Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T11:53:40.810Z Has data issue: false hasContentIssue false

Iron Formations as Palaeoenvironmental Archives

Published online by Cambridge University Press:  13 December 2021

Kaarel Mänd
Affiliation:
University of Alberta
Leslie J. Robbins
Affiliation:
University of Regina, Saskatchewan, Canada
Noah J. Planavsky
Affiliation:
Yale University, Connecticut
Andrey Bekker
Affiliation:
University of California, Riverside
Kurt O. Konhauser
Affiliation:
University of Alberta

Summary

Ancient iron formations - iron and silica-rich chemical sedimentary rocks that formed throughout the Precambrian eons - provide a significant part of the evidence for the modern scientific understanding of palaeoenvironmental conditions in Archaean (4.0–2.5 billion years ago) and Proterozoic (2.5–0.539 billion years ago) times. Despite controversies regarding their formation mechanisms, iron formations are a testament to the influence of the Precambrian biosphere on early ocean chemistry. As many iron formations are pure chemical sediments that reflect the composition of the waters from which they precipitated, they can also serve as nuanced geochemical archives for the study of ancient marine temperatures, redox states, and elemental cycling, if proper care is taken to understand their sedimentological context.
Get access
Type
Element
Information
Online ISBN: 9781108993791
Publisher: Cambridge University Press
Print publication: 20 January 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albut, G., Babechuk, M. G., Kleinhanns, I. C., et al. (2018). Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa). Geochimica et Cosmochimica Acta, 228, 157189.CrossRefGoogle Scholar
Albut, G., Kamber, B. S., Brüske, A., et al. (2019). Modern weathering in outcrop samples versus ancient paleoredox information in drill core samples from a Mesoarchaean marine oxygen oasis in Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 265, 330353.CrossRefGoogle Scholar
Andersen, M. B., Romaniello, S., Vance, D., et al. (2014). A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox. Earth and Planetary Science Letters, 400, 184194.Google Scholar
Arnold, G. L., Anbar, A. D., Barling, J., & Lyons, T. W. (2004). Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304(5667), 8790.CrossRefGoogle ScholarPubMed
Asael, D., Rouxel, O., Poulton, S. W., et al. (2018). Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the early Paleoproterozoic. American Journal of Science, 318(3), 275299.CrossRefGoogle Scholar
Bao, H. (2019). Triple oxygen isotopes. In Lyons, T., Turchyn, A. & Reinhard, C. (Eds.), Elements in Geochemical Tracers in Earth System Science, Cambridge University Press, Cambridge, UK.Google Scholar
Barling, J., & Anbar, A. D. (2004). Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters, 217(3–4), 315329.CrossRefGoogle Scholar
Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1), 3755.CrossRefGoogle Scholar
Bekker, A., & Kovalick, A. (2021). Ironstones and iron formations. In Alderton, D. & Elias, S. A., eds., Encyclopedia of Geology (2nd ed.), Oxford: Academic Press, pp. 914921.Google Scholar
Bekker, A., Krapež, B., Slack, J. F., et al. (2012). Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes – a reply. Economic Geology, 107, 379380.Google Scholar
Bekker, A., Planavsky, N. J., Krapež, B., et al. (2014). Iron formations: Their origins and implications for ancient seawater chemistry. In Holland, H. D. & Turekian, K. K., eds., Treatise on Geochemistry (2nd ed.), Oxford: Elsevier, pp. 561628.CrossRefGoogle Scholar
Bekker, A., Slack, J. F., Planavsky, N., et al. (2010). Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105(3), 467508.CrossRefGoogle Scholar
Beukes, N. J., & Gutzmer, J. (2008). Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. In Hagemann, S., Rosière, C. A., Gutzmer, J., & Beukes, N. J., eds., Banded Iron Formation-Related High-Grade Iron Ore, Vol. 15, Society of Economic Geologists Littleton, CO, USA, pp. 547.Google Scholar
