Skip to main content Accessibility help
×
  • Cited by 93
Publisher:
Cambridge University Press
Online publication date:
February 2014
Print publication year:
2006
Online ISBN:
9781107590168

Book description

SuperFractals, first published in 2006, is the successor to Fractals Everywhere, in which the power and beauty of Iterated Function Systems were introduced and applied to producing startling and original images that reflect complex structures found for example in nature. This provoked the question of whether there is a deeper connection between topology, geometry, IFS and codes on the one hand and biology, DNA and protein development on the other. Now, 20 years later, Barnsley explains how IFS have developed in order to address this issue. Ideas such as fractal tops and superIFS are introduced, and the classical deterministic approach is combined with probabilistic ideas to produce new mathematics and algorithms that open a whole theory that could have applications in computer graphics, bioinformatics, economics, signal processing and beyond. For the first time these ideas are explained in book form, and illustrated with breathtaking pictures.

Reviews

'Overall, SuperFractals would be a superb addition to the bookshelves of any scientists who use fractal analysis techniques in their research, be they physicist, biologist or economist. The author concludes by promising that the introduction of superfractals will revolutionize the way mathematics, physics, biology and art are combined, to produce a unified description of the complex world in which we live. After reading this book I have no doubt he is correct.'

J. R. Mureika Source: Nature

'Each new idea is preceded by an intuitive discussion, often accompanied by examples, and always by gorgeous artwork. The explanation and arguments are very clear and easy to follow, even for someone not accustomed to mathematical texts.'

Source: Journal of Statistical Physics

'…I can recommend the book as a nice introduction to the subject of superfractals as well as to the theory of IFS's in general. It is particularly suitable for non-geometrists as well as for non-mathematicians. From my own experience, it serves well as a textbook, also for undergraduate students.'

Source: Zentralblatt MATH

'Michael Barnsley is a wonderful guide into the world of Super Fractal geometry. This book will take you on a journey of discovery that will make you look at everyday geometry in a very different way. …a must read for anyone who is interested in the way mathematics can be used to develop understanding in nature.'

