Skip to main content Accessibility help
×
  • Cited by 21
Publisher:
Cambridge University Press
Online publication date:
September 2013
Print publication year:
2013
Online ISBN:
9780511998096

Book description

Providing a reliable and consolidated treatment of the principles behind large-area electronics, this book provides a comprehensive review of the design challenges associated with building circuits and systems from thin-film transistors. The authors describe the architecture, fabrication and design considerations for the principal types of TFT and their numerous applications. The practicalities of device non-ideality are also addressed and the specific design considerations necessitated by instabilities and non-uniformities in existing fabrication technologies. Containing device-circuit information, discussion of electronic solutions that compensate for material deficiencies, and design methodologies applicable to a wide variety of organic and inorganic disordered materials, this is an essential reference for all researchers, circuit and device engineers working on large-area electronics.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Antonuk, L. E, Boudry, J., Yorkston, J., et al., “Development of thin-film flat-panel arrays for diagnostic and radiotherapy imaging,” Proc. of SPIE, vol. 1651, 1992, pp. 94–105.
Zhao, W., Blevis, I., Germann, S., and Rowlands, J., “Digital radiology using active matrix readout amorphous selenium: construction and evaluation of a prototype real-time detector,” J. Med. Phys., vol. 24, no. 12, pp. 1834–1843, Dec. 1997.
Matsuura, N., Zhao, W., Huang, Z., and Rowlands, J., “Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy,” J. Med. Phys., vol. 26, no. 5, pp. 672–681, May 1999.
Dawson, R. M. and Kane, M.G., “Pursuit of active matrix organic light emitting diode displays,” Dig. Tech. Papers, SID Int. Symp., San Jose, June 5–7 2001, pp. 372–375.
Gu, G. and Forest, S. R., “Design of flat-panel displays based on organic light-emitting devices,” IEEE J. Sel. Topics in Quantum Elecs., vol. 4, pp. 83–99, Jan. 1998.
Nathan, A., Chaji, G. R., and Ashtiani, S. J., “Driving schemes for a-Si and LTPS AMOLED displays,” IEEE J. Display Tech., vol. 1, pp. 267–277, Dec. 2005.
Lueder, E., Liquid Crystal Displays, John Wiley & Sons, 2001.
He, G., Pfeiffer, M., and Leo, K., “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Letts., vol. 85, no. 17, pp. 3911–3913, Oct. 2004.
Yang, Y. and Bharathan, J., “Ink-jet printing technology and its application in polymer multicolor EL displays,” Dig. Tech. Papers, SID Int. Symp., Anaheim, May 1998, pp. 19–22.
Popovic, Z. D. and Aziz, H., “Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs),” IEEE J. on Sele. Topics in Quantum Elecs., vol. 8, no. 2, pp. 362–371, Mar. 2002.
Parker, I. D., Cao, Y., and Yang, C. Y., “Lifetime and degradation effects in polymer light-emitting diodes,” J. Appl. Phys., vol. 85, no. 4, pp. 2441–2447, Feb. 1999.
Aziz, H., Popovic, Z. D., Hu, N., Hor, A., and Xu, G., “Degradation mechanism of small molecule-based organic light-emitting devices,” Science, vol. 283, pp. 1900–1902, Mar. 1999.
Zoua, D. and Tsutsui, T., “Voltage shift phenomena introduced by reverse-bias application in multilayer organic light emitting diodes,” J. Appl. Phys., vol. 87, no. 4, pp. 1951–1956, Feb. 2000.
Nathan, A., Kumar, A., Sakariya, K., et al., “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid State Cirs., vol. 39, pp. 1477–1486, 2004.
Mahon, J. K., “History and status of organic light-emitting device (OLED) technology for vehicular applications,” Dig. Tech. Papers, SID Int. Symp., San Jose, June 2001, pp. 22–25.
Lee, S. E., Oh, W. S., Lee, S. C., and Chol, J. C., “Development of a novel current controlled organic light emitting diode (OLED) display driver IC,” IEICE Tran., vol. E85, no. 11, pp. 1940–1944, Dec. 2002.