Beukes, N. J., Swindell, E. P. W., & Wabo, H. (2016). Manganese deposits of Africa. Episodes Journal of International Geoscience, 39(2), 285317.Google Scholar
Bindeman, I. N., Bekker, A., & Zakharov, D. O. (2016). Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth and Planetary Science Letters, 437, 101113.CrossRefGoogle Scholar
Bindeman, I. N., Zakharov, D. O., Palandri, J., et al. (2018). Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature, 557, 545548.Google Scholar
Breillat, N., Guerrot, C., Marcoux, E., & Négrel, Ph. (2016). A new global database of δ98Mo in molybdenites: A literature review and new data. Journal of Geochemical Exploration, 161, 115.CrossRefGoogle Scholar
Busigny, V., Lebeau, O., Ader, M., et al. (2013). Nitrogen cycle in the Late Archean ferruginous ocean. Chemical Geology, 363, 115130.Google Scholar
Cabral, A. R., Zeh, A., Vianna, N. C., et al. (2019). Molybdenum-isotope signals and cerium anomalies in Palaeoproterozoic manganese ore survive high-grade metamorphism. Scientific Reports, 9(1), 4570.CrossRefGoogle ScholarPubMed
Chi Fru, E., Rodríguez, N. P., Partin, C. A., et al. (2016). Cu isotopes in marine black shales record the Great Oxidation Event. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 49414946.Google Scholar
Chi Fru, E., Somogyi, A., Albani, A. E., et al. (2019). The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga. Geology, 47(3), 243246.CrossRefGoogle Scholar
Cloud, P. (1973). Paleoecological significance of the banded iron-formation. Economic Geology, 68(7), 11351143.Google Scholar
Craddock, P. R., & Dauphas, N. (2011). Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth and Planetary Science Letters, 303(1), 121132.Google Scholar
Crowe, S. A., Døssing, L. N., Beukes, N. J., et al. (2013). Atmospheric oxygenation three billion years ago. Nature, 501(7468), 535538.CrossRefGoogle ScholarPubMed
Dauphas, N., John, S. G., & Rouxel, O. (2017). Iron isotope systematics. Reviews in Mineralogy and Geochemistry, 82(1), 415510.CrossRefGoogle Scholar
Daye, M., Klepac-Ceraj, V., Pajusalu, M., et al. (2019). Light-driven anaerobic microbial oxidation of manganese. Nature, 576(7786), 311314.CrossRefGoogle ScholarPubMed
Døssing, L. N., Dideriksen, K., Stipp, S. L. S., & Frei, R. (2011). Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments. Chemical Geology, 285(1), 157166.CrossRefGoogle Scholar
Farquhar, J., Zerkle, A. L., & Bekker, A. (2014). Geologic and geochemical constraints on Earth’s early atmosphere. In Holland, H. D. & Turekian, K. K., eds., Treatise on Geochemistry (2nd ed.), Oxford: Elsevier, pp. 91138.Google Scholar
Fischer, W., & Knoll, A. H. (2009). An iron shuttle for deepwater silica in late Archean and early Paleoproterozoic iron formation. Geological Society of America Bulletin, 121, 222235.Google Scholar
Frei, R., Gaucher, C., Poulton, S. W., & Canfield, D. E. (2009). Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461(7261), 250253.Google Scholar
Frost, C. D., von Blanckenburg, F., Schoenberg, R., et al. (2006). Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation. Contributions to Mineralogy and Petrology, 153(2), 211.CrossRefGoogle Scholar
Galili, N., Shemesh, A., Yam, R., et al. (2019). The geologic history of seawater oxygen isotopes from marine iron oxides. Science, 365(6452), 469473.Google Scholar
Garvin, J., Buick, R., Anbar, A. D., et al. (2009). Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science, 323(5917), 10451048.CrossRefGoogle ScholarPubMed
Goldberg, T., Archer, C., Vance, D., & Poulton, S. W. (2009). Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochimica et Cosmochimica Acta, 73(21), 65026516.Google Scholar
Goto, K. T., Sekine, Y., Shimoda, G., et al. (2020). A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: Insights from modern marine hydrothermal Fe-Mn oxides. Geochimica et Cosmochimica Acta, 280, 221236.CrossRefGoogle Scholar
