Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T20:24:43.154Z Has data issue: false hasContentIssue false

Skin Thickness Effects on In Vivo LXRF

Published online by Cambridge University Press:  06 March 2019

Ivor L. Preiss
Affiliation:
Department of Chemistry Department of Nuclear Engineering and Engineering Physics Rensselaer Polytechnic Institute Tioy, New York 12180
William Washington II
Affiliation:
Department of Chemistry Department of Nuclear Engineering and Engineering Physics Rensselaer Polytechnic Institute Tioy, New York 12180
Get access

Abstract

The analysis of lead concentration in bone utilizing LXRF can be adversely effected by overlymg tissue. A quantitative measure of the attenuation of the 10.5 keV Pb L a x-ray signal by skin and skin equivalent plastic has been conducted. Concentration ranges in plaster of Paris and doped goat bone from 7 to 90 ppm with attenuators of Lucite® and pig skin were examined. It is concluded that no quantitative or semi quantitative analysis can be achieved if overlying tissue thickness exceeds 3 mm for Pb concentrations of less than 30 ppm Pb in bone.

Type
VIII. In Vivo Applications of XRS
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wielopolski, L., Rosen, J. F., Slatkin, D.N., D. Vartsky, Ellis, K. J., and Cohn, S. H., Med. Phys. 10, 248 (1983).Google Scholar
2. Wielopolski, L., Rosen, J. F., Slatkin, D. N., R. Zhang, R. Kalef-Ezra, Rothman, J. C., M. maryanski, and Jenks, S. T., Med. Phys. 16, 521 (1989).Google Scholar
3. Chettle, D. R., Scott, M. C. and Sommerville, L. J., Env. Health Persp. 91, 49 (1991).Google Scholar
4. Kosnett, M. J., Becker, C. E., Ostgerloch, T.D., Kelly, T. J., Pasta, D. J., JAMA 271, 11 (1994).Google Scholar
5. Rosen, J. F., Markowitz, M. E., Jenks, S. T., Slatkin, D. N., Bajor, P. E., and kale-Ezra, R., Proc. Nat. Acad. Sci. 86, 685 (1989).Google Scholar
6. Rosen, J. F., Crockett, A. F., Balbi, K., Bailey, C., Clemente, I., Redkey, N., and Grainger, S., Proc. Nat. Acad. Sci. 90, 2789 (1993).Google Scholar
7. Preiss, I. L. and Tariq, M. S., Radioanal. Nuc. Chem. Let. 164, 381 (1992).Google Scholar
8. Pella, P., Adv. X-ray Anal, 34 293 (1991).Google Scholar
9. Parsons, P., State, N. Y. Dep. of Health, Private Comm. (1994).Google Scholar
10. Preiss, I. L., T. Ptak, and Frank, A. S., Nucl. Instr. and Meth. A242, 49 (1986).Google Scholar
11. Preiss, I. L. and Robie, S., J. Eng. Chem. 21, 676 (1982).Google Scholar
12. Tariq, M. A. and Preiss, I. L., Bio. Trace. Elem. Res. 42, 97 (1994).Google Scholar
13. Tham, F. S. and Preiss, I.L., J. Radioanal. & Nuc. Chem. 99, 133 (1986).Google Scholar
14. Borowski, K. S., Tham, F. S. and Preiss, I. L., J. Anal. & Atom. Spec. 2, 73 (1987).Google Scholar