Ashtiani, S. J., Pixel circuits and driving schemes for active-matrix organic light-emitting diode displays, Ph.D. Thesis, University of Waterloo, 2007.
Baldo, M., The electronic and optoelectronic properties of amorphous organic semiconductors, Ph.D. Thesis, Princeton University, 2001.
Qiu, C., Peng, H., Chen, H., et al., “Top-emitting organic light-emitting diode using nanometer platinum layers as hole injector,” Dig. Tech. Papers, SID Int. Symp., Baltimore, 2003, pp. 974–977.
Lee, C., Moon, D., and Han, J., “Top emission organic light emitting diode with Ni anode,” Dig. Tech. Papers, SID Int. Symp., Baltimore, 2003, pp. 533–535.
Chang, J., Sensor system for high throughput fluorescent bio-assays, Ph.D. Thesis, University of Waterloo, 2007.
Karim, K., Pixel architectures for digital imaging using amorphous silicon technology, Ph.D. Thesis, University of Waterloo, 2007.
Izadi, M. H. and Karim, K. S., “High dynamic range pixel architecture for advanced diagnostic medical imaging applications,” J. Vac. Sci. Tech. A, vol. 24, no. 3, pp. 846–849, Feb. 2007.
Taghibakhsh, F. and Karim, K. S., “High dynamic range 2-TFT amplifier pixel sensor architecture for digital mammography tomosynthesis,” IET Cirs. Devs. Syst., vol. 1, pp. 87–92, Feb. 2007.
Karim, K. S., Nathan, A., Hack, M., and Milne, W. I., “Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs,” IEEE Elec. Dev. Letts., vol. 25, no. 4, pp. 188–190, Apr. 2004.
Nathan, A., Striakhilev, D., Chaji, R., et al., “Backplane requirements for active matrix organic light emitting diode displays,” Proceedings of MRS 2006, San Francisco, US, Apr. 2006, pp. 0910-A16–01-L09–01.
Lewis, A. G., Lee, D. D., and Bruce, R. H., “Polysilicon TFT circuit design and performance,” IEEE J. Solid State Cirs., vol. 27, pp. 1833–1842, Dec. 1992.
Stewart, M., Howell, R., Dires, L., and Hatalis, K., “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. on Elec. Devs., vol. 48, pp. 845–851, 2001.
Yang, M. J., Chien, C. H., Lu, Y. H., et al., “High-performance and low-temperature-compatible p-channel polycrystalline-silicon TFTs using hafnium-silicate gate dielectric,” IEEE Elec. Dev. Letts., vol. 28, pp. 902–904, 2007.
Servati, P., Amorphous silicon TFTs for mechanically flexible electronics, Ph.D. Thesis, University of Waterloo, 2004.
Watanabe, H., “Statistics of grain boundaries in polysilicon,” IEEE Trans. on Elec. Devs., vol. 54, pp. 38–44, Jan. 2007.
Tai, Y. H., Huang, S. C., Chen, W. P., et al., “A statistical model for simulating the effect of LTPS TFT device variation for SOP applications,” J. Display Tech., vol. 3, pp. 426–434, Dec. 2007.
Street, R. A., Hydrogenated Amorphous Silicon, Cambridge University Press, 1991.
Jackson, W. B., Marshall, M., and Moyer, M. D., “Role of hydrogen in the formation of metastable defects in hydrogenated amorphous silicon,” Phys. Rev. B, vol. 39, no. 2, pp. 1164–1179, Jan. 1989.
Tai, Y.-H., Tsai, J.-W., Cheng, H.-C., and Su, F.-C., “Instability mechanisms for the hydrogenated amorphous silicon thin-film transistors with negative and positive bias stresses on the gate electrodes,” Appl. Phys. Letts., vol. 67, pp. 76–78, July 1995.
Cheng, I. C. and Wagner, S., “High hole and electron field effect mobilities in nanocrystalline silicon deposited at 150 °C,” Elsevier Thin Solid Films, vol. 427, pp. 56–59, Jan. 2003.
