Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-30T09:45:55.615Z Has data issue: false hasContentIssue false

Imaging XPS. A Contribution to 3D X-ray Analysis

Published online by Cambridge University Press:  06 March 2019

M. F. Ebel
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien Wiedner Hauptstraβe 8-10, A 1040 Wien ( Austria)
H. Ebel
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien Wiedner Hauptstraβe 8-10, A 1040 Wien ( Austria)
M. Mantler
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien Wiedner Hauptstraβe 8-10, A 1040 Wien ( Austria)
R. Svagera
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien Wiedner Hauptstraβe 8-10, A 1040 Wien ( Austria)
Get access

Extract

X-ray photoelectron spectrometry (XPS) has been a well established surface analytical technique for approximately 20 years. Fhotoelectrons are ejected by characteristic x-radiation. In our investigations we use Alκα-radiation. The depth from which l-l/e of the measured signal comes, is restricted to a few nanometers by inelastic mean free paths of photoelectrons in solids.

Type
V. XRF Instrumentation and Techniques
Copyright
Copyright © International Centre for Diffraction Data 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Finster, J., Lorenz, P. and Meisel, A., Surf.Interface Anal. 1, 179 (1979).Google Scholar
2. Nefedov, V. I., Lunin, V. V. and Chulkov, N. G., Surf-Interface Anal. 2, 207 (1980).Google Scholar
3. Hofmann, S., Surf.Interface Anal. 2, 148 (1980).Google Scholar
4. Paynter, R. W., Surf.Interface Anal. 3, 186 (1981).Google Scholar
5. Nefedov, V. I., Surf.Interface Anal. 3, 72 (1981).Google Scholar
6. Dowben, P. A. and Grunze, M., J. Electron Spectrosc. Relat. Phenom. 28, 249 (1983).Google Scholar
7. Hunt, C. P., Anthony, M. T. and Seah, M. F., Surf.Interface Anal. 6, 92 (1984).Google Scholar
8. Hofmann, S. and Sanz, J. M., Surf.Interface Anal. 6, 75 (1984).Google Scholar
9. Vahalia, Uresh, Dowben, P. A. and Miller, A., J. Electron Spectrosc. Relat.Phenom. 37, 303 (1986).Google Scholar
1. Holmberg, S., Moberg, R., Cai Yuan, Zhong and Siegbahn, H., J. Electron Spectrosc.Relat.Phenom. 41, 337 (1986).Google Scholar
11. Hazell, L. B., Brown, I. S. and Freisinger, F., Surf.Interface Anal. 8, 25 (1986).Google Scholar
12. Yih, R. S. and Ratner, B. D., J. Electron Spectrosc.Relat. Phenom. 43, 61 (1987).Google Scholar
13. Nefedov, V. I. and Baschenko, O. A., J. Electron Spectrosc. Relat.Phenom. 47, 1 (1988).Google Scholar
14. Katardjiev, I. V., Nobes, M. J. and Carter, G., Surf.Interface Anal. 14, 572 (1989).Google Scholar
15. Tyler, B. J., Castner, D. G. and Ratner, B. D., Surf.Interface Anal. 14, 443 (1989).Google Scholar
16. Ebel, M. F. and Gurker, N., Austrian Patent, “Ortsauflösendes Photoelektronenspektrometer”, date of filing 5.5.1980. Patentgrant Nr.371289-15.10.1982.Google Scholar
17. Gurker, N., Ebel, M. F. and Ebel, H., Surf.Interface Anal. 5, 13 (1983).Google Scholar
18. Gurker, N., Ebel, M. F., Ebel, H., Mantler, M., Hedrich, H. and Schön, P., Surf.Interface Anal. 10, 242 (1987).Google Scholar
19. Ebel, H., Ebel, M. F., Mantler, M., Barnegg-Golwig, G., Svagera, R. and Gurker, N., Surf.Sci. 231, 233 (1990).Google Scholar
20. Criss, J. W. and Birks, L. S., Anal.Chem. 40, 1080 (1968).Google Scholar
21. Hanke, W., Ebel, H., Ebel, M. F., Jabonski, A. and Hirokawa, K., J. Electron Spectrosc.Relat.Phenom. 40, 241 (1986).Google Scholar
22. Vonbank, M. and Varga, P., Vakuum-Technik 37, 221 (1988).Google Scholar
23. Ebel, H., Ebel, M. F., Svagera, R., Winkelmayr, E. and Varga, P., J. Electron Spectrosc.Relat.Phenom. (to be published).Google Scholar