Gross, G. A. (1980). A classification of iron formations based on depositional environments. The Canadian Mineralogist, 18, 215222.Google Scholar
Gueguen, B., Sorensen, J. V., Lalonde, S. V., et al. (2018). Variable Ni isotope fractionation between Fe-oxyhydroxides and implications for the use of Ni isotopes as geochemical tracers. Chemical Geology, 481, 3852.Google Scholar
Gumsley, A. P., Chamberlain, K. R., Bleeker, W., et al. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences of the United States of America, 114(8), 18111816.CrossRefGoogle ScholarPubMed
Halevy, I., Alesker, M., Schuster, E. M., et al. (2017). A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10(2), 135139.Google Scholar
Hartman, H. (1984). The evolution of photosynthesis and microbial mats: A speculation on the banded iron formations. In Cohen, Y., Castenholz, R., & Halvorson, H., eds., Microbial Mats: Stromatolites, New York: Alan Liss, pp. 451453.Google Scholar
Haugaard, R., Pecoits, E., Lalonde, S., et al. (2016). The Joffre banded iron formation, Hamersley Group, Western Australia: Assessing the palaeoenvironment through detailed petrology and chemostratigraphy. Precambrian Research, 273, 1237.Google Scholar
Hayashi, T., Tanimizu, M., & Tanaka, T. (2004). Origin of negative Ce anomalies in Barberton sedimentary rocks, deduced from La–Ce and Sm–Nd isotope systematics. Precambrian Research, 135(4), 345357.Google Scholar
Heard, A. W., Aarons, S. M., Hofmann, A., et al. (2021). Anoxic continental surface weathering recorded by the 2.95 Ga Denny Dalton Paleosol (Pongola Supergroup, South Africa). Geochimica et Cosmochimica Acta, 295, 123.CrossRefGoogle Scholar
Heard, A. W., Dauphas, N., Guilbaud, R., et al. (2020). Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation. Science, 370, 446449.Google Scholar
Heck, P. R., Huberty, J. M., Kita, N. T., et al. (2011). SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations. Geochimica et Cosmochimica Acta, 75(20), 58795891.CrossRefGoogle Scholar
Heimann, A., Johnson, C. M., Beard, B. L., et al. (2010). Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth and Planetary Science Letters, 294, 818.CrossRefGoogle Scholar
Hoffman, P. F. (1987). Early Proterozoic foredeeps, foredeep magmatism, and Superior-type iron-formations of the Canadian Shield. In A. Kröner (Ed.) Geodynamics Series Volume 17: Proterozic Lithospheric Evolution, American Geophysical Union (AGU), Washington, DC, USA pp. 8598.Google Scholar
Holland, H. D. (1973). The oceans: A possible source of iron in iron-formations. Economic Geology, 68(7), 11691172.Google Scholar
James, H. L. (1954). Sedimentary facies of iron-formation. Economic Geology, 49(3), 235293.Google Scholar
Johnson, C. M., Beard, B. L., & Roden, E. E. (2008). The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth. Annual Reviews in Earth and Planetary Sciences, 36, 457493.Google Scholar
Johnson, C. M., Beard, B. L., & Weyer, S. (2020). Iron Geochemistry: An Isotopic Perspective, Cham: Springer International.CrossRefGoogle Scholar
Johnson, J. E., Webb, S. M., Thomas, K., et al. (2013). Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proceedings of the National Academy of Sciences, 110(28), 1123811243.Google Scholar
Jones, C., Nomosatryo, S., Crowe, S. A., et al. (2015). Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology, 43(2), 135138.Google Scholar
Kappler, A., Pasquero, C., Konhauser, K. O., & Newman, D. K. (2005). Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33(11), 865868.Google Scholar
Kendall, B., Dahl, T. W., & Anbar, A. D. (2017). The stable isotope geochemistry of molybdenum. Reviews in Mineralogy and Geochemistry, 82(1), 683732.Google Scholar
Knauth, L. P. (2005). Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. In Noffke, N., ed., Geobiology: Objectives, Concepts, Perspectives, Amsterdam: Elsevier, pp. 5369.Google Scholar
