Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T19:39:35.382Z Has data issue: false hasContentIssue false

Random stable-type minimal factorizations of the n-cycle

Published online by Cambridge University Press:  24 February 2022

Paul Thévenin*
Affiliation:
Uppsala Universitet
*
*Postal address: Rum ÅNG 64102 Lägerhyddsvägen 1, 752 37 UPPSALA. Email address: paul.thevenin@math.uu.se

Abstract

We investigate random minimal factorizations of the n-cycle, that is, factorizations of the permutation $(1 \, 2 \cdots n)$ into a product of cycles $\tau_1, \ldots, \tau_k$ whose lengths $\ell(\tau_1), \ldots, \ell(\tau_k)$ satisfy the minimality condition $\sum_{i=1}^k(\ell(\tau_i)-1)=n-1$ . By associating to a cycle of the factorization a black polygon inscribed in the unit disk, and reading the cycles one after another, we code a minimal factorization by a process of colored laminations of the disk. These new objects are compact subsets made of red noncrossing chords delimiting faces that are either black or white. Our main result is the convergence of this process as $n \rightarrow \infty$ , when the factorization is randomly chosen according to Boltzmann weights in the domain of attraction of an $\alpha$ -stable law, for some $\alpha \in (1,2]$ . The limiting process interpolates between the unit circle and a colored version of Kortchemski’s $\alpha$ -stable lamination. Our principal tool in the study of this process is a new bijection between minimal factorizations and a model of size-conditioned labeled random trees whose vertices are colored black or white, as well as the investigation of the asymptotic properties of these trees.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldous, D. (1994). Triangulating the circle, at random. American Math. Monthly 101, 223233.10.1080/00029890.1994.11996934CrossRefGoogle Scholar
Aldous, D. and Pitman, J. (1998). The standard additive coalescent. Ann. Prob. 26, 17031726.10.1214/aop/1022855879CrossRefGoogle Scholar
Angel, O., Holroyd, A. E., Romik, D. and Virág, B. (2007). Random sorting networks. Adv. Math. 215, 839868.10.1016/j.aim.2007.05.019CrossRefGoogle Scholar
Bettinelli, J. (2018). Convergence of uniform noncrossing partitions toward the Brownian triangulation. In 30th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2018) (Sém. Lothar. Combin., Vol. 80B), article no. 38, pp. 1–12.Google Scholar
Biane, P. (1996). Minimal factorizations of a cycle and central multiplicative functions on the infinite symmetric group. J. Combinatorial Theory A 76, 197212.10.1006/jcta.1996.0101CrossRefGoogle Scholar
Biane, P. and Josuat-Vergès, M. (2020). Minimal factorizations of a cycle: a multivariate generating function. In DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), pp. 239250.10.46298/dmtcs.6318CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Cambridge University Press.Google Scholar
Björnberg, J. E. and Stefánsson, S. Ö. (2015). Random walk on random infinite looptrees. J. Statist. Phys. 158, 12341261.10.1007/s10955-014-1174-9CrossRefGoogle Scholar
Bouttier, J., Di Francesco, P. and Guitter, E. (2004). Planar maps as labeled mobiles. Electron. J. Combinatorics 11, R69.10.37236/1822CrossRefGoogle Scholar
Curien, N. and Kortchemski, I. (2014). Random non-crossing plane configurations: a conditioned Galton–Watson tree approach. Random Structures Algorithms 45, 236260.10.1002/rsa.20481CrossRefGoogle Scholar
Dauvergne, D. (2019). The Archimedean limit of random sorting networks. Preprint. Available at https://arxiv.org/abs/1802.08934.Google Scholar
Dénes, J. (1959). The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs. Publ. Math. Inst. Hungar. Acad. Sci. 4, 6370.Google Scholar
Du, R. R. and Liu, F. (2015). Factorizations of cycles and multi-noded rooted trees. Graphs Combinatorics 31, 551575.10.1007/s00373-013-1404-yCrossRefGoogle Scholar
Duquesne, T. (2003). A limit theorem for the contour process of conditioned Galton–Watson trees. Ann. Prob. 31, 9961027.10.1214/aop/1048516543CrossRefGoogle Scholar
