Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-25T14:54:35.288Z Has data issue: false hasContentIssue false

Variability of function during infancy and toddler's age

Published online by Cambridge University Press:  18 September 2015

Summary

An interactional model of brain function is postulated, in which activity and reactivity are basic properties of the central nervous system from the very beginning. Variability is an essential aspect of normal functioning. Primary or indiscriminate variability consists of the development of many strategies for the execution of motor acts. It is predominant during fetal age and infancy. Toddler age is characterized by secondary or adaptive variability, which reflects the ability to select the adequate strategy at the right moment. This is important for the development of proper planning of movement patterns and is a prerequisite for skill development. Recognition of the types and quality of variability helps to detect developmental disorders at an early age.

Type
Research Article
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Förster, O. Das phylogenetische Moment in der spastische Lähmung. Berl Klin Wchschr 1913;1:1217–55.Google Scholar
2.Sherrington, C. The Integrative Action of the Nervous System. New York: Scribners, 1926.Google Scholar
3.Touwen, BCL. Variability and Stereotypy in Normal and Deviant Development. In: Appley, J, red. Care of the Handicapped Child. Clin Dev Med 67. London: SIMP with Heinemann, 1978:99110Google Scholar
4.Touwen, BCL. Primitive reflexes - conceptional or semantic problem? In: Prechtl, HFR, ed. Continuity of neural functions. Clin Dev Med 94. Oxford: SIMP with Blackwell, 1984:115–25Google Scholar
5.McGraw, MB. The neuromuscular maturation of the human infant. New York; Haffner, 1943, repred 1969.Google Scholar
6.Stirnimann, F. Psychologie des neugeborenen Kindes. (1940) München, Kindlertaschenbücher, herdruk zonder datum.Google Scholar
7.Touwen, BCL. Neurological development in infancy. Clin Dev Med 58. London: SIMP with Heinemann, 1976.Google Scholar
8.Touwen, BCL. Longitudinal studies on motor development -developmental neurological considerations. In: Kalverboer, AF, Hopkins, B, Geuze, RH, eds. A longitudinal Approach to the Study of motor Development in early and later Childhood. Cambridge: Cambridge Univ. Press, 1993:1534.CrossRefGoogle Scholar
9.Touwen, BCL. How normal is variable, or how variable is normal? Early Hum Dev 1993;34 (special issue): 112.CrossRefGoogle ScholarPubMed
10.Dileo, JH. Developmental evaluation of very young infants. In: Hellmuth, J, ed. The exceptional Infant, vol 1: The normal Infant. Seattle: Special Child Publ, 1967:121–42.Google Scholar
11.Prechtl, HFR. Continuity and change in early neural development. In: Prechtl, HFR, ed. Continuity of neural Functions. Clin Dev Med 93. Oxford: SIMP with Blacwell, 1984:115.Google Scholar
12.DeVries, JIP. Development of specific motor patterns in the human fetus. Groningen: Thesis, 1987.Google Scholar
13.Preyer, W. Spezielle Physiologie des Embryo. Leipzig: Grieben, 1885.Google Scholar
14.Stafström, CE, Johnston, D, Wehner, JM, Sheppard, JR. Spontaneous neural activity in fetal brain reaggregrate cultures. Neuroscience 1980;5:1681–90.CrossRefGoogle ScholarPubMed
15.Okado, N, Kojima, T. Ontogeny of the central nervous system: Neurogenesis, fibre connection, synaptogenesis and myelination in the spinal cord. In: Prechtl, HFR, ed. Continuity of neural Functions. Clin Dev Med 93. Oxford: SIMP with Blackwell, 1984: 3145.Google Scholar
16.Kostovic, I. Structural and histochemical reorganisation of the human prefrontal cortex during perinatal and postnatal life. Prog Brain Res 1990;85:223–40.CrossRefGoogle Scholar
17.Bekedam, DJ. Fetal Heart Rate and Movement Patterns in Growth Retardation. Groningen: Thesis, 1989.Google Scholar
18.Sival, DA. Studies on fetal Motor behaviour in complicated Pregnancies. Groningen: Thesis, 1993.CrossRefGoogle Scholar
19.Visser, GHA, Laurini, RN, DeVries, JIP, Bekedam, DJ, Prechtl, HFR. Abnormal motor behaviour in anencephalic fetuses. Early hum Dev 1985;12:173–82.CrossRefGoogle ScholarPubMed
20.Hopkins, B, Prechtl, HFR. A qualitative approach to the development of movements during early infancy. In: Prechtl, HFR, ed. Continuity of neural Functions. Clin Dev Med 94. Oxford: SIMP with Blackwell, 1984:179–97.Google Scholar
21.Hadders-Algra, M, Prechtl, HFR. Developmental course of general movements in early infancy. I Descriptive analysis of change in form. Early hum Dev 1992;28:201–13.Google ScholarPubMed
22.Hadders-Algra, M, Eykern, LA van, Klip-Nieuwendijk, AWJ van den, Prechtl, HFR. Developmental course of general mov ements in early infancy. II EMG correlates. Early hum Dev 1992;28:231–51.CrossRefGoogle Scholar
23.Ferrari, F, Cioni, G, Prechtl, HFR. Qualitative changes of general movements in preterm infants with brain lesions. Early hum Dev 1990;23:193233.CrossRefGoogle ScholarPubMed
24.Prechtl, HFR. Qualitative changes of spontaneous movements in preterm infants are a marker of neurological dysfunction. Early hum Dev 1990;23:151–9.CrossRefGoogle ScholarPubMed
25.Bos, AF. Differential effects of brain lesions and systematic disease on the quality of general movements: a preliminary report. Early hum Dev, 1993;34 (special issue): 3945.CrossRefGoogle Scholar
26.Milani-Comparetti, A, Gidoni, EA. Pattern analysis of motor development and its disorders. Dev Med Child Neurol 1967;9:625–30.CrossRefGoogle ScholarPubMed
27.Hempel, MS. The neurological Examination for Toddler-age. Groningen: Thesis, 1993.Google Scholar
28.Rakic, P, Bourgeois, JP, Eckenhoff, MF, Zecevic, N, Goldman-Rakic, PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 1986;132:232–5.CrossRefGoogle Scholar
29.Huttenlocher, PR. Synaptic density in human frontal cortex, developmental changes and effects of aging. Brain Res 1979;163:195205.Google ScholarPubMed
30.Huttenlocher, PR, DeCourten, C, Garey, LJ, VanDerLoos, H. Synaptogenesis in human visual cortex, evidence for synaps elimination during normal development. Neurosci Lett 1982;33:247–52.CrossRefGoogle Scholar
31.Martin, E, Kikinis, R, Zuerrer, M, Boesch, C, Briner, J, Kewitz, G, Kaelin, P. Developmental stages of the human brain: An MR study. J Comp ass Tomogr 1988;12:917–22.CrossRefGoogle Scholar
32.Koh, THHG, Eyre, JA. Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch Dis Childh 1988;63:1347–52.CrossRefGoogle ScholarPubMed