Konhauser, K. O., Hamade, T., Raiswell, R., et al. (2002). Could bacteria have formed the Precambrian banded iron formations? Geology, 30(12), 10791082.Google Scholar
Konhauser, K. O., Lalonde, S. V., Amskold, L., & Holland, H. D. (2007). Was there really an Archean phosphate crisis? Science, 315(5816), 1234.Google Scholar
Konhauser, K. O., Lalonde, S. V., Planavsky, N. J., et al. (2011). Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature, 478(7369), 369373.Google Scholar
Konhauser, K. O., Pecoits, E., Lalonde, S. V., et al. (2009). Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458(7239), 750753.Google Scholar
Konhauser, K. O., Planavsky, N. J., Hardisty, D. S., et al. (2017). Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews, 172, 140177.Google Scholar
Konhauser, K. O., Robbins, L. J., Alessi, D. S., et al. (2018). Phytoplankton contributions to the trace-element composition of Precambrian banded iron formations. GSA Bulletin, 130(5–6), 941951.CrossRefGoogle Scholar
Krapež, B., Barley, M. E., & Pickard, A. L. (2003). Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the early Palaeoproterozoic Brockman supersequence of Western Australia. Sedimentology, 50, 9791011.Google Scholar
Lau, K. V., Romaniello, S. J., & Zhang, F. (2019). The uranium isotope paleoredox proxy. In T. Lyons, A. Turchyn & C. Reinhard (Eds.), Elements in Geochemical Tracers in Earth System Science, Cambridge University Press Cambridge, UK. pp. 128.Google Scholar
Li, W., Huberty, J. M., Beard, B. L., et al. (2013). Contrasting behavior of oxygen and iron isotopes in banded iron formations revealed by in situ isotopic analysis. Earth and Planetary Science Letters, 384, 132143.Google Scholar
Liljestrand, F. L., Knoll, A. H., Tosca, N. J., et al. (2020). The triple oxygen isotope composition of Precambrian chert. Earth and Planetary Science Letters, 537, 116167.Google Scholar
Mänd, K., Lalonde, S. V., Robbins, L. J., et al. (2020). Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event. Nature Geoscience, 13, 302306.Google Scholar
Mathur, R., Brantley, S., Anbar, A., et al. (2010). Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits. Mineralium Deposita, 45(1), 4350.Google Scholar
Mloszewska, A. M., Pecoits, E., Cates, N. L., et al. (2012). The composition of Earth’s oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada). Earth and Planetary Science Letters, 317318, 331342.Google Scholar
Morris, R. C. (1993). Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Research, 60(1), 243286.Google Scholar
Moynier, F., Vance, D., Fujii, T., & Savage, P. (2017). The isotope geochemistry of zinc and copper. Reviews in Mineralogy and Geochemistry, 82(1), 543600.CrossRefGoogle Scholar
Muhling, J. R., & Rasmussen, B. (2020). Widespread deposition of greenalite to form banded iron formations before the Great Oxidation Event. Precambrian Research, 339, 105619.Google Scholar
Murray, K. J., Mozafarzadeh, M. L., & Tebo, B. M. (2005). Cr(III) oxidation and Cr toxicity in cultures of the manganese(II)-oxidizing Pseudomonas putida strain gb-1. Geomicrobiology Journal, 22(3–4), 151159.Google Scholar
Nakada, R., Takahashi, Y., & Tanimizu, M. (2016). Cerium stable isotope ratios in ferromanganese deposits and their potential as a paleo-redox proxy. Geochimica et Cosmochimica Acta, 181, 89100.Google Scholar
Ossa Ossa, F., Eickmann, B., Hofmann, A., et al. (2018). Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event. Earth and Planetary Science Letters, 486, 7083.Google Scholar
Ostrander, C. M., Kendall, B., Olson, S. L., et al. (2020). An expanded shale δ98Mo record permits recurrent shallow marine oxygenation during the Neoarchean. Chemical Geology, 532, 119391.Google Scholar
Ostrander, C. M., Nielsen, S. G., Owens, J. D., et al. (2019). Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nature Geoscience, 12(3), 186.Google Scholar
Partin, C. A., Lalonde, S. V., Planavsky, N. J., et al. (2013). Uranium in iron formations and the rise of atmospheric oxygen. Chemical Geology, 362, 8290.Google Scholar