Source: Mathematics TODAY

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] Arbeiter, Matthias. Random recursive construction of self-similar fractal measures. The noncompact case. Probab. Theory Related Fields 88 (1991), no. 4, 497–520.
[2] Asai, T.Fractal image generation with iterated function set. Ricoh Technical Report No. 24, November 1998, pp. 6–11.
[3] Barlow, M. T.; Hambly, B. M.Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 5, 531–557.
[4] Barnsley, M. F.; Demko, S.Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London Ser. A 399 (1985), no. 1817, 243–275.
[5] Barnsley, M. F.; Ervin, V.; Hardin, D.; Lancaster, J.Solution of an inverse problem for fractals and other sets. Proc. Nat. Acad. Sci. USA 83 (1986), no. 7, 1975–1977.
[6] Barnsley, Michael F.Fractal functions and interpolation. Constr. Approx. 2 (1986), no. 4, 303–329.
[7] Barnsley, Michael F.; Elton, J. H.A new class of Markov processes for image encoding. Adv. Appl. Probab. 20 (1988), no. 1, 14–32.
[8] Barnsley, M. F.; Reuter, L.; Jacquin, A.; Malassenet, F.; Sloan, A.Harnessing chaos for image synthesis. Computer Graphics 22 (1988), 131–140.
[9] Barnsley, Michael. Fractals Everywhere. Boston MA, Academic Press, 1988.
[10] Barnsley, Michael F.; Elton, John H.; Hardin, Douglas P.Recurrent iterated function systems. Fractal approximation. Constr. Approx. 5 (1989), no. 1, 3–31.
[11] Barnsley, Michael F.; Harrington, Andrew N.The calculus of fractal interpolation functions. J. Approx. Theory 57 (1989), no. 1, 14–34.
[12] Barnsley, Michael F.; Hurd, Lyman P.Fractal Image Compression. Illustrations by Louisa F., Anson. Wellesley MA, A. K. Peters, 1993.
[13] Barnsley, Michael F.Fractals Everywhere, second edition. Revised with the assistance of and a foreword by Hawley, Rising, III. Boston MA, Academic Press Professional, 1993.
[14] Barnsley, Michael F.Iterated function systems for lossless data compression. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 33–63. IMA Vol. Math. Appl., vol. 132. New York, Springer, 2002.
[15] Barnsley, Michael F.; Barnsley, Louisa F.Fractal transformations. In The Colours of Infinity: The Beauty and Power of Fractals, pp. 66–81. London, Clear Books, 2004.
[16] Barnsley, Michael; Hutchinson, John; Stenflo, Örjan. A fractal valued random iteration algorithm and fractal hierarchy. Fractals 13 (2005), no. 2, 111–146.
[17] Barnsley, M. F.Theory and application of fractal tops. Preprint, Australian National University, 2005.
[18] Barnsley, M. F.Theory and application of fractal tops. In Fractals in Engineering: New Trends in Theory and Applications, J., Lévy-Véhel; E., Lutton (eds.), pp. 3–20. London, Springer-Verlag, 2005.
[19] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, Ö. V-variable fractals. Inpreparation.
[20] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, Ö. V-variable fractals and dimensions. In preparation.
[21] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, Ö. V-variable fractals and correlated random fractals. In preparation.
[22] Berger, Marc A.An Introduction to Probability and Stochastic Processes. Springer Texts in Statistics. New York, Springer-Verlag, 1993.
[23] Berger, Marcel. Geometry, vols. I and II. Translated from the French by M., Cole and S., Levy. Universitext. Berlin, Springer-Verlag, 1987.
[24] Billingsley, Patrick. Ergodic Theory and Information. New York, London, Sydney, John Wiley & Sons, 1965.
[25] Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J.Geometry. Cambridge, Cambridge University Press, 1999.
[26] Coxeter, H. S. M.The Real Projective Plane. New York, McGraw-Hill, 1949.
[27] Demko, S.; Hodges, L.; Naylor, B.Constructing fractal objects with iterated function systems. Computer Graphics 19 (1985), 271–278.
[28] Diaconis, Persi; Freedman, David. Iterated random functions. SIAM Rev. 41 (1999), no. 1, 45–76.
[29] Dudley, Richard M.Real Analysis and Probability. Pacific Grove CA, Wadsworth & Brooks/Cole Advanced Books & Software, 1989.
[30] Dunford, N.; Schwartz, J. T.Linear Operators. Parti: General Theory, third edition. New York, John Wiley & Sons, 1966.
[31] Edgar, Gerald A.Integral, Probability, and Fractal Measures. New York, Springer, 1998.
[32] Eisen, Martin. Introduction to Mathematical Probability Theory. Englewood Cliffs NJ, Prentice-Hall, 1969.
[33] Elton, John H.An ergodic theorem for iterated maps. Ergodic Theory Dynam. Systems 7 (1987), no. 4, 481–488.