Esmaeili-Rad, M. R., Sazanov, A., and Nathan, A., “Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements,” Appl. Phys. Letts., vol. 91, pp. 113511 (1–3), Sept. 2007.
Esmaeili-Rad, M. R., Li, F., Sazanov, A., and Nathan, A., “Stability of nanocrystalline silicon bottom-gate thin film transistors with silicon nitride gate dielectric,” J. Appl. Phys., vol. 102, pp. 064512 (1–7), Sept. 2007.
Lin, Y. Y., Gundlach, D. J., Nelson, S. F., and Jakson, T. N., “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Elec. Dev. Letts., vol. 18, pp. 606–608, Dec. 1997.
Li, F. M., Nathan, A., Wu, Y., and Ong, B. S., “Organic thin-film transistor integration using silicon nitride gate dielectric,” Appl. Phys. Letts., vol. 90, pp. 133514 (1–3), Mar. 2007.
Wager, J. F., “Transparent electronics,” Science, vol. 300, pp. 1245–1246, 2003.
Nomura, K., Ohta, H., Takagi, A., et al., “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488–492, 2004.
Martins, R., Nathan, A., Barros, R., et al., “Complementary metal oxide semiconductor technology with and on paper, Adv. Mater., vol. 23, pp. 4491–4496, 2011.
Nathan, A., Lee, S., Jeon, S., Song, I., Chung, U-In, “Amorphous oxide TFTs: Progress and issues,” SID Symp. Dig. Tech. Papers, vol. 43, no. 1, pp. 1–4, June 2012.
Ghaffarzadeh, K., Nathan, A., Robertson, J., et al., “Persistent photoconductivity in Hf-In-Zn-O thin film transistors,” Appl. Phys. Letts., vol. 97, 143510 (1–3), 2010.
Chowdhury, M. D. H., Migliorato, P., and Jang, J., “Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors,” Appl. Phys. Lett., vol. 97, pp. 173506, 2010.
Jeon, S., Ahn, S.-E., Song, I., et al., “Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nature Mater., DOI: 10.1038/NMAT3256 (Feb. 2012), pp. 1–5.
Lee, S., Ghaffarzadeh, K., Nathan, A., et al., “Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors,” Appl. Phys. Letts., vol. 98, pp. 203508, 2011.
Mativenga, M., Choi, M. H., Choi, J. W., and Jang, J., “Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors,” IEEE Electron Device Letts., vol. 32, p. 170, 2011.
Martins, R., Ahnood, A., Correia, N., et al., “Recyclable, flexible, low power oxide electronics,” Adv. Funct. Mater., .
Park, J.-S., Kim, T.-W., Stryakhilev, D., et al., “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Letts., vol. 95, pp. 013503, 2009.
Kim, S. I., Kim, S. W., Park, J. C., et al., “Highly sensitive and reliable X-ray detector with HgI2 photoconductor and oxide drive TFT,” Tech. Dig., IEEE Electron Devices Meeting (IEDM), 2011, DOI: 10.1109/IEDM.2011.6131550, pp. 14.2.1–14.2.4.
Jeon, S., Ahn, S. E., Song, I., et al., “Dual gate photo-thin film transistor with high photoconductive gain for high reliability, and low noise flat panel transparent imager,” Tech. Dig., IEEE Electron Devices Meeting (IEDM), 2011, DOI: 10.1109/IEDM.2011.6131551, pp. 14.3.1–14.3.4.
Zan, H. W. and Kao, S. C., “The effect of drain-bias on the threshold voltage instability in organic TFTs,” IEEE Elec. Dev. Letts., vol. 92, pp. 155–157, Feb. 2008.
Kim, T. H., Han, C. G., and Song, C. K., “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Elsevier Thin Solid Films, vol. 516, pp. 1323–1326, June 2007.
Gu, G. and Kane, M. G., “Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors,” Appl. Phys. Letts., vol. 92, pp. 053305 (1–3), Feb. 2008.