Percak‐Dennett, E. M., Beard, B. L., Xu, H., et al. (2011). Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology, 9(3), 205220.Google Scholar
Perry, E. C. (1967). The oxygen isotope chemistry of ancient cherts. Earth and Planetary Science Letters, 3, 6266.Google Scholar
Petrash, D. A., Robbins, L. J., Shapiro, R. S., et al. (2016). Chemical and textural overprinting of ancient stromatolites: Timing, processes, and implications for their use as paleoenvironmental proxies. Precambrian Research, 278, 145160.Google Scholar
Pinti, D. L., Hashizume, K., & Matsuda, J. (2001). Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: Clues on the chemical state of the Archean ocean and the deep biosphere. Geochimica et Cosmochimica Acta, 65(14), 23012315.Google Scholar
Planavsky, N. J., Asael, D., Hofmann, A., et al. (2014). Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geoscience, 7(4), 283286.CrossRefGoogle Scholar
Planavsky, N. J., Bekker, A., Rouxel, O. J., et al. (2010a). Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74(22), 63876405.CrossRefGoogle Scholar
Planavsky, N. J., Robbins, L. J., Kamber, B. S., & Schoenberg, R. (2020). Weathering, alteration and reconstructing Earth’s oxygenation. Interface Focus, 10, 20190140.Google Scholar
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al. (2010b). The evolution of the marine phosphate reservoir. Nature, 467(7319), 10881090.Google Scholar
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al. (2012). Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica et Cosmochimica Acta, 80, 158169.Google Scholar
Pons, M.-L., Fujii, T., Rosing, M., et al. (2013). A Zn isotope perspective on the rise of continents. Geobiology, 11(3), 201214.Google Scholar
Posth, N., Hegler, F., Konhauser, K. O., & Kappler, A. (2008). Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geoscience, 1, 703707.Google Scholar
Rasmussen, B., Muhling, J. R., Suvorova, A., & Krapež, B. (2017). Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambrian Research, 290, 4962.CrossRefGoogle Scholar
Raye, U., Pufahl, P. K., Kyser, T. K., et al. (2015). The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman iron formation, Labrador Trough, Canada. Geochimica et Cosmochimica Acta, 164, 205220.Google Scholar
Robbins, L. J., Funk, S. P., Flynn, S. L., et al. (2019a). Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations. Nature Geoscience, 12(7), 558563.Google Scholar
Robbins, L. J., Konhauser, K. O., Warchola, T. J., et al. (2019b). A comparison of bulk versus laser ablation trace element analyses in banded iron formations: Insights into the mechanisms leading to compositional variability. Chemical Geology, 506, 197224.Google Scholar
Robbins, L. J., Lalonde, S. V., Planavsky, N. J., et al. (2016). Trace elements at the intersection of marine biological and geochemical evolution. Earth-Science Reviews, 163, 323348.Google Scholar
Robbins, L. J., Lalonde, S. V., Saito, M. A., et al. (2013). Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology, 11(4), 295306.Google Scholar
Robbins, L. J., Swanner, E. D., Lalonde, S. V., et al. (2015). Limited Zn and Ni mobility during simulated iron formation diagenesis. Chemical Geology, 402, 3039.Google Scholar
Robert, F., & Chaussidon, M. (2006). A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443(7114), 969972.Google Scholar
Rouxel, O. J., Bekker, A., & Edwards, K. J. (2005). Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307(5712), 10881091.CrossRefGoogle ScholarPubMed
Rouxel, O. J., & Luais, B. (2017). Germanium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1), 601656.Google Scholar
Rudnick, R. L., & Gao, S. (2014). Composition of the continental crust. In Holland, H. D. & Turekian, K. K. (Eds.) Treatise on Geochemistry, Amsterdam: Elsevier, pp. 151.Google Scholar
Schad, M., Halama, M., Bishop, B., et al. (2019). Temperature fluctuations in the Archean ocean as trigger for varve-like deposition of iron and silica minerals in banded iron formations. Geochimica et Cosmochimica Acta, 265, 386412.Google Scholar
