Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-16T09:51:23.947Z Has data issue: false hasContentIssue false

Application of Thallium Isotopes

Tracking Marine Oxygenation through Manganese Oxide Burial

Published online by Cambridge University Press:  05 December 2019

Jeremy D. Owens
Affiliation:
Florida State University

Summary

Tracking initial ocean (de)oxygenation is critical to better constrain the coevolution of life and environment. Development of thallium isotopes has provided evidence to track the global manganese oxide burial which responds to early (de)oxygenation for short-term climate events. Modern oxic seawater thallium isotope values are recorded in organic-rich sediments deposited below an anoxic water column. An expansion of reducing conditions decrease manganese oxide burial and shifts the seawater thallium isotope composition more positive. Recent work documents that thallium isotopes are perturbed prior to carbon isotope excursions, suggesting ocean deoxygenation is a precursor for increased organic carbon burial. This Element provides an introduction to the application of thallium isotopes, case studies, and future directions.
Get access
Type
Element
Information
Online ISBN: 9781108688697
Publisher: Cambridge University Press
Print publication: 02 January 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anbar, A. D., Knoll, A. H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Nature 297, 11371142.Google Scholar
Anbar, A. D., Rouxel, O. 2007. Metal stable isotopes in paleoceanography. Annual Review of Earth and Planetary Sciences 35, 717746.Google Scholar
Baker, R. G. A., Rehkämper, M., Hinkley, T. K., Nielsen, S. G., Toutain, J. P. 2009. Investigation of thallium fluxes from subaerial volcanism: Implications for the present and past mass balance of thallium in the oceans. Geochimica et Cosmochimica Acta 73, 63406359.Google Scholar
Berner, R. A. 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51, 359365.Google Scholar
Berner, R. A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta: A Special Issue Dedicated to Robert A. Berner 70, 56535664.Google Scholar
Bidoglio, G., Gibson, P. N., O’Gorman, M., Roberts, K. J. 1993. X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochimica et Cosmochimica Acta 57, 23892394.Google Scholar
Böning, P., Schnetger, B., Beck, M., Brumsack, H.-J. 2018. Thallium dynamics in the southern North Sea. Geochimica et Cosmochimica Acta 227, 143155.Google Scholar
Canfield, D. E., Thamdrup, B. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7, 385392.Google Scholar
Coggon, R. M., Rehkämper, M., Atteck, C., Teagle, D. A. H., Alt, J. C., Cooper, M. J. 2014. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust. Geochimica et Cosmochimica Acta 144, 2542.Google Scholar
Fan, H., Nielsen, S. G., Owens, J. D., Auro, M., Shu, Y., Hardisty, D. S., Bowman, C., Young, S. A., Wen, H. In press. Constraining oceanic oxygenation during the Shuram excursion in South China using thallium isotopes. Geobiology.Google Scholar
Flegal, A. R., Patterson, C. C. 1985. Thallium concentrations in seawater. Marine Chemistry 15, 327331.Google Scholar
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta 43, 10751090.Google Scholar
Glass, J.B., Wolfe-Simon, F., Anbar, A.D. 2009. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology 7, 100123.Google Scholar
Hannisdal, B., Peters, S. E. 2011. Phanerozoic Earth System evolution and marine biodiversity. Science 334, 11211124.Google Scholar
Hardisty, D. S., Lyons, T. W., Riedinger, N., et al. 2018. An evaluation of sedimentary molybdenum and iron as proxies for pore fluid paleoredox conditions. American Journal of Science 318, 527556.Google Scholar
Hein, J. R., Koschinsky, A., Bau, M., Manheim, F. T., Kang, J.-K., Roberts, L. 2000. Cobalt-rich ferromanganese crusts in the Pacific. Handbook of Marine Mineral Deposits 18, 239273.Google Scholar
Lyons, T. W., Reinhard, C. T., Planavsky, N. J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307315.Google Scholar
