Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T03:22:11.376Z Has data issue: false hasContentIssue false

Factors Limiting the use of Standard Minerals in the X-Ray Diffraction Analysis of Clays*

Published online by Cambridge University Press:  06 March 2019

Lowell A. Douglas*
Affiliation:
Dept. of Soils and Crops, Rutgers University, New Brunswick, New Jersey 08903
Get access

Abstract

In the quantitative x-ray diffraction analysis of clays, “standard“ clays are compared with “unknowns” assuming both Standards and unknowns have similar diffraction characteristics. This assumption is valid in certain cases involving kaolinites, chlorites, vermiculites, and where standards have been obtained from the unknown clays. In other cases; especially those involving smectites, illites, and some chlorites and vermiculites; lack of hornogeneity within mineral species and inability to measure this inhomogeneity in mixed mineral suites limits the accuracy obtainable by diffraction methods.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Journal series paper of the New Jersey Agricultural Experimental Station.

References

1. Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures, Wiley, New York (1954).Google Scholar
2. Brindley, G. W., “Quantitative Analysis of Clay Mixtures,” in Brown, G., Ed., The X-ray Diffraction and Crystal Structures of Clay Minerals, p. 489516. Mineralogical Society, London (1961).Google Scholar
3. Hofmann, U., “Summary of Clay-Mineral Studies in Germany, 1954 and 1955”, in Swineford, A., Ed., Clay and Clay Minerals, Proceedings of the Fourth National Conference, p. 7990. National Academy of Sciences-National Research Council, Washington, (1956).Google Scholar
4. Gibbs, R. J., Quantitative X-ray Diffraction Analysis Using Clay Mineral Standards Extracted from the Samples to be Analysed, Clay Min. 7, 7990 (1967).Google Scholar
5. Moore, C. A., Quantitative Analysis of Naturally Occuring Multicomponent Mineral Systems by X-ray Diffraction. Clays and Min. 16, 325326 (1968).Google Scholar
6. Grant, W. H., Kaolinite Stability in the Central Piedmont of Georgia, Clays and Clay Min., 13, 131140 (1965).Google Scholar
7. Brindley, G. W., “Discussions and Recommendations Conceming the Nomenclature of Clay Minerals and Related Phyllosilicates”, In Bailey, S. W., Ed., Clays and Clay Minerals, Proceedings of the Fourteenth National Conference, p. 2734, (1966).Google Scholar
8. Brindley, G. W. and Kurtossy, S. S., Quantitative Determination of Kaolinite by X-ray Hiffraction, Amer. Min. 46, 12051215, (1961).Google Scholar
9. Gibbs, R. J., Error Due to Segregation in Quantitative Clay Mineral X-ray Diffraction Mounting Techniques, Amer. Min., 50, 741751, (1965).Google Scholar
10. Grim, R. E., Bray, R. H. and Bradley, W. F., The Mica in Argillaceous Sediments, Amer, Min. 22, 813829 (1937).Google Scholar
11. Gaudette, H. E., Eades, I. L. and Grim, R. E., “The Nature of Illite”, in Bradiey, W. F. and Bailey, S. W., Eds., Clay and Clay Minerals. Proceedings of the Thirteenth National Conference, p. 3348, Pergamon Press, Oxford, (1965).Google Scholar
12. Lapham, D. E. and Jaron, M. J., Rapid, Quantitative Illite Determination in Polycomponent Mixtures, Amer. Min. 49, 272276, (1964).Google Scholar
13. Warshaw, C. M., “ Experimental Studies of Illite”, in Swineford, A., Ed., Clay and Clay Minerals, Proceedings of the Seventh National Conference, p. 303316, Pergamon Press, London, (1959).Google Scholar
14. Weaver, C.E., Relations of Composition to Structure of Dioctahedral 2:1 Clay Minerals, Clay and Clay Min., 16, 5161, (1968).Google Scholar
15. Hower, J and Mowatt, T. C., The Mineralogy of Illites and Mixed-Layer Illite/Montmorillonites, Amer. Min., 51, 825853, (1966).Google Scholar
16. Brindley, G.W., “Kaolin, Serpentine, and Kindred Minerals”, in Brown, G., Ed., The X-ray Idtentification and Crystal Structures of Clay Minerals, p. 51131, Mineralogical Society, London (1961).Google Scholar
17. Murray, H.H., Structural Variations of Some Kaolinites in Relation to Dehydrated Hulloysite, Amer. Min., 39, 97108, (1954).Google Scholar
18. Murray, H.H. and Lyons, S. C., “Correlation of Paper-Coating Quality with Degree of Crystal Perfection of Kaolinite”, Swineford, In. A., Ed., Clay and Clay Minerals, Proceedings of the Fourth National Conference, p. 3144, (1956).Google Scholar
19. Millot, G., Geology of Clays, Springer-Verlog, 425 p ., New York, (1970).Google Scholar
20. Bailey, S. W., Determinations of Chlorite Compositions by X-ray Spacings and Intensities, Clay and Clay Min., 20, 381388. (1972).Google Scholar
21. Brindley, G. W. and Gillery, F. H., X-ray Identification of Chlorite Species, Amer. Min., 41, 169186, (1956).Google Scholar
22. Brown, G., The Dioctahedral Analogue of Vermiculite, Clay Min. Bull., 2, 6469, (1953).Google Scholar
23. Warshaw, C. M. and Roy, R., Classification and a Scheme for the Identification of Layer Silicates, Bull. Geol. Soc. Amer., 72, 14551492, (1961).Google Scholar
24. Hathaway, J. C., “Studies of Some Vermiculite-Type Clay Minerals”, In, Milligan, W. O., Ed., Clay and Clay Minerals, Proceedings of the Third National Conference, p . 7486, National Academy of Scienoes-National Research Council, Washington, (1955).Google Scholar
25. Ross, C. S. and Hendricks, S. B., Minerals of the Montmorillonite Group, U. S. Geological Survey Proff. Paper 205-B, p . 2379, (1945).Google Scholar
26. MacEwan, D. M. C., “Montmorillonite Minerals”, in Brown, G., Ed., The X-ray Identification and Crystals of Clay Minerals, p. 143207, Mineralogical Society, London (1961).Google Scholar
27. Rodriguez Gallego, M., Martin Vivaldi, J. M., and Martin Pozas, J. M., Analisis Cuantitativo de Filosilicatos de la Arcilla por Difraccion de Rayos-X III. Influencia de la Sustitucion insomorfica y de la Cristalinidad. Anal. Quimica (Espano) 65, 2529, (1969).Google Scholar
28. Green-Kelly, R., Identification of Montmorillonoids, J. Soil Sci., 4, 233237, (1953).Google Scholar
29. Anderson, D. M. and Reynolds, R. C., Umiat Bentonite, an Unusual Montmorillonite from Umiat, Alaska, Research Report 223, llp., U.S. Army Cold Regions Research & Engineering Lab., Hanover (1967).Google Scholar