Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T22:34:07.940Z Has data issue: false hasContentIssue false

Fluctuations of the local times of the self-repelling random walk with directed edges

Published online by Cambridge University Press:  15 September 2023

Laure Marêché*
Affiliation:
Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS
*
*Postal address: 7 rue René Descartes, 67000 Strasbourg, France. Email address: laure.mareche@math.unistra.fr

Abstract

In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on $\unicode{x2124}$: in this model, the probability that the walk moves from a point of $\unicode{x2124}$ to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod $M_1$ topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amit, D. J., Parisi, G. and Peliti, L. (1983). Asymptotic behavior of the ‘true’ self-avoiding walk. Phys. Rev. B 27, 16351645.CrossRefGoogle Scholar
Knight, F. B. (1963). Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109, 5686.CrossRefGoogle Scholar
Kosygina, E., Mountford, T. and Peterson, J. (2022). Convergence and non-convergence of scaled self-interacting random walks to Brownian motion perturbed at extrema. Preprint. Available at https://arxiv.org/abs/2208.02589.Google Scholar
Kosygina, E., Mountford, T. and Peterson, J. (2022). Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema. Prob. Theory Relat. Fields 182, 189275.CrossRefGoogle Scholar
Marêché, L. (2022). Fluctuations of the local times of the self-repelling random walk with directed edges. Preprint. Available at https://arxiv.org/abs/2211.00475v1.Google Scholar
Marêché, L. and Mountford, T. (2023). Limit theorems for the trajectory of the self-repelling random walk with directed edges. Preprint. Available at https://arxiv.org/abs/2306.04320.Google Scholar
Mountford, T., Pimentel, L. P. R. and Valle, G. (2014). Central limit theorem for the self-repelling random walk with directed edges. ALEA Lat. Amer. J. Prob. Math. Statist. 11, 503517.Google Scholar
Mörters, P. and Peres, Y. (2010). Brownian Motion. Cambridge University Press.Google Scholar
Pemantle, R. (2007). A survey of random processes with reinforcement. Prob. Surveys 4, 179.CrossRefGoogle Scholar
Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.10.1007/978-1-4612-5254-2CrossRefGoogle Scholar
Ray, D. (1963). Sojourn times of diffusion processes. Illinois J. Math. 7, 615630.CrossRefGoogle Scholar
Skorokhod, A. V. (1956). Limit theorems for stochastic processes. Theory Prob. Appl. 1, 261290.CrossRefGoogle Scholar
Tóth, B. (1994). ‘True’ self-avoiding walks with generalized bond repulsion on $\unicode{x2124}$ . J. Statist. Phys. 77, 1733.CrossRefGoogle Scholar
Tóth, B. (1995). The ‘true’ self-avoiding walk with bond repulsion on $\unicode{x2124}$ : limit theorems. Ann. Prob. 23, 15231556.CrossRefGoogle Scholar
Tóth, B. (1996). Generalized Ray–Knight theory and limit theorems for self-interacting random walks on $\unicode{x2124}$ . Ann. Prob. 24, 13241367.CrossRefGoogle Scholar
Tóth, B. (1997). Limit theorems for weakly reinforced random walks on $\unicode{x2124}$ . Studia Sci. Math. Hung. 33, 321337.Google Scholar
Tóth, B. and Vető, B. (2008). Self-repelling random walk with directed edges on $\unicode{x2124}$ . Electron. J. Prob. 13, 19091926.Google Scholar
Tóth, B. and Vető, B. (2011). Continuous time ‘true’ self-avoiding random walk on $\unicode{x2124}$ . ALEA Lat. Amer. J. Prob. Math. Statist. 8, 5975.Google Scholar
Whitt, W. (2002). Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, New York.CrossRefGoogle Scholar