Matthews, A. D., Riley, J. P. 1970. The occurrence of thallium in sea water and marine sediments. Chemical Geology 6, 149152.Google Scholar
McGoldrick, P. J., Keays, R. R., Scott, B. B. 1979. Thallium: A sensitive indicator of rock/seawater interaction and of sulfur saturation of silicate melts. Geochimica et Cosmochimica Acta 43, 13031311.Google Scholar
Nielsen, S., Rehkämper, M. 2012a. Thallium isotopes and their application to problems in Earth and environmental science. In Baskaran, M (ed.), Handbook of Environmental Isotope Geochemistry. Berlin and Heidelberg: Springer, pp. 247269.Google Scholar
Nielsen, S. G., Gannoun, A., Marnham, C., Burton, K. W., Halliday, A. N., Hein, J. R. 2011a. New age for ferromanganese crust 109D-C and implications for isotopic records of lead, neodymium, hafnium, and thallium in the Pliocene Indian Ocean. Paleoceanography 26, PA2213.Google Scholar
Nielsen, S. G., Goff, M., Hesselbo, S. P., Jenkyns, H. C., LaRowe, D. E., Lee, C.-T. A. 2011b. Thallium isotopes in early diagenetic pyrite: A paleoredox proxy? Geochimica et Cosmochimica Acta 75, 66906704.Google Scholar
Nielsen, S. G., Klein, F., Kading, T., Blusztajn, J., Wickham, K. 2015. Thallium as a tracer of fluid–rock interaction in the shallow Mariana forearc. Earth and Planetary Science Letters 430, 416426.Google Scholar
Nielsen, S. G., Mar-Gerrison, S., Gannoun, A., et al. 2009. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene. Earth and Planetary Science Letters 278, 297307.Google Scholar
Nielsen, S. G., Rehkämper, M. 2012b. Thallium isotopes and their application to problems in earth and environmental science. In Baskaran, M (ed.), Handbook of Environmental Isotope Geochemistry. Berlin and Heidelberg: Springer, pp. 247269.Google Scholar
Nielsen, S. G., Rehkämper, M., Baker, J., Halliday, A. N. 2004. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chemical Geology 204, 109124.Google Scholar
Nielsen, S. G., Rehkämper, M., Brandon, A. D., Norman, M. D., Turner, S., O’Reilly, S. Y. 2007. Thallium isotopes in Iceland and Azores lavas: Implications for the role of altered crust and mantle geochemistry. Earth and Planetary Science Letters 264, 332345.Google Scholar
Nielsen, S. G., Rehkamper, M., Norman, M. D., Halliday, A. N., Harrison, D. 2006a. Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439, 314317.Google Scholar
Nielsen, S. G., Rehkämper, M., Porcelli, D., et al. 2005. Thallium isotope composition of the upper continental crust and rivers: An investigation of the continental sources of dissolved marine thallium. Geochimica et Cosmochimica Acta 69, 20072019.Google Scholar
Nielsen, S. G., Rehkämper, M., Prytulak, J. 2017. Investigation and application of thallium isotope fractionation. Reviews in Mineralogy & Geochemistry 82, 759798.Google Scholar
Nielsen, S. G., Rehkämper, M., Teagle, D. A. H., Butterfield, D. A., Alt, J. C., Halliday, A. N. 2006b. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth and Planetary Science Letters 251, 120133.Google Scholar
Nielsen, S. G., Shimizu, N., Lee, C.-T. A., Behn, M. D. 2014. Chalcophile behavior of thallium during MORB melting and implications for the sulfur content of the mantle. Geochemistry, Geophysics, Geosystems 15, 49054919.Google Scholar
Nielsen, S. G., Wasylenki, L. E., Rehkämper, M., Peacock, C. L., Xue, Z., Moon, E. M. 2013. Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta 117, 252265.Google Scholar
Nielsen, S. G., Yogodzinski, G., Prytulak, J., et al. 2016. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes. Geochimica et Cosmochimica Acta 181, 217237.Google Scholar
Ostrander, C. M., Nielsen, S. G., Owens, J. D., et al. 2019. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nature Geoscience 12, 186191.Google Scholar
Ostrander, C. M., Owens, J. D. and Nielsen, S. G., 2017. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma). Science advances, 3(8), p.e1701020.Google Scholar
