Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-07T22:29:36.542Z Has data issue: false hasContentIssue false

Nash equilibrium structure of Cox process Hotelling games

Published online by Cambridge University Press:  06 June 2022

Venkat Anantharam*
Affiliation:
University of California, Berkeley
François Baccelli*
Affiliation:
INRIA-ENS, Paris
*
*Postal address: University of California, Berkeley, USA. Email address: ananth@eecs.berkeley.edu
**Postal address: INRIA-ENS, Paris, France. Email address: francois.baccelli@inria.fr

Abstract

We study an N-player game where a pure action of each player is to select a nonnegative function on a Polish space supporting a finite diffuse measure, subject to a finite constraint on the integral of the function. This function is used to define the intensity of a Poisson point process on the Polish space. The processes are independent over the players, and the value to a player is the measure of the union of her open Voronoi cells in the superposition point process. Under randomized strategies, the process of points of a player is thus a Cox process, and the nature of competition between the players is akin to that in Hotelling competition games. We characterize when such a game admits Nash equilibria and prove that when a Nash equilibrium exists, it is unique and consists of pure strategies that are proportional in the same proportions as the total intensities. We give examples of such games where Nash equilibria do not exist. A better understanding of the criterion for the existence of Nash equilibria remains an intriguing open problem.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, H.-K. et al. (2004). Competitive facility location: the Voronoi game. Theoret. Comput. Sci. 310, 457467.CrossRefGoogle Scholar
Bertrand, J. (1883). Review of ‘Théorie mathématique de la richesse sociale’ and ‘Recherches sur les principes mathématiques de la théorie des richesses’, J. Savants 67, 499508.Google Scholar
Bogachev, V. I. (2000). Measure Theory. Springer, Berlin, Heidelberg.Google Scholar
Boppana, M., Hod, R., Mitzenmacher, M. and Morgan, T. (2016). Voronoi choice games. Preprint. Available at https://arxiv.org/abs/1604.07084v1.Google Scholar
Chafai, D. (2014). De la Vallée Poussin on uniform integrability. Available at http://djalil.chafai.net/blog/2014/03/09/de-la-vallee-poussin-on-uniform-integrability.Google Scholar
Cheong, O., Har-Peled, S., Linial, N. and Matoušek, J. (2004). The one-round Voronoi game. Discrete Comput. Geom. 31, 125138.CrossRefGoogle Scholar
Cournot, A. (1838). Recherches sur les Principes Mathématiques de la Théorie des Richesses. Hachette, Paris.Google Scholar
Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes, Vol. II, General Theory and Structure, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Diestel, J. (1991). Uniform integrability: an introduction. In Rend. Ist. Mat. Univ. Trieste 23, 4180.Google Scholar
Dunford, N. and Pettis, B. J. (1940). Linear operators on summable functions. Trans. Amer. Math. Soc. 47, 323392.CrossRefGoogle Scholar
Dürr, C. and Thang, N. K. (2007). Nash equilibria in Voronoi games on graphs. In Algorithms—ESA 2007, eds L. Arge, M. Hoffman and E. Welzl, Springer, Berlin, Heidelberg, pp. 1728.CrossRefGoogle Scholar
Edgeworth, F. Y. (1925). The pure theory of monopoly. In Papers Relating to Political Economy, Vol. 1, Macmillan, London, pp. 111142.Google Scholar
Eiselt, H. A., Laporte, G. and Thisse, J.-F. (1993). Competitive location models: a framework and bibliography. Tranport. Sci. 27, 4454.CrossRefGoogle Scholar
Gabszewicz, J. J. and Thisse, J.-F. (1992). Location. In Handbook of Game Theory, Vol. 1, eds R. J. Aumann and S. Hart, Elsevier, Amsterdam, pp. 281304.Google Scholar
Glicksberg, I. L. (1952). A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3, 170174.CrossRefGoogle Scholar
Graitson, D. (1982). Spatial competition à la Hotelling: a selective survey. J. Indust. Econom. 31, 1125.CrossRefGoogle Scholar
Hotelling, H. (1929). Stability in competition. Econom. J. 39, 4157.Google Scholar
Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer, Cham.CrossRefGoogle Scholar
Kelley, J. L. (1991). General Topology. Springer, New York.Google Scholar
Kovenock, D. and Roberson, B. (2015). Generalizations of the General Lotto and Colonel Blotto games. Working Paper No. 15-07, Economic Science Institute.Google Scholar
Lange, K. (1973). Borel sets of probability measures. Pacific J. Math. 48, 141161.CrossRefGoogle Scholar
Mallozi, L., D’Amato, E. and Pardalso, P. M. (eds) (2017). Spatial Interaction Models: Facility Location Using Game Theory. Springer, Cham.CrossRefGoogle Scholar
Monderer, D. and Shapley, L. S. (1996). Potential games. Games Econom. Behavior 14, 124143.CrossRefGoogle Scholar
Nash, J. F., Jr. (1950). Equilibrium points in N-person games. Proc. Nat. Acad. Sci. USA 36, 4849.CrossRefGoogle Scholar
Nash, J. F., Jr. (1951). Non-cooperative games. Ann. Math. 54, 286295.CrossRefGoogle Scholar
Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.CrossRefGoogle Scholar
ReVelle, C. S. and Eiselt, H. A. (2005). Location analysis: a synthesis and survey. Europ. J. Operat. Res. 165, 119.CrossRefGoogle Scholar
Roberson, B. (2006). The Colonel Blotto game. Econom. Theory 29, 124.CrossRefGoogle Scholar
Rudin, W. (1973). Functional Analysis. McGraw-Hill, New York.Google Scholar
Teramoto, S., Demaine, E. D. and Uehara, R. (2011). The Voronoi game on graphs and its complexity. J. Graph Algorithms Appl. 15, 485501.CrossRefGoogle Scholar
Varian, H. R. (2006). Intermediate Microeconomics: A Modern Approach, 7th edn. W. W. Norton, New York.Google Scholar
Von Neumann, J. and Morgenstern, O. (1953). Theory of Games and Economic Behavior. Princeton University Press.Google Scholar