Aerts, W. F., Verlaak, S., and Heremans, P., “Design of an organic pixel addressing circuit for an active-matrix OLED display,” IEEE Elec. Dev. Letts., vol. 49, pp. 2124–2126, Dec. 2002.
Powell, M. J., Berkel, C., and Hughes, J. R., “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors,” J. Appl. Phys., vol. 54, pp. 1323–1325, Jan. 1989.
Libsch, F. R. and Kanicki, J., “Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors,” Appl. Phys. Letts., vol. 62, pp. 1286–1288, Mar. 1993.
Jahinuzzaman, S. M., Sultana, A., Sakariya, K., Servati, P., and Nathan, A., “Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress,” Appl. Phys. Letts., vol. 87, pp. 023502 (1–3), July 2005.
Chiang, C. S., Kanicki, J., and Takechi, K., “Electrical instability of hydrogenated amorphous silicon thin-film transistors for active-matrix liquid-crystal displays,” Jpn. J. Appl. Phys., vol. 37, pp. 4704–4710, Sept. 1998.
Sambandan, S., Zhu, L., Striakhilev, D., Servati, P., and Nathan, A., “Markov model for threshold-voltage shift in amorphous silicon TFTs for variable gate bias,” IEEE Elec. Dev. Letts., vol. 26, pp. 375–377, June 2005.
He, Y., Hattori, R., and Kanicki, J., “Improved a-Si:H TFT circuits for active-matrix organic light emitting displays,” IEEE Trans. Elect. Devs., vol. 48, no. 7, pp. 1322–1325, July 2001.
Safavian, N., Chaji, G. R., Ashtiani, S. J., Nathan, A., and Rowlands, J. A., “Self-compensated a-Si:H detector with current-mode readout circuit for digital x-ray fluoroscopy,” Proc. of IEEE MIDWEST, Cincinnati, USA, Aug. 2005.
Servati, P. and Nathan, A., “Modeling of the static and dynamic behavior of hydrogenated amorphous silicon thin-film transistors,” J. Vac. Sci. Tech., vol. 20, no. 3, pp. 1038–1042, May 2002.
Baek, J. H., Lee, M., Lee, J. H., et al., “A current-mode display driver IC using sample-and-hold scheme for QVGA full-color active matrix organic LED mobile displays,” IEEE J. Solid State Cirs., vol. 41, no. 12, pp. 2974–2982, Dec. 2006.
Lin, Y. C., Shieh, H. P., and Kanicki, J., “A novel current-scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs,” IEEE Trans. Elect. Devs., vol. 52, pp. 1123–1132, June 2005.
Ono, S. and Kobayashi, Y., “An accelerative current-programming method for AM-OLED,” IEICE Trans. Elecs., vol. E88-C, pp. 264–269, Feb. 2005.
Chaji, G. R., Ashtiani, S., Alexander, S., et al., “Pixel circuits and drive schemes for large-area a-Si AMOLED,” IDMC 2005, Taiwan, 2005.
Chaji, G. R. and Nathan, A., “Low-power low-cost voltage-programmed a-Si:H AMOLED display for portable devices,” IEEE J. Display Tech., vol. 4, no. 2, pp. 233–237, June 2008.
Chaji, G. R. and Nathan, A., “Parallel addressing scheme for voltage-programmed active matrix OLED displays,” IEEE Trans. on Elec. Devs., vol. 54, pp. 1095–1100, May 2007.
Sanford, J. L. and Libsch, F. R., “TFT AMOLED pixel circuits and driving methods,” Dig. Tech. Papers, SID Int. Symp., Baltimore, 2003, pp. 10–13.
Chaji, G. R., Servati, P., and Nathan, A., “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel,” IEE Electronics Letts., vol. 41, no. 8, pp. 499–500, Apr. 2005.
Goh, J. C., Jang, J., Cho, K. S., and Kim, C. K., “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE Elect. Dev. Letts., vol. 24, pp. 583–585, Sept. 2003.
Goh, J. C., Kim, C. K., and Jang, J., “A novel pixel circuit for active-matrix organic light-emitting diodes,” Dig. Tech. Paper, SID Int. Symp., Baltimore, 2003, pp. 494–497.