Owens, J. D., Lyons, T. W., Lowery, C. M. 2018. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth and Planetary Science Letters 499, 8394.Google Scholar
Owens, J. D., Nielsen, S. G., Horner, T. J., Ostrander, C. M., Peterson, L. C. 2017. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochimica et Cosmochimica Acta 213, 291307.Google Scholar
Owens, J. D., Reinhard, C. T., Rohrssen, M., Love, G. D., Lyons, T. W. 2016. Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth’s carbon cycle. Earth and Planetary Science Letters 449, 407417.Google Scholar
Peacock, C. L., Moon, E. M. 2012. Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochimica et Cosmochimica Acta 84, 297313.Google Scholar
Prytulak, J., Nielsen, S., Plank, T., Barker, M., Elliott, T. 2013. Assessing the utility of thallium and thallium isotopes for tracing subduction zone inputs to the Mariana arc. Chemical Geology 345, 139149.Google Scholar
Rader, S. T., Maier, R. M., Barton, M. D. and Mazdab, F. K., 2019. Uptake and Fractionation of Thallium by Brassica juncea in a Geogenic Thallium-Amended Substrate. Environmental science & technology, 53(5), pp. 2441–2449.Google Scholar
Rader, S. T., Mazdab, F. K., Barton, M. D. 2018. Mineralogical thallium geochemistry and isotope variations from igneous, metamorphic, and metasomatic systems. Geochimica et Cosmochimica Acta 243, 4265.Google Scholar
Raiswell, R., Hardisty, D. S., Lyons, T. W., et al. 2018. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. American Journal of Science 318, 491526.Google Scholar
Rehkämper, M., Frank, M., Hein, J. R., Halliday, A. 2004. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth and Planetary Science Letters 219, 7791.Google Scholar
Rehkämper, M., Frank, M., Hein, J. R., et al. 2002. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth and Planetary Science Letters 197, 6581.Google Scholar
Rehkämper, M., Halliday, A. N. 1999. The precise measurement of Tl isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites. Geochimica et Cosmochimica Acta 63, 935944.Google Scholar
Rehkämper, M., Nielsen, S. G. 2004. The mass balance of dissolved thallium in the oceans. Marine Chemistry 85, 125139.Google Scholar
Reinhard, C.T., Planavsky, N.J., Robbins, L.J., et al. 2013. Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences of the USA 110, 53575362.Google Scholar
Rue, E. L., Smith, G. J., Cutter, G. A., Bruland, K. W. 1997. The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Research Part I: Oceanographic Research Papers 44, 113134.Google Scholar
Saito, M. A., Goepfert, T. J., Ritt, J. T. 2008. Some thoughts on the concept of colimitation: Three definitions and the importance of bioavailability. Limnology and Oceanography 53, 276290.Google Scholar
Salters, V. J. M., and Stracke, A. (2004), Composition of the depleted mantle, Geochem. Geophys. Geosyst., 5, Q05B07, doi: 10.1029/2003GC000597.Google Scholar
Saltzman, M. R. and Thomas, E., Carbon isotope stratigraphy, in The Geologic Time Scale, vol. 1, Elsevier, 2012, pp. 207–232.Google Scholar
Scott, C., Lyons, T. W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology 324–325, 1927.Google Scholar
Scott, C., Lyons, T. W., Bekker, A., et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456459.Google Scholar
Shaw, D. M. 1952. The geochemistry of thallium. Geochimica et Cosmochimica Acta 2, 118154.Google Scholar
Them, T. R., Gill, B. C., Caruthers, A. H., et al. 2018. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proceedings of the National Academy of Sciences of the USA 115, 6596.Google Scholar
Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232, 1232.Google Scholar
Xiong, Y. 2007. Hydrothermal thallium mineralization up to 300 C: A thermodynamic approach. Ore Geology Reviews 32, 291313.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Application of Thallium Isotopes
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Application of Thallium Isotopes
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Application of Thallium Isotopes
Available formats
×