Duquesne, T. (2009). An elementary proof of Hawkes’s conjecture on Galton–Watson trees. Electron. Commun. Prob. 14, 151164.10.1214/ECP.v14-1454CrossRefGoogle Scholar
Duquesne, T. and Le Gall, J.-F. (2002). Random Trees, Lévy Processes and Spatial Branching Processes (Astérisque 281). Société Mathématique de France, Paris.Google Scholar
Feller, W. (2008). An Introduction to Probability Theory and Its Applications, Vol. 2. John Wiley, New York.Google Scholar
Féray, V. and Kortchemski, I. (2018). The geometry of random minimal factorizations of a long cycle via biconditioned bitype random trees. Ann. H. Lebesgue 1, 149226.10.5802/ahl.5CrossRefGoogle Scholar
Féray, V. and Kortchemski, I. (2019). Trajectories in random minimal transposition factorizations. ALEA 16, 759.10.30757/ALEA.v16-27CrossRefGoogle Scholar
Goulden, I. and Yong, A. (2002). Tree-like properties of cycle factorizations. J. Combinatorial Theory A 98, 106–117.10.1006/jcta.2001.3230CrossRefGoogle Scholar
Goulden, I. P. and Pepper, S. (1993). Labelled trees and factorizations of a cycle into transpositions. Discrete Math. 113, 263268.10.1016/0012-365X(93)90522-UCrossRefGoogle Scholar
Janson, S. (2011). Stable distributions. Preprint. Available at https://arxiv.org/abs/1112.0220.Google Scholar
Janson, S. (2012). Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation. Prob. Surveys 9, 103252.10.1214/11-PS188CrossRefGoogle Scholar
Kallenberg, O. (2002). Foundations of Modern Probability. Springer, New York.10.1007/978-1-4757-4015-8CrossRefGoogle Scholar
Kennedy, D. P. (1975). The Galton–Watson process conditioned on the total progeny. J. Appl. Prob. 12, 800806.10.2307/3212730CrossRefGoogle Scholar
Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Prob. Statist. 22, 425487.Google Scholar
Kortchemski, I. (2012). Invariance principles for Galton–Watson trees conditioned on the number of leaves. Stoch. Process. Appl. 122, 31263172.10.1016/j.spa.2012.05.013CrossRefGoogle Scholar
Kortchemski, I. (2014). Random stable laminations of the disk. Ann. Prob. 42, 725759.10.1214/12-AOP799CrossRefGoogle Scholar
Kortchemski, I. and Marzouk, C. (2017). Simply generated non-crossing partitions. Combinatorics Prob. Comput. 26, 560592.10.1017/S0963548317000050CrossRefGoogle Scholar
Le Gall, J.-F. and Miermont, G. (2011). Scaling limits of random planar maps with large faces. Ann. Prob. 39, 169.10.1214/10-AOP549CrossRefGoogle Scholar
Le Gall, J.-F. and Paulin, F. (2008). Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18, 893918.10.1007/s00039-008-0671-xCrossRefGoogle Scholar
Marckert, J.-F. and Mokkadem, A. (2003). The depth first processes of Galton–Watson trees converge to the same Brownian excursion. Ann. Prob. 31, 16551678.10.1214/aop/1055425793CrossRefGoogle Scholar
Meir, A. and Moon, J. W. (1978). On the altitude of nodes in random trees. Canadian J. Math. 30, 9971015.10.4153/CJM-1978-085-0CrossRefGoogle Scholar
Miermont, G. (2008). Invariance principles for spatial multitype Galton–Watson trees. Ann. Inst. H. Poincaré Prob. Statist. 44, 11281161.10.1214/07-AIHP157CrossRefGoogle Scholar
Moszkowski, P. (1989). A solution to a problem of Dénes: a bijection between trees and factorizations of cyclic permutations. Europ. J. Combinatorics 10, 1316.10.1016/S0195-6698(89)80028-9CrossRefGoogle Scholar
Mühle, H., Nadeau, P. and Williams, N. (2019). k-indivisible noncrossing partitions. Preprint. Available at https://arxiv.org/abs/1904.05573.Google Scholar
Neveu, J. (1986). Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Prob. Statist. 22, 199207.Google Scholar
Ojeda, G. H. B. (2018). On scaling limits of multitype Galton–Watson trees with possibly infinite variance. ALEA 15, 2148.10.30757/ALEA.v15-02CrossRefGoogle Scholar
Rosén, B. (1964). Limit theorems for sampling from finite populations. Ark. Mat. 5, 383424.10.1007/BF02591138CrossRefGoogle Scholar
Thévenin, P. (2019). A geometric representation of fragmentation processes on stable trees. Preprint. Available at https://arxiv.org/abs/1910.04508.Google Scholar
Thévenin, P. (2020). Vertices with fixed outdegrees in large Galton–Watson trees. Electron. J. Prob. 25, article no. 64, pp. 25.10.1214/20-EJP465CrossRefGoogle Scholar