[34] Falconer, Kenneth. Random fractals. Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 559–582.
[35] Falconer, Kenneth. Fractal Geometry. Mathematical Foundations and Applications. Chichester, John Wiley & Sons, 1990.
[36] Fathauer, R.Dr. Fathauer's Encyclopedia of Fractal Tilings. Version 1.0, 2000. http://members.cox.net/fractalenc.
[37] Feller, William. An Introduction to Probability Theory and its Applications, vol. I, third edition. New York, London, Sydney, John Wiley & Sons, 1968.
[38] Fisher, Yuval (ed.) Fractal Image Compression. Theory and Application. New York, Springer-Verlag, 1995.
[39] Forte, B.; Mendivil, F.A classical ergodic property for IFS: a simple proof. Ergodic Theory Dynam. Systems 18 (1998), no. 3, 609–611.
[40] Gardner, Martin. Rep-tiles. The Colossal Book of Mathematics: Classic Puzzles, Paradoxes and Problems. pp. 46–58. New York, London, W. W. Norton & Co., 2001.
[41] Graf, Siegfried. Statistically self-similar fractals. Probab. Theory Related Fields 74 (1987), no. 3, 357–392.
[42] Grünbaum, Branko; Shephard, G. C.Tilings and Patterns. New York, W. H. Freeman and Co., 1987.
[43] Hambly, B. M.Brownian motion on a random recursive Sierpinski gasket. Ann. Probab. 25 (1997), no. 3, 1059–1102.
[44] Hata, Masayoshi, On the structure of self-similar sets. Japan J. Appl. Math. 2 (1985), no. 2, 381–414.
[45] Hénon, M.A two-dimensional mapping with a strange attractor. Comm. Math. Phys. 50 (1976), no. 1, 69–77.
[46] Hoggar, S. G.Mathematics for Computer Graphics. Cambridge, Cambridge University Press, 1992.
[47] Horn, Alistair N.IFSs and the interactive design of tiling structures. In Fractals and Chaos, pp. 119–144. New York, Springer, 1991.
[48] Hutchinson, John E.Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), no. 5, 713–747.
[49] Hutchinson, John E.; Rüschendorf, Ludger. Random fractal measures via the contraction method. Indiana Univ. Math. J. 47 (1998), no. 2, 471–487.
[50] Hutchinson, John E.Deterministic and random fractals. In Complex Systems, pp. 127–166, Cambridge, Cambridge University Press, 2000.
[51] Hutchinson, John E.; Rüschendorf, Ludger. Selfsimilar fractals and selfsimilar random fractals. In Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998), pp. 109–123. Progress in Probability, vol. 46. Basel, Birkhauser, 2000.
[52] Hutchinson, John E.; Rüschendorf, Ludger. Random fractals and probability metrics. Adv. in Appl. Probab. 32 (2000), 925–947.
[53] Jacquin, Arnaud. Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Proc. 1 (1992), 18–30.
[54] Kaandorp, Jaap A.Fractal modelling. Growth and Form in Biology. With a forward by P., Prusinkiewicz. Berlin, Springer-Verlag, 1994.
[55] Kaijser, Thomas. On a new contraction condition for random systems with complete connections. Rev. Roumaine Math. Pures Appl. 26 (1981), no. 8, 1075–1117.
[56] Katok, Anatole; Hasselblatt, Boris. Introduction to the modern theory of dynamical systems. With a supplementary chapter by Anatole, Katok and Leonardo, Mendoza. In Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge, Cambridge University Press, 1995.
[57] Keeton, W. T.; Gould, J. L.; Gould, C. G.Biological Science, fifth edition. New York, London, W. W. Norton & Co., 1993.
[58] Kieninger, B.Iterated Function Systems on Compact Hausdorff Spaces. Aachen, Shaker-Verlag, 2002.
[59] Kifer, Yuri. Fractals via random iterated function systems and random geometric constructions. In Fractal Geometry and Stochastics (Finsbergen, 1994), pp. 145–164. Progress in Probability, vol. 37. Basel, Birkhäuser, 1995.
[60] Kunze, H.; Vrscay, E.Inverse problems for ODEs using the Picard contraction mapping. Inverse Problems 15 (1999).
[61] Lasota, A.; Yorke, James A.On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481–488.
[62] Lu, N.Fractal Imaging. San Diego, Academic Press, 1997.
[63] Mandelbrot, Benoit B.Fractals: Form, Chance, and Dimension. Translated from the French. Revised edition. San Francisco, W. H. Freeman and Co., 1977.
[64] Mandelbrot, Benoit B.The Fractal Geometry of Nature. San Francisco, W. H. Freeman, 1983.
[65] Mandelbrot, Benoit B.A multifractal walk down Wall Street. Scientific American, February 1999, 70–73.
[66] Massopust, Peter R.Fractal Functions, Fractal Surfaces, and Wavelets. San Diego CA, Academic Press, 1994.
