We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any $n<\omega $ we construct an infinite $(n+1)$-generated Heyting algebra whose n-generated subalgebras are of cardinality $\leq m_n$ for some positive integer $m_n$. From this we conclude that for every $n<\omega $ there exists a variety of Heyting algebras which contains an infinite $(n+1)$-generated algebra, but which contains only finite n-generated algebras. For the case $n=2$ this provides a negative answer to a question posed by G. Bezhanishvili and R. Grigolia in [4].
A variety is finitely universal if its lattice of subvarieties contains an isomorphic copy of every finite lattice. We show that the 6-element Brandt monoid generates a finitely universal variety of monoids and, by the previous results, it is the smallest generator for a monoid variety with this property. It is also deduced that the join of two Cross varieties of monoids can be finitely universal. In particular, we exhibit a finitely universal variety of monoids with uncountably many subvarieties which is the join of two Cross varieties of monoids whose lattices of subvarieties are the 6-element and the 7-element chains, respectively.
We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the category of compact Hausdorff spaces is monadic over $\mathsf {Set}$. We deliver an analogous result for the upper, lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski duality for modal algebras beyond the zero-dimensional setting.
In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.
We prove analogues of Schur’s lemma for endomorphisms of extensions in Tannakian categories. More precisely, let $\mathbf {T}$ be a neutral Tannakian category over a field of characteristic zero. Let E be an extension of A by B in $\mathbf {T}$. We consider conditions under which every endomorphism of E that stabilises B induces a scalar map on $A\oplus B$. We give a result in this direction in the general setting of arbitrary $\mathbf {T}$ and E, and then a stronger result when $\mathbf {T}$ is filtered and the associated graded objects to A and B satisfy some conditions. We also discuss the sharpness of the results.
Two first-order logic theories are definitionally equivalent if and only if there is a bijection between their model classes that preserves isomorphisms and ultraproducts (Theorem 2). This is a variant of a prior theorem of van Benthem and Pearce. In Example 2, uncountably many pairs of definitionally inequivalent theories are given such that their model categories are concretely isomorphic via bijections that preserve ultraproducts in the model categories up to isomorphism. Based on these results, we settle several conjectures of Barrett, Glymour and Halvorson.
C-systems were defined by Cartmell as models of generalized algebraic theories. B-systems were defined by Voevodsky in his quest to formulate and prove an initiality conjecture for type theories. They play a crucial role in Voevodsky’s construction of a syntactic C-system from a term monad. In this work, we construct an equivalence between the category of C-systems and the category of B-systems, thus proving a conjecture by Voevodsky.
It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.
We study the embedding property in the category of sorted profinite groups. We introduce a notion of the sorted embedding property (SEP), analogous to the embedding property for profinite groups. We show that any sorted profinite group has a universal SEP-cover. Our proof gives an alternative proof for the existence of a universal embedding cover of a profinite group. Also our proof works for any full subcategory of the sorted profinite groups, which is closed under taking finite quotients, fibre products, and inverse limits. We also show that any sorted profinite group having SEP has a sorted complete system whose theory is $\omega $-categorical and $\omega $-stable under the assumption that the set of sorts is countable.
For every group G, the set $\mathcal {P}(G)$ of its subsets forms a semiring under set-theoretical union $\cup $ and element-wise multiplication $\cdot $, and forms an involution semigroup under $\cdot $ and element-wise inversion ${}^{-1}$. We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring $(\mathcal {P}(G),\cup ,\cdot )$ nor the involution semigroup $(\mathcal {P}(G),\cdot ,{}^{-1})$ admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.
The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction and observe that the theories without induction tend to have an algebraic character that allows model constructions by closing a model under the relevant algebraic operations.
In this paper, we determine the homotopy types of the Morse complexes of certain collections of simplicial complexes by studying dominating vertices or strong collapses. We show that if K contains two leaves that share a common vertex, then its Morse complex is strongly collapsible and hence has the homotopy type of a point. We also show that the pure Morse complex of a tree is strongly collapsible, thereby recovering as a corollary a result of Ayala et al. (2008, Topology and Its Applications 155, 2084–2089). In addition, we prove that the Morse complex of a disjoint union
$K\sqcup L$
is the Morse complex of the join
$K*L$
. This result is used to compute the homotopy type of the Morse complex of some families of graphs, including Caterpillar graphs, as well as the automorphism group of a disjoint union for a large collection of disjoint complexes.