Tam, S. W., Matsueda, Y., Kimura, M., et al., “Poly-Si driving circuits for organic EL displays,” Proc. of SPIE, vol. 4295, Apr. 2001, pp. 125–133.
Goh, J. C., Jang, J., Cho, K. S., and Kim, C. K., “A new pixel circuit for active matrix organic light emitting diodes,” IEEE Elec. Dev. Letts., vol. 23, pp. 583–585, Sept. 2002.
Jung, S. H., Nam, W. J., and Han, M. K, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Elect. Dev. Letts., vol. 25, pp. 690–692, Oct. 2004.
Dawson, R. M. A., et al., “A polysilicon active matrix organic light emitting diode display with integrated drivers,” Dig. Tech. Papers, SID Int. Symp., 1999.
Chaji, G. R. and Nathan, A., “Stable voltage-programmed pixel circuit for AMOLED displays,” IEEE J. Display Tech., vol. 2, pp. 347–358, Dec. 2006.
Fish, D. A., et al., “Improved optical feedback for OLED differential ageing correction,” J. SID, vol. 13, pp. 131–138, 2005.
Ashtiani, S. J. and Nathan, A., “A driving scheme for active-matrix organic light-emitting diode displays based on feedback,” IEEE J. Display Tech., vol. 2, pp. 258–264, Sept. 2006.
Ashtiani, S. J. and Nathan, A., “A driving scheme for AMOLED displays based on current feedback,” Proc. of IEEE CICC, Sept. 2006, pp. 289–292.
Inukai, K., et al., “4.0-in. TFT-OLED displays and a novel digital driving scheme,” Dig. Tech. Papers, SID Int. Symp., 2000, pp. 924–927.
Kondakov, D. Y., Lenhart, W. C., and Nichols, W. F., “Operational degradation of organic light-emitting diodes: mechanism and identification of chemical products,” J. Appl. Phys., vol. 101, pp. 024512 (1–7), Jan. 2007.
Chaji, G. R. and Nathan, A., “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays,” Proc. of IEEE MIDWEST, Cincinnati, Aug. 2005, pp. 782–785.
Chaji, G. R. and Nathan, A., “A sub-μA fast-settling current programmed pixel circuit for AMOLED displays,” IEEE European Solid State Cirs. (ESSCIRC 07), Sept. 2007, pp. 344–347.
Chaji, G. R., Striakhilev, D., and Nathan, A., “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs,” IEEE Elec. Dev. Letts., vol. 26, pp. 737–739, Oct. 2005.
Chaji, G. R., Safavian, N., and Nathan, A., “Stable a-Si:H circuits based on short-term stability of amorphous silicon TFTs,” J. Vac. Sci. and Tech. A, vol. 24, pp. 875–878, May 2006.
Bloom, I. and Nemirovsky, Y., “1/f noise reduction of metal-oxide-semiconductor transistors by cycling from inversion to accumulation,” Appl. Phys. Letts., vol. 58, pp. 1664–1666, Apr. 1991.
Klumperink, E. A. M., Gerkink, J., van der Wel, A. P., and Nauta, B., “Reducing MOSFET 1/f noise and power consumption by switched biasing,” IEEE J. Solid State Cirs., vol. 35, pp. 994–1001, July 2000.
Hassibi, A. and Lee, T. H., “A programmable electrochemical biosensor array in 0.18μm standard CMOS,” ISSCC Dig. Tech. Papers, pp. 564–566, Feb. 2005.
Hall, E. A. H., Biosensors, Open University Press, 2003.
Izadi, M. H. and Karim, K. S., “Noise optimization of an active pixel sensor for real-time digital x-ray fluoroscopy,” Proc. of the SPIE on Noise and Flucs. in Cir., Devices, and Materials, vol. 6600, pp. 66000Y, 2007.
Chaji, G. R. and Nathan, A., “A sub-μA fast-settling current programmed pixel circuit for AMOLED displays,” IEEE European Solid State Cirs. (ESSCIRC 07), Sept. 2007, pp. 344–347.
