Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-25T14:37:03.080Z Has data issue: false hasContentIssue false

Analysis of Specific Interfaces in Thin Films by X-Ray Fluorescence Using Interference Effect in Total Reflection

Published online by Cambridge University Press:  06 March 2019

Kenji Sakurai
Affiliation:
National Research Institute for Metals: 1-2-1 Sengen, Tsukuba, Ibaraki 305, Japan
Atsuo Iida
Affiliation:
National Research Institute for Metals: 1-2-1 Sengen, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

It has been proposed that the interference effect in grazing incidence/exit X-ray fluorescence can be used as an analytical tool. Though these total reflection related measurements have been widely used because of their inherent high sensitivity to the surface of materials, the interference in case of thin films is most likely to be considered difficult to analyze. The present paper describes the use of the interference effect to provide additional capability to enhance information on a specific interface of a thin film. Detailed interpretation of the angular resolved fluorescence tells us at which interface an element of interest is localized. It can be applied to the thin film of only a few layers or non-periodic multilayers where a regular standing wave is not generated.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. for example, Proc. of the 5th Workshop on Total Reflection X-Ray Fluorescence Spectroscopy and Related Spectroscopical Methods, Tsukuba, Japan, October 17-19, 1994.Google Scholar
2. Kiessig, H., Ann. Physik, 10: 715 (1931).Google Scholar
3. Parratt, L. G., Phys. Rev. 95: 359 (1954).Google Scholar
4. Segmuller, A., A. I. P. Conf. Proc, 53: 78 (1979).Google Scholar
5. Sakurai, K. and Iida, A., Jpn J. Appl. Phys. 31: L113 (1992).Google Scholar
6. Sakurai, K. and Iida, A., Adv. in X-Ray Anal. 35: 813 (1993).Google Scholar
7. Sasaki, Y. C. and Hirokawa, K., Phys. Rev. B48:7724 (1993).Google Scholar
8. Noma, T., Iida, A., and Sakurai, K., Phys. Rev. 648:17524(1993),Google Scholar
9. Krol, A., Sher, C. J., and Kao, Y. H., Phys. Rev. B38:8579 (1988).Google Scholar
10. de Boer, D. K. G., Phys. Rev B44: 498 (1991).Google Scholar
11. Bloch, J. M., Sansone, M., Rondelez, F., Peiffer, P. G., Pincus, P., Kim, M. W., Eisenberger, P. M., Phys. Rev. Lett. 54:1039 (1985).Google Scholar
12. Iida, A., Sakurai, K., Yoshinaga, A. and Gohshi, Y., Nucl. Instrum. & Methods A246:736 (1986).Google Scholar
13. Barbee, T. W. Jr. and Warburton, W. K., Mat. Lett. 3: 17 (1984).Google Scholar
14. Bedzyk, M. J., Bommarito, G. M., CafFrey, M. and Penner, T. L., Science 248:52 (1990).Google Scholar
15. Sakurai, K., Bowen, D. K., Wormington, M., and Iida, A., submitted to Phys Rev. Lett.Google Scholar
16. Becker, R. S., Golovchenco, J. A., and Patel, J. R., Phys Rev. Lett. 50:153 (1983).Google Scholar
17. Noma, T. and Iida, A., Rev. Sci Instrum 65:837 (1994).Google Scholar
18. Iida, A. and Noma, T., Nucl. Instrum. & Methods B82:129 (1993).Google Scholar
19. Iwasaki, H., Synchrotron Radiation News, 4:10 (1991).Google Scholar