In this paper, we give an axiomatization of the ordinal number system, in the style of Dedekind’s axiomatization of the natural number system. The latter is based on a structure
$(N,0,s)$
consisting of a set N, a distinguished element
$0\in N$
and a function
$s\colon N\to N$
. The structure in our axiomatization is a triple
$(O,L,s)$
, where O is a class, L is a class function defined on all s-closed ‘subsets’ of O, and s is a class function
$s\colon O\to O$
. In fact, we develop the theory relative to a Grothendieck-style universe (minus the power set axiom), as a way of bringing the natural and the ordinal cases under one framework. We also establish a universal property for the ordinal number system, analogous to the well-known universal property for the natural number system.
This article provides an algebraic study of the propositional system $\mathtt {InqB}$ of inquisitive logic. We also investigate the wider class of $\mathtt {DNA}$-logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, $\mathtt {DNA}$-varieties. We prove that the lattice of $\mathtt {DNA}$-logics is dually isomorphic to the lattice of $\mathtt {DNA}$-varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff’s classic variety theorems. We also introduce locally finite $\mathtt {DNA}$-varieties and show that these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the lattice of extensions of $\mathtt {InqB}$ is dually isomorphic to the ordinal $\omega +1$ and give an axiomatisation of these logics via Jankov $\mathtt {DNA}$-formulas. This shows that these extensions coincide with the so-called inquisitive hierarchy of [9].1
We show that some results of L. Makar-Limanov, P. Malcolmson and Z. Reichstein on the existence of free-associative algebras are valid in the more general context of varieties of algebras.
A logic is said to admit an equational completeness theorem when it can be interpreted into the equational consequence relative to some class of algebras. We characterize logics admitting an equational completeness theorem that are either locally tabular or have some tautology. In particular, it is shown that a protoalgebraic logic admits an equational completeness theorem precisely when it has two distinct logically equivalent formulas. While the problem of determining whether a logic admits an equational completeness theorem is shown to be decidable both for logics presented by a finite set of finite matrices and for locally tabular logics presented by a finite Hilbert calculus, it becomes undecidable for arbitrary logics presented by finite Hilbert calculi.
Just like group actions are represented by group automorphisms, Lie algebra actions are represented by derivations: up to isomorphism, a split extension of a Lie algebra $B$ by a Lie algebra $X$ corresponds to a Lie algebra morphism $B\to {\mathit {Der}}(X)$ from $B$ to the Lie algebra ${\mathit {Der}}(X)$ of derivations on $X$. In this article, we study the question whether the concept of a derivation can be extended to other types of non-associative algebras over a field ${\mathbb {K}}$, in such a way that these generalized derivations characterize the ${\mathbb {K}}$-algebra actions. We prove that the answer is no, as soon as the field ${\mathbb {K}}$ is infinite. In fact, we prove a stronger result: already the representability of all abelian actions – which are usually called representations or Beck modules – suffices for this to be true. Thus, we characterize the variety of Lie algebras over an infinite field of characteristic different from $2$ as the only variety of non-associative algebras which is a non-abelian category with representable representations. This emphasizes the unique role played by the Lie algebra of linear endomorphisms $\mathfrak {gl}(V)$ as a representing object for the representations on a vector space $V$.
A Leibniz class is a class of logics closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products of sets of logics. We study the complete lattice of all Leibniz classes, called the Leibniz hierarchy. In particular, it is proved that the classes of truth-equational and assertional logics are meet-prime in the Leibniz hierarchy, while the classes of protoalgebraic and equivalential logics are meet-reducible. However, the last two classes are shown to be determined by Leibniz conditions consisting of meet-prime logics only.
All known structural extensions of the substructural logic
$\textbf{FL}_{\textbf{e}}$
, the Full Lambek calculus with exchange/commutativity (corresponding to subvarieties of commutative residuated lattices axiomatized by
$\{\vee , \cdot , 1\}$
-equations), have decidable theoremhood; in particular all the ones defined by knotted axioms enjoy strong decidability properties (such as the finite embeddability property). We provide infinitely many such extensions that have undecidable theoremhood, by encoding machines with undecidable halting problem. An even bigger class of extensions is shown to have undecidable deducibility problem (the corresponding varieties of residuated lattices have undecidable word problem); actually with very few exceptions, such as the knotted axioms and the other prespinal axioms, we prove that undecidability is ubiquitous. Known undecidability results for non-commutative extensions use an encoding that fails in the presence of commutativity, so and-branching counter machines are employed. Even these machines provide encodings that fail to capture proper extensions of commutativity, therefore we introduce a new variant that works on an exponential scale. The correctness of the encoding is established by employing the theory of residuated frames.