Jung, J. H., et al., “A 14.1 inch full color AMOLED display with top emission structure and a-Si backplane,” Dig. of Tech. Papers, SID Int. Symp., 2005, pp. 1538–1541.
Wegmann, G., Vitoz, E. A., and Rahali, F., “Charge injection in analog MOS switches,” IEEE J. Solid State Cirs., vol. Sc-22, pp. 1091–1097, Dec. 1987.
Chaji, G. R. and Nathan, A., “High-precision, fast current source for large-area current-programmed a-Si flat panels,” Proc. of IEEE ISCASS, June 2006, Greece, pp. 541–544.
Chaji, G. R. and Nathan, A., “Fast and offset-leakage insensitive current mode line driver for active matrix displays and sensors,” IEEE J. Display Tech., vol. 5, no. 2, pp. 72–79, Feb. 2009.
Toumazou, C., Lidgey, F. J., and Haigh, D. G., Analogue IC Design: the Current-Mode Approach, Peter Peregrinus Ltd., 1990, pp. 93–126.
Sedra, A. S., Roberts, G. W., and Gohh, F., “The current conveyor: history, progress and new results,” IEE Proc. G., Elec. Cirs. Syst., vol. 137, no. 2, pp. 78–87, 1990.
Slotine, J. E. and Li, W., Applied Nonlinear Control, Prentice-Hall, 1991, pp. 40–99.
Chaji, G. R. and Nathan, A., “Low-cost stable a-Si:H AMOLED display for portable applications,” Proc. of IEEE NEWCAS, Ottawa, Canada, June 2006, pp. 97–100.
Chaji, G. R., Alexander, S., Nathan, A., Church, C., and Tang, S. J., “A low-cost amorphous silicon AMOLED display with full VT- and VOLED-shift compensation,” Tech. Dig. SID Symp., Long Beach, US, May 2007, pp. 1580–1583.
Ng, C. and Nathan, A., “Temperature characterization of a-Si:H thin-film transistor for analog circuit design using hardware description language modeling,” J. Vac. Sci. and Tech. A, vol. 24, pp. 883–887, May 2006.
Poynton, C., Digital Video and HDTV Algorithms and Interfaces, Morgan Kaufmann Publishers, 2007.
Razavi, B., Design of Analog CMOS Integrated Circuits, McGraw Hill Higher Education, 2001.
Chaji, G. R., Safavian, N., and Nathan, A., “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays,” Proc. of IEEE MIDWEST, Cincinnati, USA, Aug. 2005, pp. 786–789.
Safavian, N., Chaji, G. R., Nathan, A., and Rowlands, J. A., “Three-TFT image sensor for real-time digital X-ray imaging,” IEE Elec. Letts., vol. 42, no. 3, pp. 31–32, Feb. 2006.
Ashtiani, S. J., Servati, P., Striakhilev, D., and Nathan, A., “A 3-TFT current-programmed pixel circuit for active-matrix organic light-emitting diode displays,” IEEE Trans. Elect. Devs., vol. 52, pp. 1514–1518, July 2005.
Johns, D. and Martin, K., Analog Integrated Circuit Design, New York, John Wiley & Sons, 1997, pp. 487–530.
Chaji, G. R. and Nathan, A., “A current-mode comparator for digital calibration of amorphous silicon AMOLED displays,” IEEE Trans. on Cirs. and Sys. II, vol. 55, no. 7, pp. 614–618, July 2008.
Chaji, G. R, Safavian, N., and Nathan, A., “Dynamic effect compensating technique for DC and transient instability of thin film transistor circuits for large-area devices,” Springer Analog Int. Cir. and Sig. Proc., vol. 56, no. 1–2, pp. 143–151, Aug. 2008.
Chaji, G. R., Ng, C., Nathan, A., et al., “Electrical compensation of OLED luminance degradation,” IEEE Elect. Dev. Letts., vol. 28, pp. 1108–1110, Dec. 2007.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.