Scott, C., Lyons, T. W., Bekker, A., et al. (2008). Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186), 456459.Google Scholar
Skomurski, F. N., Ilton, E. S., Engelhard, M. H., et al. (2011). Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment. Geochimica et Cosmochimica Acta, 75(22), 72777290.Google Scholar
Smith, A. J. B., Beukes, N. J., & Gutzmer, J. (2013). The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa. Economic Geology, 108, 111134.Google Scholar
Smith, A. J. B., Beukes, N. J., Gutzmer, J., et al. (2017). Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition. Geobiology, 15, 731749.Google Scholar
Steinhoefel, G., von Blanckenburg, F., Horn, I., et al. (2010). Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochimica et Cosmochimica Acta, 74(9), 26772696.CrossRefGoogle Scholar
Stüeken, E. E., Kipp, M. A., Koehler, M. C., & Buick, R. (2016). The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Science Reviews, 160, 220239.Google Scholar
Swanner, E. D., Mloszewska, A. M., Cirpka, O. A., et al. (2015). Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity. Nature Geoscience, 8(2), 126130.Google Scholar
Swanner, E. D., Planavsky, N. J., Lalonde, S. V., et al. (2014). Cobalt and marine redox evolution. Earth and Planetary Science Letters, 390, 253263.Google Scholar
Thibon, F., Blichert-Toft, J., Albarede, F., et al. (2019). A critical evaluation of copper isotopes in Precambrian iron formations as a paleoceanographic proxy. Geochimica et Cosmochimica Acta, 264, 130140.Google Scholar
Thoby, M., Konhauser, K. O., Fralick, P. W., et al. (2019). Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates. Geology, 47(6), 559562.CrossRefGoogle Scholar
Thompson, K. J., Kenward, P. A., Bauer, K. W., et al. (2019). Photoferrotrophy, deposition of banded iron formations, and methane production in the Archean oceans. Science Advances, 5, eaav2869.CrossRefGoogle ScholarPubMed
Trendall, A. F., & Blockey, J. (1970). The iron formations of the Precambrian Hamersley Group, Western Australia with special reference to the associated crocidolite. Western Australia Geological Survey Bulletin, 119, 1366.Google Scholar
Trower, E. J., & Fischer, W. W. (2019). Precambrian Si isotope mass balance, weathering, and the significance of the authigenic clay silica sink. Sedimentary Geology, 384, 111.Google Scholar
Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 1, 562581.Google Scholar
Wang, C., Konhauser, K. O., & Zhang, L. (2015). Depositional environment of the Paleoproterozoic Yuanjiacun banded iron formation in Shanxi Province, China. Economic Geology, 110, 15151539.Google Scholar
Wang, X., Planavsky, N. J., Hofmann, A., et al. (2018). A Mesoarchean shift in uranium isotope systematics. Geochimica et Cosmochimica Acta, 238, 438452.Google Scholar
Warke, M. R., Rocco, T. D., Zerkle, A. L., et al. (2020). The Great Oxidation Event preceded a Paleoproterozoic ‘snowball Earth’. Proceedings of the National Academy of Sciences, 117(24), 1331413320.Google Scholar
Wasylenki, L. E., Rolfe, B. A., Weeks, C. L., et al. (2008). Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta, 72(24), 59976005.Google Scholar
Wei, W., Klaebe, R., Ling, H.-F., et al. (2020). Biogeochemical cycle of chromium isotopes at the modern Earth’s surface and its applications as a paleo-environment proxy. Chemical Geology, 541, 119570.Google Scholar
Xu, W., Zhu, J.-M., Johnson, T. M., et al. (2020). Selenium isotope fractionation during adsorption by Fe, Mn and Al oxides. Geochimica et Cosmochimica Acta, 272, 121136.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Iron Formations as Palaeoenvironmental Archives
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Iron Formations as Palaeoenvironmental Archives
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Iron Formations as Palaeoenvironmental Archives
Available formats
×