[67] Mauldin, R. Daniel; Williams, S. C.Random recursive constructions: asymptotic geometrical and topological properties. Trans. Amer. Math. Soc. 295 (1986), no. 1, 325–346.
[68] Mauldin, R. Daniel; Williams, S. C.Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988), no. 2, 811–829.
[69] McGhehee, Richard. Attractors for closed relations on compact Hausdorff spaces. Indiana Univ. Math. J. 41 (1992), no. 4, 1165–1209.
[70] Mendelson, Bert. Introduction to Topology, British edition. London, Glasgow, Blackie & Son, 1963.
[71] Mochizuki, S.; Horie, D.; Cai, D.Stealing Autumn Color. ACM SIGGRAPH poster, 2005. See http://mochi.jpn.org/temp/mochipdf.zip.
[72] Moran, P. A. P.Additive functions of intervals and Hausdorff measure. Proc. Cambridge Philos. Soc. 42 (1946), 15–23.
[73] Mumford, David; Series, Caroline; Wright, David. Indra's Pearls. The Vision of Felix Klein. New York, Cambridge University Press, 2002.
[74] Navascués, M. A.Fractal polynomial interpolation. Z. Anal. Anwendungen 24 (2005), no. 2, 401–418.
[75] Nitecki, Zbigniew H.Topological entropy and the preimage structure of maps. Real Anal. Exchange 29 (2003/2004), no. 1, 9–41.
[76] Onicescu, O.; Mihok, G.Sur les chaînes de variables statistiques. Bull. Sci. Math. de France 59 (1935), 174–192.
[77] Parry, William. Symbolic dynamics and transformations of the unit interval. Trans. Amer. Math. Soc. 122 (1966), 368–378.
[78] Peitgen, H.-O.; Richter, P. H.The Beauty of Fractals. Images of Complex Dynamical Systems. Berlin, Springer-Verlag, 1986.
[79] Peruggia, Mario. Discrete Iterated Function Systems. Wellesley MA, A. K. Peters, 1993.
[80] Prusinkiewicz, Przemyslaw; Lindenmayer, Aristid. The Algorithmic Beauty of Plants. With the collaboration of James S., Hanan, F. David, Fracchia, Deborah R., Fowler, Martin J. M., de Boer and Lynn, Mercer. The Virtual Laboratory. New York, Springer-Verlag, 1990.
[81] Rachev, Svetlozar T.Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Statistics. Chichester, John Wiley & Sons, 1991.
[82] Rényi, A.Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.
[83] Ruelle, David. Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34 (1976), no. 3, 231–242.
[84] Sagan, Hans. Space-Filling Curves. Universitext. New York, Springer-Verlag, 1994.
[85] Scealy, R. V-Variable Fractal Interpolation. In preparation.
[86] Schattschneider, D.M. C. Escher: Visions of Symmetry, second edition. New York, Harry N. Abrams, 2004.
[87] Scientific Workplace 4.0.MacKichan Software, 2002.
[88] Shields, Paul C.The Ergodic Theory of Discrete Sample Paths. Graduate Studies in Mathematics, vol. 13. Providence RI, American Mathematical Society, 1996.
[89] Solomyak, Boris. Dynamics of self-similar tilings. Ergodic Theory and Dynam. Systems 17 (1997), no. 3, 695–738. Corrections in Ergodic Theory and Dynam. Systems 19 (1999), no. 6, 1685.
[90] Stenflo, Örjan. Markov chains in random environments and random iterated function systems. Trans. Amer. Math. Soc. 353 (2001), no. 9, 3547–3562.
[91] Stenflo, Örjan. Uniqueness of invariant measures for place-dependent random iterations of functions. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 13–32. IMA Vol. Math. Appl. New York, Springer-Verlag, 2002.
[92] Stewart, Ian; Clarke, Arthur C.; Mandelbrot, Benoît; et al. In The Colours of Infinity: The Beauty and Power of Fractals. London, Clear Books, 2004.
[93] Szoplik, T. (ed.) Selected Papers on Morphological Image Processing: Principles and Optoelectronic Implementations. Vol. MS 127, SPIE. Optical Engineering Press, 1996.
[94] The history of mathematics. In The New Encyclopaedia Britannica, fifteenth edition, vol. II, pp. 656–657. Chicago, London, 1979.
[95] Tosan, Eric; Excoffier, Thierry; Rondet-Mignotte, Martine. Création de formes et de couleurs avec les IFS. Preprint 2005. Université Claude Bernard, France.
[96] Tricot, Claude. Curves and Fractal Dimension. With a foreword by Michel Mendes, France. Translated from the 1993 French original. New York, Springer-Verlag, 1995.
[97] Vrscay, Edward R.From fractal image compression to fractal-based methods in mathematics. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 65–106. IMA Vol. Math. Appl., vol. 132. New York, Springer, 2002.
[98] Werner, Ivan. Ergodic theorem for contractive Markov systems. Nonlinearity 17 (2004), no. 6, 2303–2313.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.