological Society of America, pp.133158. http://doi.org/10.1130/2019.2542(07)
Song, H., Wignall, P. B., Tong, J. et al., 2015, Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth Planet. Sci. Lett., vol. 424, 140147.
Steuber, T., and Veizer, J., 2002, Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology, vol. 30, 11231126.
Swanson-Hysell, N. L., and Macdonald, F. A., 2017, Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, vol. 45, 719722. http://doi.org/10.1130/G38985.1
Turchyn, A. V., and DePaolo, D. J., 2019, Seawater chemistry through Phanerozoic time. Annu. Rev. Earth Planet. Sci., vol. 47, 197224.
Veizer, J., 1989, Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci., vol. 17, 141167. http://doi.org/10.1146/annurev.ea.17.050189.001041
Veizer, J., and Compston, W., 1974, 87Sr/86Sr composition of seawater during the Phanerozoic. Geochim. Cosmochim. Acta, vol. 38, 14611484.
Zhang, S. and DePaolo, D.J., 2020, Equilibrium calcite fluid Sr/Ca partition coefficient from marine sediment and pore fluids. Geochim. Cosmochim. Acta, vol. 289, 3346.
Zuza, A. V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. Geosphere, vol. 13, 16641712. http://doi.org/10.1130/GES01463.1

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.