Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-27T19:25:32.992Z Has data issue: false hasContentIssue false

Measurement of the Lattice Constants of Neon Isotopes in the Temperature Range 4–24°K

Published online by Cambridge University Press:  06 March 2019

L. H. Bolz
Affiliation:
National Bureau of Standards, Washington, B.C.
F. A. Mauer
Affiliation:
National Bureau of Standards, Washington, B.C.
Get access

Abstract

Using an X-ray diffractonieter cryostat, the lattice constants of the isotopes 20Ne and 22Ne as well as the naturally occurring mixture have been measured throughout most of the temperature range in which they exist as solids (0 to approximately 24°K), The heavier isotope has the smaller lattice constant, the values obtained at 4.2°K being: 20Ne—4.4624 Å, 22Ne—4.4540 Å, and 11Ne—4.4622 Å. The absolute error in these values is believed to be no greater than 0.001 A. The volume expansion coefficient, which does not appear to differ significantly in the three cases, increases to a value of 6.3 × 10−3/°K at 24°K.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dobbs, E. R. and Jones, G. O., Repts. Prog. Phys. 20: 516564, 1957.Google Scholar
2. Dobbs, E. R., Figgins, B. F., Jones, G. O., Piercey, D. C., and Riley, D. P., Nature 178: 483, 1956.Google Scholar
3. Figgins, B. F. and Smith, B. L., Phil. Mag. 5: 186, 1960.Google Scholar
4. Eatwell, A. J. and Smith, B. L., Phil. Mag. 6: 461, 1961.Google Scholar
5. Kogan, V. S., Lazatev, B. G., and Buktova, R. F., Soviet Physics JETP 13: 19, 1961; Original 40: 29-31, 1961.Google Scholar
6. American Institute of Physics Handbook, D. E. Gray, coordinating editor, McGraw-Hill Book Co., Inc., New York, 1957, pp. 8-154.Google Scholar
7. Clusius, K., Z. Phys. Chem. B31: 459, 1936.Google Scholar
8. Clusius, K., Flubacher, P., Piesbergen, U., Schleich, K., and Spcrandio, A., Z. Naturforschung 15a: 1, 1960.Google Scholar
9. Stewart, J. W., Phys. Rev. 97: 578, 1955.Google Scholar
10. Blade, I. A., Bolz, L. H., Brooks, F. P., Mauer, F. A., and Pdser, H. S., J. Research N. Bur, Standards 61: 367, 1958.Google Scholar
11. Mauer, F. A. and Bolz, L. H.. J. Research N. Bur. Standards 65C: 225, 1961.Google Scholar
12. Scott, R. B., Cryogenic Engineering, D. Van Nostrand Co., Inc., Princeton, N.J., 1959, Tables 9.19 and 9.35.Google Scholar
13. Clement, J. R. and Quinell, E. H., Rev. Sri. Instr. 23: 213, 1952.Google Scholar
14. Skinner, E. J., Am. Mineralogist 42; 39, 1957.Google Scholar
15. Thewlis, J. and Davey, A. R., Phil. Mag. 1: 409, 1956.Google Scholar
16. de Smedt, J., Keesoro, W. H., and Mooy, H. H., Commun. Phys. Lab. Univ. Leiden 203e: 1930.Google Scholar
17. Henshaw, D. G., Phys. Rev. 111: 1470, 1958.Google Scholar
18. Johns, T. F., Phil. Mag. 3: 229, 1958.Google Scholar